Advertisement

Cancer and Metastasis Reviews

, Volume 33, Issue 1, pp 231–269 | Cite as

Platelets and cancer: a casual or causal relationship: revisited

  • David G. Menter
  • Stephanie C. Tucker
  • Scott Kopetz
  • Anil K. Sood
  • John D. Crissman
  • Kenneth V. HonnEmail author
NON-THEMATIC REVIEW

Abstract

Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as “First Responders” during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.

Keywords

Platelet TCIPA Metastasis Thrombosis Extravasation CTC 

Notes

Acknowledgments

This study was supported by the following grants: CPRIT RP100969 to DGM, NCI CA177909 to AKS, and DoD W81XWH-11-1-0519 to KVH.

References

  1. 1.
    Honn, K. V., Tang, D. G., & Crissman, J. D. (1992). Platelets and cancer metastasis: a causal relationship? Cancer Metastasis Reviews, 11(3–4), 325–351.PubMedGoogle Scholar
  2. 2.
    Rados, C. (2004). Beyond bloodletting: FDA gives leeches a medical makeover. FDA Consumer, 38(5), 9.PubMedGoogle Scholar
  3. 3.
    Winkel, R., Tajsic, N., Husum, H., Schlageter, M., Hanebuth, G., & Hoffmann, R. (2013). Saphenous perforator flap. Operative Orthopädie und Traumatologie, 25(2), 152–161.PubMedGoogle Scholar
  4. 4.
    Kaushansky, K. (2008). Historical review: megakaryopoiesis and thrombopoiesis. Blood, 111(3), 981–986.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Steinhubl, S. R. (2011). Historical observations on the discovery of platelets, platelet function testing and the first antiplatelet agent. Current Drug Targets, 12(12), 1792–1804.PubMedGoogle Scholar
  6. 6.
    Addison, W. (1842). On the colourless corpuscles and on the molecules and cytoblasts in the blood. London Med Gaz, 30, 144–152.Google Scholar
  7. 7.
    Schultze, M. (1865). Ein heizbarer Objecttisch und seine Verwendung bei Untersuchungen des Blutes. Arch Mikrosc Anatomy, 1, 1–42.Google Scholar
  8. 8.
    Bizzozero, J. (1882). Über einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung. Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medizin, 90, 261–332.Google Scholar
  9. 9.
    de Gaetano, G. (2001). A new blood corpuscle: an impossible interview with Giulio Bizzozero. Thrombosis and Haemostasis, 86(4), 973–979.PubMedGoogle Scholar
  10. 10.
    Virchow, R. (1856). Gesammelte (ad) Handlungen zur wissenschaftlichen Medizin. Frankfurt Meidinger.Google Scholar
  11. 11.
    Bizzozero, G. (1869). Sul midollo delle ossa. Napoli: Tipografia Italiana.Google Scholar
  12. 12.
    Osler, W., & Schäfer, E. A. (1873). über einige im Blute vorhandene bacterienbildende Massen. Centralbl Medicine Wissensch, 11, 577–578.Google Scholar
  13. 13.
    Howell, W. H. (1890). Observations upon the occurrence, structure, and function of the giant cells of the marrow. Journal of Morphology, 4, 117–130.Google Scholar
  14. 14.
    Wright, J. H. (1906). The origin and nature of the blood plates. Boston Medical and Surgical Journal, 23, 643–645.Google Scholar
  15. 15.
    Wright, J. H. (1910). The histogenesis of blood platelets. Journal of Morphology, 21, 263–278.Google Scholar
  16. 16.
    Nakeff, A., & Maat, B. (1974). Separation of megakaryocytes from mouse bone marrow by velocity sedimentation. Blood, 43(4), 591–595.PubMedGoogle Scholar
  17. 17.
    Pease, D. C. (1956). An electron microscopic study of red bone marrow. Blood, 11(6), 501–526.PubMedGoogle Scholar
  18. 18.
    Trousseau, A. (1865). Phlegmasia alba dolens. Lectures on clinical medicine. Delivered at the Hotel-Dieu, Paris, 5, 281–332.Google Scholar
  19. 19.
    Bariety, M. (1947). Trousseau, 1801–1867 (pp. 234–235). Geneva: Mazenod.Google Scholar
  20. 20.
    Osler, W., & McCrae, T. (1900). Latent cancer of the stomach. Phil Medical Journal, 5, 245.Google Scholar
  21. 21.
    Sproul, E. (1938). Carcinoma and venous thrombosis: the frequency of association of carcinoma in the body and tail of the pancreas with multiple venous thrombosis. American Journal of Cancer, 34, 566–585.Google Scholar
  22. 22.
    Edwards, E. (1949). Migratory thrombophlebitis associated with carcinoma. The New England Journal of Medicine, 240, 1131–1135.Google Scholar
  23. 23.
    Gross, F. B., Jr., Jaehning, D. G., & Coker, W. G. (1951). The association of migratory thrombophlebitis with carcinoma. North Carolina Medical Journal, 12(3), 97–101.PubMedGoogle Scholar
  24. 24.
    Henderson, P. H., Jr. (1955). Multiple migratory thrombophlebitis associated with ovarian carcinoma. American Journal of Obstetrics and Gynecology, 70(2), 452–453.PubMedGoogle Scholar
  25. 25.
    Jain, S., Harris, J., & Ware, J. (2010). Platelets: linking hemostasis and cancer. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(12), 2362–2367.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Jarniou, A. P., & Moreau, A. (1959). Recurrent & migratory thrombophlebitis revealing a secondary cancer with mediastino-pulmonary form. Presse Médicale, 67(27), 1117–1118.PubMedGoogle Scholar
  27. 27.
    Jennings, W., & Russel, W. (1948). Phlebothrombosis associated with mucin-producing carcinomas of the tail and body of the pancreas. Archives of Surgery, 56, 186–198.PubMedGoogle Scholar
  28. 28.
    Kenney, W. (1943). The association of carcinoma in the body and tail of the pancreas with multiple venous thrombi. Surgery, 14, 600–609.Google Scholar
  29. 29.
    Linquette, M., Mesmacque, R., Fossati, P., Luez, G., & Beghin, B. (1964). Recurrent and migratory venous thromboses. Prog ress in Medical (Paris), 92, 689–698.Google Scholar
  30. 30.
    Mainoli, S., & Piccinelli, O. (1956). Migratory thrombophlebitis and malignant tumors; migratory thrombophlebitis occurring during two cases of reticulosarcoma. La Riforma Medica, 70(46), 1330–1334.PubMedGoogle Scholar
  31. 31.
    McKay, D., & Wahle, G. (1955). Disseminated thrombosis in colon cancer. Cancer, 8, 970–978.PubMedGoogle Scholar
  32. 32.
    Noble, S., & Pasi, J. (2010). Epidemiology and pathophysiology of cancer-associated thrombosis. British Journal of Cancer, 102(Suppl 1), S2–9.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Nusbacher, J. (1964). Migratory venous thrombosis and cancer. New York State Journal of Medicine, 64, 2166–2173.PubMedGoogle Scholar
  34. 34.
    Oster, M. W. (1976). Thrombophlebitis and cancer. A review. Angiology, 27(10), 557–567.PubMedGoogle Scholar
  35. 35.
    Picard, R., Horeau, J., Guillon, J., & Robin, C. (1959). Migratory thrombophlebitis & bronchopulmonary cancer. Bulletins et Mémoires de la Société Médicale des Hôpitaux de Paris, 75(9–11), 327–329.PubMedGoogle Scholar
  36. 36.
    Popesco, I., & Ciobanu, V. (1958). Migratory thrombophlebitis as a manifestation of visceral cancer. La Semaine des Hôpitaux, 34(1), 26–30.PubMedGoogle Scholar
  37. 37.
    Rizzo, J. A. (1956). Migratory thrombophlebitis and visceral cancer. Revista de la Asociación Médica Argentina, 70(825–826), 236–238.PubMedGoogle Scholar
  38. 38.
    Varki, A. (2007). Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood, 110(6), 1723–1729.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Womack, W. S., & Castellano, C. J. (1952). Migratory thrombophlebitis associated with ovarian carcinoma. American Journal of Obstetrics and Gynecology, 63(2), 467–469.PubMedGoogle Scholar
  40. 40.
    Pineo, G. F., Regoeczi, E., Hatton, M. W., & Brain, M. C. (1973). The activation of coagulation by extracts of mucus: a possible pathway of intravascular coagulation accompanying adenocarcinomas. The Journal of Laboratory and Clinical Medicine, 82(2), 255–266.PubMedGoogle Scholar
  41. 41.
    Brugarolas, A., Elias, E. G., Takita, H., Mink, I. B., Mittelman, A., & Ambrus, J. L. (1973). Blood coagulation and fibrinolysis in patients with carcinoma of the lung. Journal of Medicine, 4(2), 96–105.PubMedGoogle Scholar
  42. 42.
    Peterson, H. I., Appelgren, K. L., & Rosengren, B. H. (1969). Fibrinogen metabolism in experimental tumours. European Journal of Cancer, 5(6), 535–542.PubMedGoogle Scholar
  43. 43.
    Peterson, H. I., Appelgren, K. L., & Rosengren, B. H. (1972). Experimental studies on the mechanisms of fibrinogen uptake in a rat tumour. European Journal of Cancer, 8(6), 677–681.PubMedGoogle Scholar
  44. 44.
    Peterson, H. I., & Zettergren, L. (1970). Thromboplastic and fibrinolytic properties of three transplantable rat tumours. Acta Chirurgica Scandinavica, 136(5), 365–368.PubMedGoogle Scholar
  45. 45.
    Moolten, S. E., & Vroman, L. (1949). The adhesiveness of blood platelets in thromboembolism and hemorrhagic disorders; measurement of platelet adhesiveness by the glass-wool filter. American Journal of Clinical Pathology, 19(8), 701–709.PubMedGoogle Scholar
  46. 46.
    Levin, J., & Conley, C. L. (1964). Thrombocytosis associated with malignant disease. Archives of Internal Medicine, 114, 497–500.PubMedGoogle Scholar
  47. 47.
    Gasic, G. J., Gasic, T. B., Galanti, N., Johnson, T., & Murphy, S. (1973). Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. International Journal of Cancer, 11(3), 704–718.Google Scholar
  48. 48.
    Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 46–52.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Gastpar, H. (1973). Inhibition of “cancer cell stickiness” through bencylan-hydrogen fumarate (fluditate). Fortschritte der Medizin, 91(33), 1322–1328.PubMedGoogle Scholar
  50. 50.
    Hilgard, P. (1973). The role of blood platelets in experimental metastases. British Journal of Cancer, 28(5), 429–435.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Warren, B. A. (1973). Environment of the blood-borne tumor embolus adherent to vessel wall. Journal of Medicine, 4(3), 150–177.PubMedGoogle Scholar
  52. 52.
    Warren, B. A., & Vales, O. (1972). The adhesion of thromboplastic tumour emboli to vessel walls in vivo. British Journal of Experimental Pathology, 53(3), 301–313.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Cliffton, E. E., & Grossi, C. E. (1956). Effect of human plasmin on the toxic effects and growth of blood borne metastatis of the Brown-Pearce carcinoma and the V2 carcinoma of rabbit. Cancer, 9(6), 1147–1152.PubMedGoogle Scholar
  54. 54.
    Johnson, J. H., & Woods, J. R. (1963). An in vitro study of fibrinolytic agents on V2 carcinoma cells and intravascular thrombi in rabbits. Bulletin of the Johns Hopkins Hospital, 113, 335–346.PubMedGoogle Scholar
  55. 55.
    Pearce, L., & Brown, W. H. (1923). Studies based on a malignant tumor of the rabbit: V. Metastases. Part 1. Description of the lesions with especial reference to their occurrence and distribution. The Journal of Experimental Medicine, 38(4), 347–366.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Rous, P., & Kidd, J. G. (1938). The carcinogenic effect of a papilloma virus on the tarred skin of rabbits: I. Description of the phenomenon. The Journal of Experimental Medicine, 67(3), 399–428.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Woods, J. R. (1964). Experimental studies of the intravascular dissemination of ascitic V2 carcinoma cells in the rabbit, with special reference to fibrinogen and fibrinolytic agents. Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften, 20, 92–121.PubMedGoogle Scholar
  58. 58.
    Fidler, I. J. (1970). Metastasis: quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.PubMedGoogle Scholar
  59. 59.
    Honn, K. V., Menter, D., Cavanaugh, P. G., Neagos, G., Moilanen, D., Taylor, J. D., et al. (1983). A review of prostaglandins and the treatment of tumor metastasis. Acta Clinica Belgica, 38(1), 53–67.PubMedGoogle Scholar
  60. 60.
    Honn, K. V., Bockman, R. S., & Marnett, L. J. (1981). Prostaglandins and cancer: a review of tumor initiation through tumor metastasis. Prostaglandins, 21(5), 833–864.PubMedGoogle Scholar
  61. 61.
    Menter, D., Dunn, J., Palazzo, R., Tchen, T., Taylor, J., & Honn, K. (1982). Tumor cell induced platelet aggregation: inhibition by prostacyclin, thromboxane A2 and phosphodiesterase inhibitors. In: Prostaglandins and cancer. New York: Alan R. Liss.Google Scholar
  62. 62.
    Menter, D. G., Harkins, C., Onoda, J., Riorden, W., Sloane, B. F., Taylor, J. D., et al. (1987). Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: an ultrastructural study. Invasion & Metastasis, 7(2), 109–128.Google Scholar
  63. 63.
    Menter, D. G., Onoda, J. M., Taylor, J. D., & Honn, K. V. (1984). Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Research, 44(2), 450–456.PubMedGoogle Scholar
  64. 64.
    Cavanaugh, P. G., Sloane, B. F., Bajkowski, A. S., Gasic, G. J., Gasic, T. B., & Honn, K. V. (1983). Involvement of a cathepsin B-like cysteine proteinase in platelet aggregation induced by tumor cells and their shed membrane vesicles. Clinical & Experimental Metastasis, 1(4), 297–307.Google Scholar
  65. 65.
    Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.PubMedGoogle Scholar
  66. 66.
    Crissman, J. D., Hatfield, J. S., & Honn, K. V. (1986). Clinical and experimental morphologic parameters predictive of tumor metastasis. Progress in Clinical and Biological Research, 212, 251–267.PubMedGoogle Scholar
  67. 67.
    Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., & Honn, K. V. (1988). Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Research, 48(14), 4065–4072.PubMedGoogle Scholar
  68. 68.
    Kinjo, M. (1978). Lodgement and extravasation of tumour cells in blood-borne metastasis: an electron microscope study. British Journal of Cancer, 38(2), 293–301.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Machlus, K. R., & Italiano, J. E., Jr. (2013). The incredible journey: from megakaryocyte development to platelet formation. The Journal of Cell Biology, 201(6), 785–796.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical & Experimental Metastasis, 5(1), 65–78.Google Scholar
  71. 71.
    Sloane, B. F., Rozhin, J., Hatfield, J. S., Crissman, J. D., & Honn, K. V. (1987). Plasma membrane-associated cysteine proteinases in human and animal tumors. Experimental Cell Biology, 55(4), 209–224.PubMedGoogle Scholar
  72. 72.
    White, J. G. (1967). A simple method for preservation of fine structure in blood cells. Thrombosis et Diathesis Haemorrhagica, 18(3–4), 745–753.PubMedGoogle Scholar
  73. 73.
    White, J. G., & Krivit, W. (1967). The canalicular system of blood platelets: apossible sarcoplasmic reticulum. The Journal of Laboratory and Clinical Medicine, 49, 60.Google Scholar
  74. 74.
    White, J. G., & Krivit, W. (1967). Changes in platelet microtubules and granules during early clot development. Thrombosis et Diathesis Haemorrhagica. Supplementum, 26, 29–42.PubMedGoogle Scholar
  75. 75.
    Grossi, I. M., Fitzgerald, L. A., Kendall, A., Taylor, J. D., Sloane, B. F., & Honn, K. V. (1987). Inhibition of human tumor cell induced platelet aggregation by antibodies to platelet glycoproteins Ib and IIb/IIIa. Proceedings of the Society for Experimental Biology and Medicine, 186(3), 378–383.PubMedGoogle Scholar
  76. 76.
    Bluteau, D., Lordier, L., Di Stefano, A., Chang, Y., Raslova, H., Debili, N., et al. (2009). Regulation of megakaryocyte maturation and platelet formation. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 227–234.PubMedGoogle Scholar
  77. 77.
    Geddis, A. E. (2010). Megakaryopoiesis. Seminars in Hematology, 47(3), 212–219.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Thon, J. N., & Italiano, J. E. (2010). Platelet formation. Seminars in Hematology, 47(3), 220–226.PubMedPubMedCentralGoogle Scholar
  79. 79.
    McGrath, K., & Palis, J. (2008). Ontogeny of erythropoiesis in the mammalian embryo. Current Topics in Developmental Biology, 82, 1–22.PubMedGoogle Scholar
  80. 80.
    Travlos, G. S. (2006). Normal structure, function, and histology of the bone marrow. Toxicologic Pathology, 34(5), 548–565.PubMedGoogle Scholar
  81. 81.
    Kelly, P. J. (1968). Anatomy, physiology, and pathology of the blood supply of bones. The Journal of Bone and Joint Surgery. American Volume, 50(4), 766–783.PubMedGoogle Scholar
  82. 82.
    Augello, A., Kurth, T. B., & De Bari, C. (2010). Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. European Cells & Materials, 20, 121–133.Google Scholar
  83. 83.
    Chasis, J. A., & Mohandas, N. (2008). Erythroblastic islands: niches for erythropoiesis. Blood, 112(3), 470–478.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Kiel, M. J., & Morrison, S. J. (2008). Uncertainty in the niches that maintain haematopoietic stem cells. Nature Reviews. Immunology, 8(4), 290–301.PubMedGoogle Scholar
  85. 85.
    Oh, I. H., & Kwon, K. R. (2010). Concise review: multiple niches for hematopoietic stem cell regulations. Stem Cells, 28(7), 1243–1249.PubMedGoogle Scholar
  86. 86.
    Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–864.PubMedGoogle Scholar
  87. 87.
    Hevehan, D. L., Papoutsakis, E. T., & Miller, W. M. (2000). Physiologically significant effects of pH and oxygen tension on granulopoiesis. Experimental Hematology, 28(3), 267–275.PubMedGoogle Scholar
  88. 88.
    Doan, P. L., & Chute, J. P. (2012). The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia, 26(1), 54–62.PubMedGoogle Scholar
  89. 89.
    Kaplan, R. N., Psaila, B., & Lyden, D. (2007). Niche-to-niche migration of bone-marrow-derived cells. Trends in Molecular Medicine, 13(2), 72–81.PubMedGoogle Scholar
  90. 90.
    Lilly, A. J., Johnson, W. E., & Bunce, C. M. (2011). The haematopoietic stem cell niche: new insights into the mechanisms regulating haematopoietic stem cell behaviour. Stem Cells International, 2011, 274564.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Nagasawa, T., Omatsu, Y., & Sugiyama, T. (2011). Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends in Immunology, 32(7), 315–320.PubMedGoogle Scholar
  92. 92.
    Deutsch, V. R., & Tomer, A. (2013). Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside. British Journal of Haematology, 161(6), 778–793.PubMedGoogle Scholar
  93. 93.
    Yu, M., & Cantor, A. B. (2012). Megakaryopoiesis and thrombopoiesis: an update on cytokines and lineage surface markers. Methods in Molecular Biology, 788, 291–303.PubMedGoogle Scholar
  94. 94.
    Kanz, L., Lohr, G. W., & Fauser, A. A. (1987). Human megakaryocytic progenitor cells. Klinische Wochenschrift, 65(7), 297–307.PubMedGoogle Scholar
  95. 95.
    Tijssen, M. R., & Ghevaert, C. (2013). Transcription factors in late megakaryopoiesis and related platelet disorders. Journal of Thrombosis and Haemostasis, 11(4), 593–604.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Kaur, G., Jalagadugula, G., Mao, G., & Rao, A. K. (2010). RUNX1/core binding factor A2 regulates platelet 12-lipoxygenase gene (ALOX12): studies in human RUNX1 haplodeficiency. Blood, 115(15), 3128–3135.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Fowler, M., Borazanci, E., McGhee, L., Pylant, S. W., Williams, B. J., Glass, J., et al. (2006). RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to activate transcription from the PSA upstream regulatory region. Journal of Cellular Biochemistry, 97(1), 1–17.PubMedGoogle Scholar
  98. 98.
    Dakic, A., Metcalf, D., Di Rago, L., Mifsud, S., Wu, L., & Nutt, S. L. (2005). PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. The Journal of Experimental Medicine, 201(9), 1487–1502.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Nutt, S. L., Metcalf, D., D'Amico, A., Polli, M., & Wu, L. (2005). Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. The Journal of Experimental Medicine, 201(2), 221–231.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Arinobu, Y., Mizuno, S., Chong, Y., Shigematsu, H., Iino, T., Iwasaki, H., et al. (2007). Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell, 1(4), 416–427.PubMedGoogle Scholar
  101. 101.
    Chlon, T. M., Dore, L. C., & Crispino, J. D. (2012). Cofactor-mediated restriction of GATA-1 chromatin occupancy coordinates lineage-specific gene expression. Molecular Cell, 47(4), 608–621.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Dore, L. C., Chlon, T. M., Brown, C. D., White, K. P., & Crispino, J. D. (2012). Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis. Blood, 119(16), 3724–3733.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Malinge, S., Thiollier, C., Chlon, T. M., Dore, L. C., Diebold, L., Bluteau, O., et al. (2013). Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood, 121(13), 2440–2451.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Chagraoui, H., Kassouf, M., Banerjee, S., Goardon, N., Clark, K., Atzberger, A., et al. (2011). SCL-mediated regulation of the cell-cycle regulator p21 is critical for murine megakaryopoiesis. Blood, 118(3), 723–735.PubMedGoogle Scholar
  105. 105.
    Lordier, L., Bluteau, D., Jalil, A., Legrand, C., Pan, J., Rameau, P., et al. (2012). RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nature Communications, 3, 717.PubMedGoogle Scholar
  106. 106.
    Krumsiek, J., Marr, C., Schroeder, T., & Theis, F. J. (2011). Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS One, 6(8), e22649.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Takayama, M., Fujita, R., Suzuki, M., Okuyama, R., Aiba, S., Motohashi, H., et al. (2010). Genetic analysis of hierarchical regulation for Gata1 and NF-E2 p45 gene expression in megakaryopoiesis. Molecular and Cellular Biology, 30(11), 2668–2680.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Vitrat, N., Letestu, R., Masse, A., Lazar, V., Vainchenker, W., & Debili, N. (2000). Thromboxane synthase has the same pattern of expression as platelet specific glycoproteins during human megakaryocyte differentiation. Thrombosis and Haemostasis, 83(5), 759–768.PubMedGoogle Scholar
  109. 109.
    Bray, P. F., McKenzie, S. E., Edelstein, L. C., Nagalla, S., Delgrosso, K., Ertel, A., et al. (2013). The complex transcriptional landscape of the anucleate human platelet. BMC Genomics, 14, 1.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Edelstein, L. C., McKenzie, S. E., Shaw, C., Holinstat, M. A., Kunapuli, S. P., & Bray, P. F. (2013). MicroRNAs in platelet production and activation. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 340–350.PubMedGoogle Scholar
  111. 111.
    Guo, S., Lu, J., Schlanger, R., Zhang, H., Wang, J. Y., Fox, M. C., et al. (2010). MicroRNA miR-125a controls hematopoietic stem cell number. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14229–14234.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Lu, J., Guo, S., Ebert, B. L., Zhang, H., Peng, X., Bosco, J., et al. (2008). MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Developmental Cell, 14(6), 843–853.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Nagalla, S., Shaw, C., Kong, X., Kondkar, A. A., Edelstein, L. C., Ma, L., et al. (2011). Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood, 117(19), 5189–5197.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Carpinelli, M. R., Hilton, D. J., Metcalf, D., Antonchuk, J. L., Hyland, C. D., Mifsud, S. L., et al. (2004). Suppressor screen in Mpl−/− mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6553–6558.PubMedPubMedCentralGoogle Scholar
  115. 115.
    de Graaf, C. A., Kauppi, M., Baldwin, T., Hyland, C. D., Metcalf, D., Willson, T. A., et al. (2010). Regulation of hematopoietic stem cells by their mature progeny. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21689–21694.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Metcalf, D., Carpinelli, M. R., Hyland, C., Mifsud, S., Dirago, L., Nicola, N. A., et al. (2005). Anomalous megakaryocytopoiesis in mice with mutations in the c-Myb gene. Blood, 105(9), 3480–3487.PubMedGoogle Scholar
  117. 117.
    Kumar, M. S., Narla, A., Nonami, A., Mullally, A., Dimitrova, N., Ball, B., et al. (2011). Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q- syndrome. Blood, 118(17), 4666–4673.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Hussein, K., Dralle, W., Theophile, K., Kreipe, H., & Bock, O. (2009). Megakaryocytic expression of miRNA 10a, 17-5p, 20a and 126 in Philadelphia chromosome-negative myeloproliferative neoplasm. Annals of Hematology, 88(4), 325–332.PubMedGoogle Scholar
  119. 119.
    Lin, J., & Zhan, R. (2011). Advance of studies on role of miRNA in hematopoietic regulation and myeloproliferative neoplasms. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 19(4), 1071–1074.PubMedGoogle Scholar
  120. 120.
    Edelstein, L. C., & Bray, P. F. (2012). Small RNAs as potential platelet therapeutics. Handbook of Experimental Pharmacology, 210, 435–445.PubMedGoogle Scholar
  121. 121.
    Vigon, I., Mornon, J. P., Cocault, L., Mitjavila, M. T., Tambourin, P., Gisselbrecht, S., et al. (1992). Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proceedings of the National Academy of Sciences of the United States of America, 89(12), 5640–5644.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Bartley, T. D., Bogenberger, J., Hunt, P., Li, Y. S., Lu, H. S., Martin, F., et al. (1994). Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell, 77(7), 1117–1124.PubMedGoogle Scholar
  123. 123.
    de Sauvage, F. J., Hass, P. E., Spencer, S. D., Malloy, B. E., Gurney, A. L., Spencer, S. A., et al. (1994). Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature, 369(6481), 533–538.PubMedGoogle Scholar
  124. 124.
    Kaushansky, K. (1994). The mpl ligand: molecular and cellular biology of the critical regulator of megakaryocyte development. Stem Cells, 12(Suppl 1), 91–96. discussion 96-97.PubMedGoogle Scholar
  125. 125.
    Sohma, Y., Akahori, H., Seki, N., Hori, T., Ogami, K., Kato, T., et al. (1994). Molecular cloning and chromosomal localization of the human thrombopoietin gene. FEBS Letters, 353(1), 57–61.PubMedGoogle Scholar
  126. 126.
    Wendling, F., Maraskovsky, E., Debili, N., Florindo, C., Teepe, M., Titeux, M., et al. (1994). cMpl ligand is a humoral regulator of megakaryocytopoiesis. Nature, 369(6481), 571–574.PubMedGoogle Scholar
  127. 127.
    Douglas, V. K., Tallman, M. S., Cripe, L. D., & Peterson, L. C. (2002). Thrombopoietin administered during induction chemotherapy to patients with acute myeloid leukemia induces transient morphologic changes that may resemble chronic myeloproliferative disorders. American Journal of Clinical Pathology, 117(6), 844–850.PubMedGoogle Scholar
  128. 128.
    Neumann, T. A., & Foote, M. (2000). Megakaryocyte growth and development factor (MGDF): an Mpl ligand and cytokine that regulates thrombopoiesis. Cytokines, Cellular & Molecular Therapy, 6(1), 47–56.Google Scholar
  129. 129.
    Dong-Feng, Z., Ting, L., Yong, Z., Cheng, C., Xi, Z., & Pei-Yan, K. (2013). The TPO/c-MPL pathway in the bone marrow may protect leukemia cells from chemotherapy in AML patients. Pathology and Oncology Research. doi: 10.1007/s12253-013-9696-z.PubMedGoogle Scholar
  130. 130.
    Cosgrove, L. J., Sandrin, M. S., Rajasekariah, P., & McKenzie, I. F. (1986). A genomic clone encoding the alpha chain of the OKM1, LFA-1, and platelet glycoprotein IIb-IIIa molecules. Proceedings of the National Academy of Sciences of the United States of America, 83(3), 752–756.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Fitzgerald, L. A., Poncz, M., Steiner, B., Rall, S. C., Jr., Bennett, J. S., & Phillips, D. R. (1987). Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor alpha-subunits and platelet glycoprotein IIb. Biochemistry, 26(25), 8158–8165.PubMedGoogle Scholar
  132. 132.
    Kostyak, J. C., & Naik, U. P. (2007). Megakaryopoiesis: transcriptional insights into megakaryocyte maturation. Frontiers in Bioscience, 12, 2050–2062.PubMedGoogle Scholar
  133. 133.
    Lanza, F., Kieffer, N., Phillips, D. R., & Fitzgerald, L. A. (1990). Characterization of the human platelet glycoprotein IIIa gene. Comparison with the fibronectin receptor beta-subunit gene. The Journal of Biological Chemistry, 265(30), 18098–18103.PubMedGoogle Scholar
  134. 134.
    Levene, R. B., Williams, N. T., Lamaziere, J. M., & Rabellino, E. M. (1987). Human megakaryocytes. IV. Growth and characterization of clonable megakaryocyte progenitors in agar. Experimental Hematology, 15(2), 181–189.PubMedGoogle Scholar
  135. 135.
    Majka, M., Ratajczak, J., Villaire, G., Kubiczek, K., Marquez, L. A., Janowska-Wieczorek, A., et al. (2002). Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, megakaryocytes, and platelets. Experimental Hematology, 30(7), 751–760.PubMedGoogle Scholar
  136. 136.
    Miyazaki, H. (1996). Physiologic role of TPO in thrombopoiesis. Stem Cells, 14(Suppl 1), 133–138.PubMedGoogle Scholar
  137. 137.
    Monzen, S., Takahashi, K., Yoshino, H., Kasai-Eguchi, K., & Kashiwakura, I. (2011). Terminal maturation of megakaryocytes and platelet production by hematopoietic stem cells irradiated with heavy-ion beams. Radiation Research, 176(1), 8–16.PubMedGoogle Scholar
  138. 138.
    Sumner, R., Crawford, A., Mucenski, M., & Frampton, J. (2000). Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene, 19(30), 3335–3342.PubMedGoogle Scholar
  139. 139.
    Zimmet, J., & Ravid, K. (2000). Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system. Experimental Hematology, 28(1), 3–16.PubMedGoogle Scholar
  140. 140.
    Thon, J. N., & Italiano, J. E. (2012). Visualization and manipulation of the platelet and megakaryocyte cytoskeleton. Methods in Molecular Biology, 788, 109–125.PubMedGoogle Scholar
  141. 141.
    Yamada, E. (1957). The fine structure of the megakaryocyte in the mouse spleen. Acta Anatomica (Basel), 29(3), 267–290.Google Scholar
  142. 142.
    Behnke, O. (1968). An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. Journal of Ultrastructure Research, 24(5), 412–433.PubMedGoogle Scholar
  143. 143.
    Radley, J. M., & Haller, C. J. (1982). The demarcation membrane system of the megakaryocyte: a misnomer? Blood, 60(1), 213–219.PubMedGoogle Scholar
  144. 144.
    Chen, Y., Aardema, J., Kale, S., Whichard, Z. L., Awomolo, A., Blanchard, E., et al. (2013). Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood, 122(10), 1695–706.PubMedGoogle Scholar
  145. 145.
    Wang, W., Gilligan, D. M., Sun, S., Wu, X., & Reems, J. A. (2011). Distinct functional effects for dynamin 3 during megakaryocytopoiesis. Stem Cells and Development, 20(12), 2139–2151.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Patel-Hett, S., Wang, H., Begonja, A. J., Thon, J. N., Alden, E. C., Wandersee, N. J., et al. (2011). The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation. Blood, 118(6), 1641–1652.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Van Nispen, T. O. T., Pannerden, H., De Haas, F., Geerts, W., Posthuma, G., Van Dijk, S., & Heijnen, H. F. (2010). The platelet interior revisited: electron tomography reveals tubular alpha-granule subtypes. Blood, 116(7), 1147–1156.Google Scholar
  148. 148.
    Kamykowski, J., Carlton, P., Sehgal, S., & Storrie, B. (2011). Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet alpha-granules. Blood, 118(5), 1370–1373.PubMedGoogle Scholar
  149. 149.
    Blair, P., & Flaumenhaft, R. (2009). Platelet alpha-granules: basic biology and clinical correlates. Blood Reviews, 23(4), 177–189.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Koseoglu, S., & Flaumenhaft, R. (2013). Advances in platelet granule biology. Current Opinion in Hematology, 20(5), 464–471.PubMedGoogle Scholar
  151. 151.
    Albers, C. A., Cvejic, A., Favier, R., Bouwmans, E. E., Alessi, M. C., Bertone, P., et al. (2011). Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nature Genetics, 43(8), 735–737.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Gissen, P., Johnson, C. A., Morgan, N. V., Stapelbroek, J. M., Forshew, T., Cooper, W. N., et al. (2004). Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nature Genetics, 36(4), 400–404.PubMedGoogle Scholar
  153. 153.
    Gunay-Aygun, M., Falik-Zaccai, T. C., Vilboux, T., Zivony-Elboum, Y., Gumruk, F., Cetin, M., et al. (2011). NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet alpha-granules. Nature Genetics, 43(8), 732–734.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Kahr, W. H., Hinckley, J., Li, L., Schwertz, H., Christensen, H., Rowley, J. W., et al. (2011). Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nature Genetics, 43(8), 738–740.PubMedGoogle Scholar
  155. 155.
    Urban, D., Li, L., Christensen, H., Pluthero, F. G., Chen, S. Z., Puhacz, M., et al. (2012). The VPS33B-binding protein VPS16B is required in megakaryocyte and platelet alpha-granule biogenesis. Blood, 120(25), 5032–5040.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Ambrosio, A. L., Boyle, J. A., & Di Pietro, S. M. (2012). Mechanism of platelet dense granule biogenesis: study of cargo transport and function of Rab32 and Rab38 in a model system. Blood, 120(19), 4072–4081.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Jedlitschky, G., Greinacher, A., & Kroemer, H. K. (2012). Transporters in human platelets: physiologic function and impact for pharmacotherapy. Blood, 119(15), 3394–3402.PubMedGoogle Scholar
  158. 158.
    Niessen, J., Jedlitschky, G., Grube, M., Kawakami, H., Kamiie, J., Ohtsuki, S., et al. (2010). Expression of ABC-type transport proteins in human platelets. Pharmacogenetics and Genomics, 20(6), 396–400.PubMedGoogle Scholar
  159. 159.
    Dhanjal, T. S., Pendaries, C., Ross, E. A., Larson, M. K., Protty, M. B., Buckley, C. D., et al. (2007). A novel role for PECAM-1 in megakaryocytokinesis and recovery of platelet counts in thrombocytopenic mice. Blood, 109(10), 4237–4244.PubMedGoogle Scholar
  160. 160.
    Mazharian, A. (2012). Assessment of megakaryocyte migration and chemotaxis. Methods in Molecular Biology, 788, 275–288.PubMedGoogle Scholar
  161. 161.
    Mazharian, A., Thomas, S. G., Dhanjal, T. S., Buckley, C. D., & Watson, S. P. (2010). Critical role of Src-Syk-PLC{gamma}2 signaling in megakaryocyte migration and thrombopoiesis. Blood, 116(5), 793–800.PubMedGoogle Scholar
  162. 162.
    Reddi, A. H., Gay, R., Gay, S., & Miller, E. J. (1977). Transitions in collagen types during matrix-induced cartilage, bone, and bone marrow formation. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5589–5592.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Sabri, S., Jandrot-Perrus, M., Bertoglio, J., Farndale, R. W., Mas, V. M., Debili, N., et al. (2004). Differential regulation of actin stress fiber assembly and proplatelet formation by alpha2beta1 integrin and GPVI in human megakaryocytes. Blood, 104(10), 3117–3125.PubMedGoogle Scholar
  164. 164.
    Zou, Z., Schmaier, A. A., Cheng, L., Mericko, P., Dickeson, S. K., Stricker, T. P., et al. (2009). Negative regulation of activated alpha-2 integrins during thrombopoiesis. Blood, 113(25), 6428–6439.PubMedGoogle Scholar
  165. 165.
    Pallotta, I., Lovett, M., Rice, W., Kaplan, D. L., & Balduini, A. (2009). Bone marrow osteoblastic niche: a new model to study physiological regulation of megakaryopoiesis. PLoS One, 4(12), e8359.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Kopp, H. G., & Rafii, S. (2007). Thrombopoietic cells and the bone marrow vascular niche. Annals of the New York Academy of Sciences, 1106, 175–179.PubMedGoogle Scholar
  167. 167.
    Schachtner, H., Calaminus, S. D., Sinclair, A., Monypenny, J., Blundell, M. P., Leon, C., et al. (2013). Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood, 121(13), 2542–2552.PubMedGoogle Scholar
  168. 168.
    Tavassoli, M., & Aoki, M. (1989). Localization of megakaryocytes in the bone marrow. Blood Cells, 15(1), 3–14.PubMedGoogle Scholar
  169. 169.
    Corselli, M., Chin, C. J., Parekh, C., Sahaghian, A., Wang, W., Ge, S., et al. (2013). Perivascular support of human hematopoietic stem/progenitor cells. Blood, 121(15), 2891–2901.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Diaz-Flores, L., Jr., Gutierrez, R., Madrid, J. F., Acosta, E., Avila, J., Diaz-Flores, L., et al. (2012). Cell sources for cartilage repair; contribution of the mesenchymal perivascular niche. Frontiers in Bioscience (Scholar Edition), 4, 1275–1294.Google Scholar
  171. 171.
    Diaz-Flores, L., Gutierrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., et al. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 24(7), 909–969.PubMedGoogle Scholar
  172. 172.
    Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481(7382), 457–462.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Kunert, S., Meyer, I., Fleischhauer, S., Wannack, M., Fiedler, J., Shivdasani, R. A., et al. (2009). The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood, 114(27), 5532–5540.PubMedGoogle Scholar
  174. 174.
    Mazhuga, P. M., & Nosova, L. I. (1975). Proliferative characteristics of the endothelial cells and pericytes from the capillary vessels of rabbit bone marrow. Tsitologiia i Genetika, 9(5), 416–419.PubMedGoogle Scholar
  175. 175.
    Wang, C. H., Wang, T. M., Young, T. H., Lai, Y. K., & Yen, M. L. (2013). The critical role of ECM proteins within the human MSC niche in endothelial differentiation. Biomaterials, 34(17), 4223–4234.PubMedGoogle Scholar
  176. 176.
    Eto, K., Murphy, R., Kerrigan, S. W., Bertoni, A., Stuhlmann, H., Nakano, T., et al. (2002). Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12819–12824.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Larson, M. K., & Watson, S. P. (2006). Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood, 108(5), 1509–1514.PubMedGoogle Scholar
  178. 178.
    Lu, X. G., Zhu, L., Wang, W. Q., Zhang, X. H., Zhao, X. Y., Xu, G. B., et al. (2005). Morphological study on the megakaryocytes with nuclear extrusion and nucleocytoplasmic separation in four cases. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 13(6), 1082–1085.PubMedGoogle Scholar
  179. 179.
    Hartwig, J. H., & Italiano, J. E., Jr. (2006). Cytoskeletal mechanisms for platelet production. Blood Cells, Molecules & Diseases, 36(2), 99–103.Google Scholar
  180. 180.
    Richardson, J. L., Shivdasani, R. A., Boers, C., Hartwig, J. H., & Italiano, J. E., Jr. (2005). Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood, 106(13), 4066–4075.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Italiano, J. E., Jr., Patel-Hett, S., & Hartwig, J. H. (2007). Mechanics of proplatelet elaboration. Journal of Thrombosis and Haemostasis, 5(Suppl 1), 18–23.PubMedGoogle Scholar
  182. 182.
    Schulze, H., Dose, M., Korpal, M., Meyer, I., Italiano, J. E., Jr., & Shivdasani, R. A. (2008). RanBP10 is a cytoplasmic guanine nucleotide exchange factor that modulates noncentrosomal microtubules. The Journal of Biological Chemistry, 283(20), 14109–14119.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Schwer, H. D., Lecine, P., Tiwari, S., Italiano, J. E., Jr., Hartwig, J. H., & Shivdasani, R. A. (2001). A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Current Biology, 11(8), 579–586.PubMedGoogle Scholar
  184. 184.
    Junt, T., Schulze, H., Chen, Z., Massberg, S., Goerge, T., Krueger, A., et al. (2007). Dynamic visualization of thrombopoiesis within bone marrow. Science, 317(5845), 1767–1770.PubMedGoogle Scholar
  185. 185.
    Italiano, J. E., Jr., Bergmeier, W., Tiwari, S., Falet, H., Hartwig, J. H., Hoffmeister, K. M., et al. (2003). Mechanisms and implications of platelet discoid shape. Blood, 101(12), 4789–4796.PubMedGoogle Scholar
  186. 186.
    Zhang, L., Orban, M., Lorenz, M., Barocke, V., Braun, D., Urtz, N., et al. (2012). A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. The Journal of Experimental Medicine, 209(12), 2165–2181.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Mazo, I. B., & von Andrian, U. H. (1999). Adhesion and homing of blood-borne cells in bone marrow microvessels. Journal of Leukocyte Biology, 66(1), 25–32.PubMedGoogle Scholar
  188. 188.
    Schmitt, A., Guichard, J., Masse, J. M., Debili, N., & Cramer, E. M. (2001). Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets. Experimental Hematology, 29(11), 1295–1302.PubMedGoogle Scholar
  189. 189.
    Di Michele, M., Van Geet, C., & Freson, K. (2012). Recent advances in platelet proteomics. Expert Review of Proteomics, 9(4), 451–466.PubMedGoogle Scholar
  190. 190.
    Krishnan, S., Gaspari, M., Della Corte, A., Bianchi, P., Crescente, M., Cerletti, C., et al. (2011). OFFgel-based multidimensional LC-MS/MS approach to the cataloguing of the human platelet proteome for an interactomic profile. Electrophoresis, 32(6–7), 686–695.PubMedGoogle Scholar
  191. 191.
    Premsler, T., Lewandrowski, U., Sickmann, A., & Zahedi, R. P. (2011). Phosphoproteome analysis of the platelet plasma membrane. Methods in Molecular Biology, 728, 279–290.PubMedGoogle Scholar
  192. 192.
    Qureshi, A. H., Chaoji, V., Maiguel, D., Faridi, M. H., Barth, C. J., Salem, S. M., et al. (2009). Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS One, 4(10), e7627.PubMedPubMedCentralGoogle Scholar
  193. 193.
    Senis, Y., & Garcia, A. (2012). Platelet proteomics: state of the art and future perspective. Methods in Molecular Biology, 788, 367–399.PubMedGoogle Scholar
  194. 194.
    Zufferey, A., Fontana, P., Reny, J. L., Nolli, S., & Sanchez, J. C. (2012). Platelet proteomics. Mass Spectrometry Reviews, 31(2), 331–351.PubMedGoogle Scholar
  195. 195.
    Di Michele, M., Van Geet, C., & Freson, K. (2012). Proteomics to unravel platelet-related diseases and identify novel anti-platelet drugs. Current Medicinal Chemistry, 19(27), 4662–4670.PubMedGoogle Scholar
  196. 196.
    Parguina, A. F., Rosa, I., & Garcia, A. (2012). Proteomics applied to the study of platelet-related diseases: aiding the discovery of novel platelet biomarkers and drug targets. Journal of Proteomics, 76, 275–286.PubMedGoogle Scholar
  197. 197.
    Aatonen, M., Gronholm, M., & Siljander, P. R. (2012). Platelet-derived microvesicles: multitalented participants in intercellular communication. Seminars in Thrombosis and Hemostasis, 38(1), 102–113.PubMedGoogle Scholar
  198. 198.
    Hess, M. W., & Siljander, P. (2001). Procoagulant platelet balloons: evidence from cryopreparation and electron microscopy. Histochemistry and Cell Biology, 115(5), 439–443.PubMedGoogle Scholar
  199. 199.
    Siljander, P. R. (2011). Platelet-derived microparticles—an updated perspective. Thrombosis Research, 127(Suppl 2), S30–33.PubMedGoogle Scholar
  200. 200.
    Shai, E., Rosa, I., Parguina, A. F., Motahedeh, S., Varon, D., & Garcia, A. (2012). Comparative analysis of platelet-derived microparticles reveals differences in their amount and proteome depending on the platelet stimulus. Journal of Proteomics, 76, 287–296.PubMedGoogle Scholar
  201. 201.
    Dowal, L., Yang, W., Freeman, M. R., Steen, H., & Flaumenhaft, R. (2011). Proteomic analysis of palmitoylated platelet proteins. Blood, 118(13), e62–73.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Schulz, C., Leuschen, N. V., Frohlich, T., Lorenz, M., Pfeiler, S., Gleissner, C. A., et al. (2010). Identification of novel downstream targets of platelet glycoprotein VI activation by differential proteome analysis: implications for thrombus formation. Blood, 115(20), 4102–4110.PubMedGoogle Scholar
  203. 203.
    Wright, B., Stanley, R. G., Kaiser, W. J., Mills, D. J., & Gibbins, J. M. (2011). Analysis of protein networks in resting and collagen receptor (GPVI)-stimulated platelet sub-proteomes. Proteomics, 11(23), 4588–4592.PubMedGoogle Scholar
  204. 204.
    Hamberg, M., & Samuelsson, B. (1974). Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proceedings of the National Academy of Sciences of the United States of America, 71(9), 3400–3404.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Clarke, R. J., Mayo, G., Price, P., & FitzGerald, G. A. (1991). Suppression of thromboxane A2 but not of systemic prostacyclin by controlled-release aspirin. The New England Journal of Medicine, 325(16), 1137–1141.PubMedGoogle Scholar
  206. 206.
    Samuelsson, B., Goldyne, M., Granstrom, E., Hamberg, M., Hammarstrom, S., & Malmsten, C. (1978). Prostaglandins and thromboxanes. Annual Review of Biochemistry, 47, 997–1029.PubMedGoogle Scholar
  207. 207.
    Steinert, B. W., Tang, D. G., Grossi, I. M., Umbarger, L. A., & Honn, K. V. (1993). Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta 3 in tumor-cell-induced platelet aggregation. International Journal of Cancer, 54(1), 92–101.Google Scholar
  208. 208.
    Maskrey, B. H., Bermudez-Fajardo, A., Morgan, A. H., Stewart-Jones, E., Dioszeghy, V., Taylor, G. W., et al. (2007). Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. The Journal of Biological Chemistry, 282(28), 20151–20163.PubMedGoogle Scholar
  209. 209.
    Morgan, L. T., Thomas, C. P., Kuhn, H., & O'Donnell, V. B. (2010). Thrombin-activated human platelets acutely generate oxidized docosahexaenoic-acid-containing phospholipids via 12-lipoxygenase. The Biochemical Journal, 431(1), 141–148.PubMedGoogle Scholar
  210. 210.
    Chen, Y. Q., & Honn, K. V. (1993). Eicosanoid regulation of tumor cell-platelet and -endothelium interaction during arrest and extravasation. In: S. Nigam, K. Honn, L. Marnett, & T. Walden, Jr. (Eds.). Eicosanoids and other bioactive lipids in cancer, inflammation and radiation injury. Developments in oncology, vol. 71, pp. 613–617. Springer: New York.Google Scholar
  211. 211.
    Honn, K. V., Tang, D. G., Grossi, I., Duniec, Z. M., Timar, J., Renaud, C., et al. (1994). Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction. Cancer Research, 54(2), 565–574.PubMedGoogle Scholar
  212. 212.
    Ruebsaamen, K., Liebisch, G., Boettcher, A., & Schmitz, G. (2010). Lipidomic analysis of platelet senescence. Transfusion, 50(8), 1665–1676.PubMedGoogle Scholar
  213. 213.
    Clark, S. R., Thomas, C. P., Hammond, V. J., Aldrovandi, M., Wilkinson, G. W., Hart, K. W., et al. (2013). Characterization of platelet aminophospholipid externalization reveals fatty acids as molecular determinants that regulate coagulation. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 5875–5880.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Dolegowska, B., Lubkowska, A., & De Girolamo, L. (2012). Platelet lipidomic. Journal of Biological Regulators and Homeostatic Agents, 26(2 Suppl 1), 23S–33S.PubMedGoogle Scholar
  215. 215.
    Hammad, S. M. (2011). Blood sphingolipids in homeostasis and pathobiology. Advances in Experimental Medicine and Biology, 721, 57–66.PubMedGoogle Scholar
  216. 216.
    Tam, V. C. (2013). Lipidomic profiling of bioactive lipids by mass spectrometry during microbial infections. Seminars in Immunology, 25(3), 240–248.PubMedGoogle Scholar
  217. 217.
    Albanese, A., Licata, M. E., Polizzi, B., & Campisi, G. (2013). Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immunity & Ageing, 10(1), 23.Google Scholar
  218. 218.
    Galliera, E., Corsi, M. M., & Banfi, G. (2012). Platelet rich plasma therapy: inflammatory molecules involved in tissue healing. Journal of Biological Regulators and Homeostatic Agents, 26(2 Suppl 1), 35S–42S.PubMedGoogle Scholar
  219. 219.
    Lubkowska, A., Dolegowska, B., & Banfi, G. (2012). Growth factor content in PRP and their applicability in medicine. Journal of Biological Regulators and Homeostatic Agents, 26(2 Suppl 1), 3S–22S.PubMedGoogle Scholar
  220. 220.
    Stanco, D., Vigano, M., Croiset, S. J., & De Girolamo, L. (2012). Applications and limits of platelet-rich plasma in sports related injuries. Journal of Biological Regulators and Homeostatic Agents, 26(2 Suppl 1), 53S–61S.PubMedGoogle Scholar
  221. 221.
    Cimmino, G., & Golino, P. (2013). Platelet biology and receptor pathways. Journal of Cardiovascular Translational Research, 6(3), 299–309.PubMedGoogle Scholar
  222. 222.
    Italiano, J. E., Jr. (2013). Unraveling mechanisms that control platelet production. Seminars in Thrombosis and Hemostasis, 39(1), 15–24.PubMedGoogle Scholar
  223. 223.
    Kenney, D. M., & Linck, R. W. (1985). The cystoskeleton of unstimulated blood platelets: structure and composition of the isolated marginal microtubular band. Journal of Cell Science, 78, 1–22.PubMedGoogle Scholar
  224. 224.
    Kowit, J. D., Linck, R. W., & Kenney, D. M. (1988). Isolated cytoskeletons of human blood platelets: dark-field imaging of coiled and uncoiled microtubules. Biology of the Cell, 64(3), 283–291.PubMedGoogle Scholar
  225. 225.
    Patel-Hett, S., Richardson, J. L., Schulze, H., Drabek, K., Isaac, N. A., Hoffmeister, K., et al. (2008). Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood, 111(9), 4605–4616.PubMedPubMedCentralGoogle Scholar
  226. 226.
    Radley, J. M., & Hartshorn, M. A. (1987). Megakaryocyte fragments and the microtubule coil. Blood Cells, 12(3), 603–614.PubMedGoogle Scholar
  227. 227.
    Hartwig, J. H. (2006). The platelet: form and function. Seminars in Hematology, 43(1 Suppl 1), S94–100.PubMedGoogle Scholar
  228. 228.
    Hartwig, J. H., Barkalow, K., Azim, A., & Italiano, J. (1999). The elegant platelet: signals controlling actin assembly. Thrombosis and Haemostasis, 82(2), 392–398.PubMedGoogle Scholar
  229. 229.
    Boyles, J., Fox, J. E., Phillips, D. R., & Stenberg, P. E. (1985). Organization of the cytoskeleton in resting, discoid platelets: preservation of actin filaments by a modified fixation that prevents osmium damage. The Journal of Cell Biology, 101(4), 1463–1472.PubMedGoogle Scholar
  230. 230.
    White, J. G. (1972). Interaction of membrane systems in blood platelets. The American Journal of Pathology, 66(2), 295–312.PubMedPubMedCentralGoogle Scholar
  231. 231.
    Escolar, G., Leistikow, E., & White, J. G. (1989). The fate of the open canalicular system in surface and suspension-activated platelets. Blood, 74(6), 1983–1988.PubMedGoogle Scholar
  232. 232.
    Barkalow, K. L., Italiano, J. E., Jr., Chou, D. E., Matsuoka, Y., Bennett, V., & Hartwig, J. H. (2003). Alpha-adducin dissociates from F-actin and spectrin during platelet activation. The Journal of Cell Biology, 161(3), 557–570.PubMedPubMedCentralGoogle Scholar
  233. 233.
    Hartwig, J. H., & DeSisto, M. (1991). The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. The Journal of Cell Biology, 112(3), 407–425.PubMedGoogle Scholar
  234. 234.
    Cranmer, S. L., Pikovski, I., Mangin, P., Thompson, P. E., Domagala, T., Frazzetto, M., et al. (2005). Identification of a unique filamin A binding region within the cytoplasmic domain of glycoprotein Ibalpha. The Biochemical Journal, 387(Pt 3), 849–858.PubMedPubMedCentralGoogle Scholar
  235. 235.
    Dai, K., Bodnar, R., Berndt, M. C., & Du, X. (2005). A critical role for 14-3-3zeta protein in regulating the VWF binding function of platelet glycoprotein Ib-IX and its therapeutic implications. Blood, 106(6), 1975–1981.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Gitz, E., Koopman, C. D., Giannas, A., Koekman, C. A., van den Heuvel, D. J., Deckmyn, H., et al. (2013). Platelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibalpha. Haematologica, 98(11), 1810–1818.PubMedPubMedCentralGoogle Scholar
  237. 237.
    Li, S., Wang, Z., Liao, Y., Zhang, W., Shi, Q., Yan, R., et al. (2010). The glycoprotein Ibalpha-von Willebrand factor interaction induces platelet apoptosis. Journal of Thrombosis and Haemostasis, 8(2), 341–350.PubMedGoogle Scholar
  238. 238.
    Mangin, P., David, T., Lavaud, V., Cranmer, S. L., Pikovski, I., Jackson, S. P., et al. (2004). Identification of a novel 14-3-3zeta binding site within the cytoplasmic tail of platelet glycoprotein Ibalpha. Blood, 104(2), 420–427.PubMedGoogle Scholar
  239. 239.
    Mu, F. T., Andrews, R. K., Arthur, J. F., Munday, A. D., Cranmer, S. L., Jackson, S. P., et al. (2008). A functional 14-3-3zeta-independent association of PI3-kinase with glycoprotein Ib alpha, the major ligand-binding subunit of the platelet glycoprotein Ib-IX-V complex. Blood, 111(9), 4580–4587.PubMedPubMedCentralGoogle Scholar
  240. 240.
    Zwaal, R. F., & Schroit, A. J. (1997). Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood, 89(4), 1121–1132.PubMedGoogle Scholar
  241. 241.
    Furusawa, M., Tsuchiy, H., Nagayama, M., Tanaka, T., Nakaya, K. I., & Iinumac, M. (2003). Anti-platelet and membrane-rigidifying flavonoids in brownish scale of onions. Journal of Health Science, 49(6), 475–480.Google Scholar
  242. 242.
    Winocour, P. D., Bryszewska, M., Watala, C., Rand, M. L., Epand, R. M., Kinlough-Rathbone, R. L., et al. (1990). Reduced membrane fluidity in platelets from diabetic patients. Diabetes, 39(2), 241–244.PubMedGoogle Scholar
  243. 243.
    Gerrits, A. J., Gitz, E., Koekman, C. A., Visseren, F. L., van Haeften, T. W., & Akkerman, J. W. (2012). Induction of insulin resistance by the adipokines resistin, leptin, plasminogen activator inhibitor-1 and retinol binding protein 4 in human megakaryocytes. Haematologica, 97(8), 1149–1157.PubMedPubMedCentralGoogle Scholar
  244. 244.
    De Caterina, R., Marchetti, P., Bernini, W., Giannarelli, R., Giannessi, D., & Navalesi, R. (1989). The direct effects of metformin on platelet function in vitro. European Journal of Clinical Pharmacology, 37(2), 211–213.PubMedGoogle Scholar
  245. 245.
    Gin, H., Freyburger, G., Boisseau, M., & Aubertin, J. (1989). Study of the effect of metformin on platelet aggregation in insulin-dependent diabetics. Diabetes Research and Clinical Practice, 6(1), 61–67.PubMedGoogle Scholar
  246. 246.
    Kirpichnikov, D., McFarlane, S. I., & Sowers, J. R. (2002). Metformin: an update. Annals of Internal Medicine, 137(1), 25–33.PubMedGoogle Scholar
  247. 247.
    Wiwanitkit, V. (2011). Metformin high dosage and bleeding episode: a clinical case study. Indian Journal of Endocrinology and Metabolism, 15(2), 132–133.PubMedPubMedCentralGoogle Scholar
  248. 248.
    Protti, A., Lecchi, A., Fortunato, F., Artoni, A., Greppi, N., Vecchio, S., et al. (2012). Metformin overdose causes platelet mitochondrial dysfunction in humans. Critical Care, 16(5), R180.PubMedPubMedCentralGoogle Scholar
  249. 249.
    Harper, M. T., & Poole, A. W. (2013). Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity. Cell Death and Disease, 4, e969.PubMedPubMedCentralGoogle Scholar
  250. 250.
    Gilligan, D. M., Sarid, R., & Weese, J. (2002). Adducin in platelets: activation-induced phosphorylation by PKC and proteolysis by calpain. Blood, 99(7), 2418–2426.PubMedGoogle Scholar
  251. 251.
    Tamaru, S., Fukuta, T., Kaibuchi, K., Matsuoka, Y., Shiku, H., & Nishikawa, M. (2005). Rho-kinase induces association of adducin with the cytoskeleton in platelet activation. Biochemical and Biophysical Research Communications, 332(2), 347–351.PubMedGoogle Scholar
  252. 252.
    Lind, S. E., Yin, H. L., & Stossel, T. P. (1982). Human platelets contain gelsolin. A regulator of actin filament length. Journal of Clinical Investigation, 69(6), 1384–1387.PubMedPubMedCentralGoogle Scholar
  253. 253.
    Wang, L. L., & Bryan, J. (1981). Isolation of calcium-dependent platelet proteins that interact with actin. Cell, 25(3), 637–649.PubMedGoogle Scholar
  254. 254.
    Bennett, J. S., Zigmond, S., Vilaire, G., Cunningham, M. E., & Bednar, B. (1999). The platelet cytoskeleton regulates the affinity of the integrin alpha(IIb)beta(3) for fibrinogen. The Journal of Biological Chemistry, 274(36), 25301–25307.PubMedGoogle Scholar
  255. 255.
    Davidson, M. M., & Haslam, R. J. (1994). Dephosphorylation of cofilin in stimulated platelets: roles for a GTP-binding protein and Ca2+. The Biochemical Journal, 301(Pt 1), 41–47.PubMedPubMedCentralGoogle Scholar
  256. 256.
    Machesky, L. M., Reeves, E., Wientjes, F., Mattheyse, F. J., Grogan, A., Totty, N. F., et al. (1997). Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins. The Biochemical Journal, 328(Pt 1), 105–112.PubMedPubMedCentralGoogle Scholar
  257. 257.
    Mahoney, N. M., Janmey, P. A., & Almo, S. C. (1997). Structure of the profilin-poly-l-proline complex involved in morphogenesis and cytoskeletal regulation. Nature Structural Biology, 4(11), 953–960.PubMedGoogle Scholar
  258. 258.
    Barkalow, K., Witke, W., Kwiatkowski, D. J., & Hartwig, J. H. (1996). Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein. The Journal of Cell Biology, 134(2), 389–399.PubMedGoogle Scholar
  259. 259.
    Nachmias, V. T., Golla, R., Casella, J. F., & Barron-Casella, E. (1996). Cap Z, a calcium insensitive capping protein in resting and activated platelets. FEBS Letters, 378(3), 258–262.PubMedGoogle Scholar
  260. 260.
    White, J. G. (1972). Exocytosis of secretory organelles from blood platelets incubated with cationic polypeptides. The American Journal of Pathology, 69(1), 41–54.PubMedPubMedCentralGoogle Scholar
  261. 261.
    White, J. G., & Estensen, R. D. (1972). Degranulation of discoid platelets. The American Journal of Pathology, 68(2), 289–302.PubMedPubMedCentralGoogle Scholar
  262. 262.
    Chen, D., Bernstein, A. M., Lemons, P. P., & Whiteheart, S. W. (2000). Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood, 95(3), 921–929.PubMedGoogle Scholar
  263. 263.
    Marks, M. S. (2012). SNARing platelet granule secretion. Blood, 120(12), 2355–2357.PubMedGoogle Scholar
  264. 264.
    Peters, C. G., Michelson, A. D., & Flaumenhaft, R. (2012). Granule exocytosis is required for platelet spreading: differential sorting of alpha-granules expressing VAMP-7. Blood, 120(1), 199–206.PubMedPubMedCentralGoogle Scholar
  265. 265.
    Fukuda, M., & Kanno, E. (2005). Analysis of the role of Rab27 effector Slp4-a/Granuphilin-a in dense-core vesicle exocytosis. Methods in Enzymology, 403, 445–457.PubMedGoogle Scholar
  266. 266.
    Shirakawa, R., Higashi, T., Tabuchi, A., Yoshioka, A., Nishioka, H., Fukuda, M., et al. (2004). Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. The Journal of Biological Chemistry, 279(11), 10730–10737.PubMedGoogle Scholar
  267. 267.
    Al Hawas, R., Ren, Q., Ye, S., Karim, Z. A., Filipovich, A. H., & Whiteheart, S. W. (2012). Munc18b/STXBP2 is required for platelet secretion. Blood, 120(12), 2493–2500.PubMedPubMedCentralGoogle Scholar
  268. 268.
    Ye, S., Karim, Z. A., Al Hawas, R., Pessin, J. E., Filipovich, A. H., & Whiteheart, S. W. (2012). Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secretion. Blood, 120(12), 2484–2492.PubMedPubMedCentralGoogle Scholar
  269. 269.
    Santos-Martinez, M. J., Medina, C., Jurasz, P., & Radomski, M. W. (2008). Role of metalloproteinases in platelet function. Thrombosis Research, 121(4), 535–542.PubMedGoogle Scholar
  270. 270.
    Gleissner, C. A., von Hundelshausen, P., & Ley, K. (2008). Platelet chemokines in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(11), 1920–1927.PubMedPubMedCentralGoogle Scholar
  271. 271.
    Brandt, E., Petersen, F., Ludwig, A., Ehlert, J. E., Bock, L., & Flad, H. D. (2000). The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. Journal of Leukocyte Biology, 67(4), 471–478.PubMedGoogle Scholar
  272. 272.
    Mellembakken, J. R., Solum, N. O., Ueland, T., Videm, V., & Aukrust, P. (2001). Increased concentrations of soluble CD40 ligand, RANTES and GRO-alpha in preeclampsia—possible role of platelet activation. Thrombosis and Haemostasis, 86(5), 1272–1276.PubMedGoogle Scholar
  273. 273.
    Fukami, M. H., & Salganicoff, L. (1977). Human platelet storage organelles. A review. Thrombosis and Haemostasis, 38(4), 963–970.PubMedGoogle Scholar
  274. 274.
    Emiliani, C., Martino, S., Orlacchio, A., Vezza, R., Nenci, G. G., & Gresele, P. (1995). Platelet glycohydrolase activities: characterization and release. Cell Biochemistry and Function, 13(1), 31–39.PubMedGoogle Scholar
  275. 275.
    Gordon, J. L. (1975). Blood platelet lysosomes and their contribution to the pathophysiological role of platelets. Frontiers of Biology, 43(4), 3–31.PubMedGoogle Scholar
  276. 276.
    Metzelaar, M. J., & Clevers, H. C. (1992). Lysosomal membrane glycoproteins in platelets. Thrombosis and Haemostasis, 68(4), 378–382.PubMedGoogle Scholar
  277. 277.
    Waite, M., & Griffin, H. D. (1976). The phospholipases A of lysosomes. Frontiers of Biology, 45, 257–305.PubMedGoogle Scholar
  278. 278.
    Dangel, O., Mergia, E., Karlisch, K., Groneberg, D., Koesling, D., & Friebe, A. (2010). Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. Journal of Thrombosis and Haemostasis, 8(6), 1343–1352.PubMedGoogle Scholar
  279. 279.
    Sabetkar, M., Naseem, K. M., Tullett, J. M., Friebe, A., Koesling, D., & Bruckdorfer, K. R. (2001). Synergism between nitric oxide and hydrogen peroxide in the inhibition of platelet function: the roles of soluble guanylyl cyclase and vasodilator-stimulated phosphoprotein. Nitric Oxide, 5(3), 233–242.PubMedGoogle Scholar
  280. 280.
    Wilson, L. S., Elbatarny, H. S., Crawley, S. W., Bennett, B. M., & Maurice, D. H. (2008). Compartmentation and compartment-specific regulation of PDE5 by protein kinase G allows selective cGMP-mediated regulation of platelet functions. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13650–13655.PubMedPubMedCentralGoogle Scholar
  281. 281.
    Audet, M., & Bouvier, M. (2012). Restructuring G-protein-coupled receptor activation. Cell, 151(1), 14–23.PubMedGoogle Scholar
  282. 282.
    Katritch, V., Cherezov, V., & Stevens, R. C. (2013). Structure-function of the G protein-coupled receptor superfamily. Annual Review of Pharmacology and Toxicology, 53, 531–556.PubMedPubMedCentralGoogle Scholar
  283. 283.
    Venkatakrishnan, A. J., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., & Babu, M. M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494(7436), 185–194.PubMedGoogle Scholar
  284. 284.
    Stalker, T. J., Newman, D. K., Ma, P., Wannemacher, K. M., & Brass, L. F. (2012). Platelet signaling. Handbook of Experimental Pharmacology, 210, 59–85.PubMedGoogle Scholar
  285. 285.
    Zucker, M. B., & Nachmias, V. T. (1985). Platelet activation. Arteriosclerosis, 5(1), 2–18.PubMedGoogle Scholar
  286. 286.
    Moers, A., Nieswandt, B., Massberg, S., Wettschureck, N., Gruner, S., Konrad, I., et al. (2003). G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nature Medicine, 9(11), 1418–1422.PubMedGoogle Scholar
  287. 287.
    Noe, L., Peeters, K., Izzi, B., Van Geet, C., & Freson, K. (2010). Regulators of platelet cAMP levels: clinical and therapeutic implications. Current Medicinal Chemistry, 17(26), 2897–2905.PubMedGoogle Scholar
  288. 288.
    Smolenski, A. (2012). Novel roles of cAMP/cGMP-dependent signaling in platelets. Journal of Thrombosis and Haemostasis, 10(2), 167–176.PubMedGoogle Scholar
  289. 289.
    Rolfe, B. E., Worth, N. F., World, C. J., Campbell, J. H., & Campbell, G. R. (2005). Rho and vascular disease. Atherosclerosis, 183(1), 1–16.PubMedGoogle Scholar
  290. 290.
    Aslan, J. E., & McCarty, O. J. (2013). Rho GTPases in platelet function. Journal of Thrombosis and Haemostasis, 11(1), 35–46.PubMedPubMedCentralGoogle Scholar
  291. 291.
    Collins, C., & Tzima, E. (2013). RhoA goes global. Small GTPases, 4(2), 123–126.PubMedPubMedCentralGoogle Scholar
  292. 292.
    Goggs, R., & Poole, A. W. (2012). Platelet signaling—a primer. Journal of Veterinary Emergency and Critical Care (San Antonio, Tex.), 22(1), 5–29.Google Scholar
  293. 293.
    Kauskot, A., & Hoylaerts, M. F. (2012). Platelet receptors. Handbook of Experimental Pharmacology, 210, 23–57.PubMedGoogle Scholar
  294. 294.
    Pai, V. P., Marshall, A. M., Hernandez, L. L., Buckley, A. R., & Horseman, N. D. (2009). Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival. Breast Cancer Research, 11(6), R81.PubMedPubMedCentralGoogle Scholar
  295. 295.
    Kundumani-Sridharan, V., Dyukova, E., Hansen, D. E., 3rd, & Rao, G. N. (2013). 12/15-Lipoxygenase mediates high-fat diet-induced endothelial tight junction disruption and monocyte transmigration: a new role for 15(S)-hydroxyeicosatetraenoic acid in endothelial cell dysfunction. The Journal of Biological Chemistry, 288(22), 15830–15842.PubMedGoogle Scholar
  296. 296.
    Garcia, M. C., & Kim, H. Y. (1997). Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Research, 768(1–2), 43–48.PubMedGoogle Scholar
  297. 297.
    Kurrasch-Orbaugh, D. M., Parrish, J. C., Watts, V. J., & Nichols, D. E. (2003). A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases. Journal of Neurochemistry, 86(4), 980–991.PubMedGoogle Scholar
  298. 298.
    Pakala, R. (2004). Serotonin and thromboxane A2 stimulate platelet-derived microparticle-induced smooth muscle cell proliferation. Cardiovascular Radiation Medicine, 5(1), 20–26.PubMedGoogle Scholar
  299. 299.
    Dutta-Roy, A. K., & Sinha, A. K. (1987). Purification and properties of prostaglandin E1/prostacyclin receptor of human blood platelets. The Journal of Biological Chemistry, 262(26), 12685–12691.PubMedGoogle Scholar
  300. 300.
    Weksler, B. B., Marcus, A. J., & Jaffe, E. A. (1977). Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 74(9), 3922–3926.PubMedPubMedCentralGoogle Scholar
  301. 301.
    Bunting, S., Gryglewski, R., Moncada, S., & Vane, J. R. (1976). Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. Prostaglandins, 12(6), 897–913.PubMedGoogle Scholar
  302. 302.
    Moncada, S., Gryglewski, R., Bunting, S., & Vane, J. R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263(5579), 663–665.PubMedGoogle Scholar
  303. 303.
    Boyanova, D., Nilla, S., Birschmann, I., Dandekar, T., & Dittrich, M. (2012). PlateletWeb: a systems biologic analysis of signaling networks in human platelets. Blood, 119(3), e22–34.PubMedGoogle Scholar
  304. 304.
    Dittrich, M., Birschmann, I., Mietner, S., Sickmann, A., Walter, U., & Dandekar, T. (2008). Platelet protein interactions: map, signaling components, and phosphorylation groundstate. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(7), 1326–1331.PubMedGoogle Scholar
  305. 305.
    Lyons, R. M., Stanford, N., & Majerus, P. W. (1975). Thrombin-induced protein phosphorylation in human platelets. The Journal of Clinical Investigation, 56(4), 924–936.PubMedPubMedCentralGoogle Scholar
  306. 306.
    Yamanaka, M., Kume, S., Kariya, T., & Tanabe, A. (1979). cAMP-dependent protein kinase in human platelets and effect of prostaglandin E1 on its endogenous substrates (author’s transl). Nihon Ketsueki Gakkai Zasshi, 42(3), 541–542.PubMedGoogle Scholar
  307. 307.
    de Rooij, J., Zwartkruis, F. J., Verheijen, M. H., Cool, R. H., Nijman, S. M., Wittinghofer, A., et al. (1998). Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature, 396(6710), 474–477.PubMedGoogle Scholar
  308. 308.
    Sand, C., Grandoch, M., Borgermann, C., Oude Weernink, P. A., Mahlke, Y., Schwindenhammer, B., et al. (2010). 8-pCPT-conjugated cyclic AMP analogs exert thromboxane receptor antagonistic properties. Thrombosis and Haemostasis, 103(3), 662–678.PubMedGoogle Scholar
  309. 309.
    Siess, W., Winegar, D. A., & Lapetina, E. G. (1990). Rap1-B is phosphorylated by protein kinase A in intact human platelets. Biochemical and Biophysical Research Communications, 170(2), 944–950.PubMedGoogle Scholar
  310. 310.
    Mellion, B. T., Ignarro, L. J., Ohlstein, E. H., Pontecorvo, E. G., Hyman, A. L., & Kadowitz, P. J. (1981). Evidence for the inhibitory role of guanosine 3′,5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood, 57(5), 946–955.PubMedGoogle Scholar
  311. 311.
    Marquis, N. R., Vigdahl, R. L., & Tavormina, P. A. (1969). Platelet aggregation. I. Regulation by cyclic AMP and prostaglandin E1. Biochemical and Biophysical Research Communications, 36(6), 965–972.PubMedGoogle Scholar
  312. 312.
    Salzman, E. W., & Neri, L. L. (1969). Cyclic 3′,5′-adenosine monophosphate in human blood platelets. Nature, 224(5219), 609–610.PubMedGoogle Scholar
  313. 313.
    Salzman, E. W. (1967). ADP-platelet aggregation. Thrombosis et Diathesis Haemorrhagica. Supplementum, 26, 197–199.PubMedGoogle Scholar
  314. 314.
    Brodie, G. N., Baenziger, N. L., Chase, L. R., & Majerus, P. W. (1972). The effects of thrombin on adenyl cyclase activity and a membrane protein from human platelets. The Journal of Clinical Investigation, 51(1), 81–88.PubMedPubMedCentralGoogle Scholar
  315. 315.
    Hamberg, M., Svensson, J., Wakabayashi, T., & Samuelsson, B. (1974). Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proceedings of the National Academy of Sciences of the United States of America, 71(2), 345–349.PubMedPubMedCentralGoogle Scholar
  316. 316.
    Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2994–2998.PubMedPubMedCentralGoogle Scholar
  317. 317.
    Young, A., Chapman, O., Connor, C., Poole, C., Rose, P., & Kakkar, A. K. (2012). Thrombosis and cancer. Nature Reviews. Clinical Oncology, 9(8), 437–449.PubMedGoogle Scholar
  318. 318.
    Langer, F., & Bokemeyer, C. (2012). Crosstalk between cancer and haemostasis. Implications for cancer biology and cancer-associated thrombosis with focus on tissue factor. Hamostaseologie, 32(2), 95–104.PubMedGoogle Scholar
  319. 319.
    van den Berg, Y. W., Osanto, S., Reitsma, P. H., & Versteeg, H. H. (2012). The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood, 119(4), 924–932.PubMedGoogle Scholar
  320. 320.
    Stefanini, L., Boulaftali, Y., Ouellette, T. D., Holinstat, M., Desire, L., Leblond, B., et al. (2012). Rap1-Rac1 circuits potentiate platelet activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(2), 434–441.PubMedPubMedCentralGoogle Scholar
  321. 321.
    Tao, L., Zhang, Y., Xi, X., & Kieffer, N. (2010). Recent advances in the understanding of the molecular mechanisms regulating platelet integrin alphaIIbbeta3 activation. Protein & Cell, 1(7), 627–637.Google Scholar
  322. 322.
    Watanabe, N. (2010). RIAM: bridge between Rap1 and integrin. Rinshō Ketsueki, 51(6), 377–383.PubMedGoogle Scholar
  323. 323.
    Wynne, J. P., Wu, J., Su, W., Mor, A., Patsoukis, N., Boussiotis, V. A., et al. (2012). Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector. The Journal of Cell Biology, 199(2), 317–330.PubMedPubMedCentralGoogle Scholar
  324. 324.
    Stefanini, L., & Bergmeier, W. (2010). CalDAG-GEFI and platelet activation. Platelets, 21(4), 239–243.PubMedGoogle Scholar
  325. 325.
    Subramanian, H., Zahedi, R. P., Sickmann, A., Walter, U., & Gambaryan, S. (2013). Phosphorylation of CalDAG-GEFI by protein kinase A prevents Rap1b activation. Journal of Thrombosis and Haemostasis, 11(8), 1574–1582.PubMedGoogle Scholar
  326. 326.
    Ridley, A. J. (2011). Life at the leading edge. Cell, 145(7), 1012–1022.PubMedGoogle Scholar
  327. 327.
    Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389–399.PubMedGoogle Scholar
  328. 328.
    Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70(3), 401–410.PubMedGoogle Scholar
  329. 329.
    Klages, B., Brandt, U., Simon, M. I., Schultz, G., & Offermanns, S. (1999). Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. The Journal of Cell Biology, 144(4), 745–754.PubMedPubMedCentralGoogle Scholar
  330. 330.
    Pleines, I., Hagedorn, I., Gupta, S., May, F., Chakarova, L., van Hengel, J., et al. (2012). Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood, 119(4), 1054–1063.PubMedGoogle Scholar
  331. 331.
    Schoenwaelder, S. M., Hughan, S. C., Boniface, K., Fernando, S., Holdsworth, M., Thompson, P. E., et al. (2002). RhoA sustains integrin alpha IIbbeta 3 adhesion contacts under high shear. The Journal of Biological Chemistry, 277(17), 14738–14746.PubMedGoogle Scholar
  332. 332.
    Fujita, A., Saito, Y., Ishizaki, T., Maekawa, M., Fujisawa, K., Ushikubi, F., et al. (1997). Integrin-dependent translocation of p160ROCK to cytoskeletal complex in thrombin-stimulated human platelets. The Biochemical Journal, 328(Pt 3), 769–775.PubMedPubMedCentralGoogle Scholar
  333. 333.
    Huang, J. S., Dong, L., Kozasa, T., & Le Breton, G. C. (2007). Signaling through G(alpha)13 switch region I is essential for protease-activated receptor 1-mediated human platelet shape change, aggregation, and secretion. The Journal of Biological Chemistry, 282(14), 10210–10222.PubMedGoogle Scholar
  334. 334.
    Calaminus, S. D., Auger, J. M., McCarty, O. J., Wakelam, M. J., Machesky, L. M., & Watson, S. P. (2007). MyosinIIa contractility is required for maintenance of platelet structure during spreading on collagen and contributes to thrombus stability. Journal of Thrombosis and Haemostasis, 5(10), 2136–2145.PubMedGoogle Scholar
  335. 335.
    Getz, T. M., Dangelmaier, C. A., Jin, J., Daniel, J. L., & Kunapuli, S. P. (2010). Differential phosphorylation of myosin light chain (Thr)18 and (Ser)19 and functional implications in platelets. Journal of Thrombosis and Haemostasis, 8(10), 2283–2293.PubMedPubMedCentralGoogle Scholar
  336. 336.
    Ueda, K., Ohta, Y., & Hosoya, H. (2003). The carboxy-terminal pleckstrin homology domain of ROCK interacts with filamin-A. Biochemical and Biophysical Research Communications, 301(4), 886–890.PubMedGoogle Scholar
  337. 337.
    Itoh, K., Hara, T., & Shibata, N. (1992). Diphosphorylation of platelet myosin by myosin light chain kinase. Biochimica et Biophysica Acta, 1133(3), 286–292.PubMedGoogle Scholar
  338. 338.
    Signorello, M. G., Giacobbe, E., Passalacqua, M., & Leoncini, G. (2013). The 2-arachidonoylglycerol effect on myosin light chain phosphorylation in human platelets. Biochimie, 95(8), 1620–1628.PubMedGoogle Scholar
  339. 339.
    Wraith, K. S., Magwenzi, S., Aburima, A., Wen, Y., Leake, D., & Naseem, K. M. (2013). Oxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine kinase and Rho kinase-signaling pathways. Blood, 122(4), 580–589.PubMedPubMedCentralGoogle Scholar
  340. 340.
    Leisner, T. M., Liu, M., Jaffer, Z. M., Chernoff, J., & Parise, L. V. (2005). Essential role of CIB1 in regulating PAK1 activation and cell migration. The Journal of Cell Biology, 170(3), 465–476.PubMedPubMedCentralGoogle Scholar
  341. 341.
    Pandey, D., Goyal, P., Bamburg, J. R., & Siess, W. (2006). Regulation of LIM-kinase 1 and cofilin in thrombin-stimulated platelets. Blood, 107(2), 575–583.PubMedPubMedCentralGoogle Scholar
  342. 342.
    Pandey, D., Goyal, P., & Siess, W. (2007). Lysophosphatidic acid stimulation of platelets rapidly induces Ca2+-dependent dephosphorylation of cofilin that is independent of dense granule secretion and aggregation. Blood Cells, Molecules & Diseases, 38(3), 269–279.Google Scholar
  343. 343.
    Akbar, H., Shang, X., Perveen, R., Berryman, M., Funk, K., Johnson, J. F., et al. (2011). Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation. PLoS One, 6(7), e22117.PubMedPubMedCentralGoogle Scholar
  344. 344.
    Carpenter, C. L., Tolias, K. F., Couvillon, A. C., & Hartwig, J. H. (1997). Signal transduction pathways involving the small G proteins rac and Cdc42 and phosphoinositide kinases. Advances in Enzyme Regulation, 37, 377–390.PubMedGoogle Scholar
  345. 345.
    Egile, C., Loisel, T. P., Laurent, V., Li, R., Pantaloni, D., Sansonetti, P. J., et al. (1999). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. The Journal of Cell Biology, 146(6), 1319–1332.PubMedPubMedCentralGoogle Scholar
  346. 346.
    Miki, H., Suetsugu, S., & Takenawa, T. (1998). WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. The EMBO Journal, 17(23), 6932–6941.PubMedPubMedCentralGoogle Scholar
  347. 347.
    McCarty, O. J., Larson, M. K., Auger, J. M., Kalia, N., Atkinson, B. T., Pearce, A. C., et al. (2005). Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. The Journal of Biological Chemistry, 280(47), 39474–39484.PubMedPubMedCentralGoogle Scholar
  348. 348.
    Oda, A., Miki, H., Wada, I., Yamaguchi, H., Yamazaki, D., Suetsugu, S., et al. (2005). WAVE/scars in platelets. Blood, 105(8), 3141–3148.PubMedGoogle Scholar
  349. 349.
    Coburn, L. A., Damaraju, V. S., Dozic, S., Eskin, S. G., Cruz, M. A., & McIntire, L. V. (2011). GPIbalpha-vWF rolling under shear stress shows differences between type 2B and 2M von Willebrand disease. Biophysical Journal, 100(2), 304–312.PubMedPubMedCentralGoogle Scholar
  350. 350.
    Colace, T. V., & Diamond, S. L. (2013). Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(1), 105–113.PubMedPubMedCentralGoogle Scholar
  351. 351.
    Fredrickson, B. J., Dong, J. F., McIntire, L. V., & Lopez, J. A. (1998). Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood, 92(10), 3684–3693.PubMedGoogle Scholar
  352. 352.
    Jackson, S. P., Mistry, N., & Yuan, Y. (2000). Platelets and the injured vessel wall—“rolling into action”: focus on glycoprotein Ib/V/IX and the platelet cytoskeleton. Trends in Cardiovascular Medicine, 10(5), 192–197.PubMedGoogle Scholar
  353. 353.
    Yago, T., Lou, J., Wu, T., Yang, J., Miner, J. J., Coburn, L., et al. (2008). Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. The Journal of Clinical Investigation, 118(9), 3195–3207.PubMedPubMedCentralGoogle Scholar
  354. 354.
    Li, R., & Emsley, J. (2013). The organizing principle of the platelet glycoprotein Ib-IX-V complex. Journal of Thrombosis and Haemostasis, 11(4), 605–614.PubMedPubMedCentralGoogle Scholar
  355. 355.
    Clemetson, K. J. (2007). A short history of platelet glycoprotein Ib complex. Thrombosis and Haemostasis, 98(1), 63–68.PubMedGoogle Scholar
  356. 356.
    Bernard, J., & Soulier, J. (1948). Sur une nouvelle variété de dystrophie thrombocytaire-hémorragipare congénitale. Semin Hôp Paris, 24, 3217–3223.Google Scholar
  357. 357.
    Ozaki, Y., Suzuki-Inoue, K., & Inoue, O. (2013). Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 330–339.PubMedGoogle Scholar
  358. 358.
    Canobbio, I., Balduini, C., & Torti, M. (2004). Signalling through the platelet glycoprotein Ib-V-IX complex. Cellular Signalling, 16(12), 1329–1344.PubMedGoogle Scholar
  359. 359.
    Gardiner, E. E., Arthur, J. F., Berndt, M. C., & Andrews, R. K. (2005). Role of calmodulin in platelet receptor function. Current Medicinal Chemistry. Cardiovascular and Hematological Agents, 3(4), 283–287.PubMedGoogle Scholar
  360. 360.
    Bernardo, A., Ball, C., Nolasco, L., Choi, H., Moake, J. L., & Dong, J. F. (2005). Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. Journal of Thrombosis and Haemostasis, 3(3), 562–570.PubMedGoogle Scholar
  361. 361.
    De Ceunynck, K., De Meyer, S. F., & Vanhoorelbeke, K. (2013). Unwinding the von Willebrand factor strings puzzle. Blood, 121(2), 270–277.PubMedGoogle Scholar
  362. 362.
    Desch, A., Strozyk, E. A., Bauer, A. T., Huck, V., Niemeyer, V., Wieland, T., et al. (2012). Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin alphavbeta5-induced secretion of VEGF-A. The American Journal of Pathology, 181(2), 693–705.PubMedGoogle Scholar
  363. 363.
    Coller, B. S., & Shattil, S. J. (2008). The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood, 112(8), 3011–3025.PubMedPubMedCentralGoogle Scholar
  364. 364.
    Kim, C., & Kim, M. C. (2013). Differences in alpha-beta transmembrane domain interactions among integrins enable diverging integrin signaling. Biochemical and Biophysical Research Communications, 436(3), 406–412.PubMedGoogle Scholar
  365. 365.
    Kim, C., Lau, T. L., Ulmer, T. S., & Ginsberg, M. H. (2009). Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood, 113(19), 4747–4753.PubMedPubMedCentralGoogle Scholar
  366. 366.
    Shattil, S. J. (2009). The beta3 integrin cytoplasmic tail: protein scaffold and control freak. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 210–213.PubMedGoogle Scholar
  367. 367.
    Nurden, A. T., & Caen, J. P. (1974). An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. British Journal of Haematology, 28(2), 253–260.PubMedGoogle Scholar
  368. 368.
    Phillips, D. R., Jenkins, C. S., Luscher, E. F., & Larrieu, M. (1975). Molecular differences of exposed surface proteins on thrombasthenic platelet plasma membranes. Nature, 257(5527), 599–600.PubMedGoogle Scholar
  369. 369.
    Glanzmann, E. (1918). Hereditare hammorhagische thrombastehnie. Beitr Pathologie Bluplatchen J Kinderkt, 88, 113–141.Google Scholar
  370. 370.
    Clemetson, K. J. (1995). Platelet activation: signal transduction via membrane receptors. Thrombosis and Haemostasis, 74(1), 111–116.PubMedGoogle Scholar
  371. 371.
    Moroi, M., Jung, S. M., Okuma, M., & Shinmyozu, K. (1989). A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. The Journal of Clinical Investigation, 84(5), 1440–1445.PubMedPubMedCentralGoogle Scholar
  372. 372.
    Asselin, J., Knight, C. G., Farndale, R. W., Barnes, M. J., & Watson, S. P. (1999). Monomeric (glycine-proline-hydroxyproline)10 repeat sequence is a partial agonist of the platelet collagen receptor glycoprotein VI. The Biochemical Journal, 339(Pt 2), 413–418.PubMedPubMedCentralGoogle Scholar
  373. 373.
    Kehrel, B., Wierwille, S., Clemetson, K. J., Anders, O., Steiner, M., Knight, C. G., et al. (1998). Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood, 91(2), 491–499.PubMedGoogle Scholar
  374. 374.
    Zahid, M., Mangin, P., Loyau, S., Hechler, B., Billiald, P., Gachet, C., et al. (2012). The future of glycoprotein VI as an antithrombotic target. Journal of Thrombosis and Haemostasis, 10(12), 2418–2427.PubMedGoogle Scholar
  375. 375.
    Bergmeier, W., & Stefanini, L. (2013). Platelet ITAM signaling. Current Opinion in Hematology, 20(5), 445–450.PubMedGoogle Scholar
  376. 376.
    Ezumi, Y., Shindoh, K., Tsuji, M., & Takayama, H. (1998). Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor gamma chain complex on human platelets. The Journal of Experimental Medicine, 188(2), 267–276.PubMedPubMedCentralGoogle Scholar
  377. 377.
    Watson, S. P., Asazuma, N., Atkinson, B., Berlanga, O., Best, D., Bobe, R., et al. (2001). The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thrombosis and Haemostasis, 86(1), 276–288.PubMedGoogle Scholar
  378. 378.
    Navarro-Nunez, L., Langan, S. A., Nash, G. B., & Watson, S. P. (2013). The physiological and pathophysiological roles of platelet CLEC-2. Thrombosis and Haemostasis, 109(6), 991–998.PubMedPubMedCentralGoogle Scholar
  379. 379.
    Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., et al. (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 107(2), 542–549.PubMedGoogle Scholar
  380. 380.
    Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. The Journal of Biological Chemistry, 282(36), 25993–26001.PubMedGoogle Scholar
  381. 381.
    Lowe, K. L., Navarro-Nunez, L., & Watson, S. P. (2012). Platelet CLEC-2 and podoplanin in cancer metastasis. Thrombosis Research, 129(Suppl 1), S30–37.PubMedGoogle Scholar
  382. 382.
    Ordonez, N. G. (2013). Value of podoplanin as an immunohistochemical marker in tumor diagnosis: a review and update. Applied Immunohistochemistry & Molecular Morphology. Google Scholar
  383. 383.
    Pula, B., Witkiewicz, W., Dziegiel, P., & Podhorska-Okolow, M. (2013). Significance of podoplanin expression in cancer-associated fibroblasts: a comprehensive review. International Journal of Oncology, 42(6), 1849–1857.PubMedGoogle Scholar
  384. 384.
    Takagi, S., Sato, S., Oh-hara, T., Takami, M., Koike, S., Mishima, Y., et al. (2013). Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PLoS One, 8(8), e73609.PubMedPubMedCentralGoogle Scholar
  385. 385.
    Watson, A. A., Brown, J., Harlos, K., Eble, J. A., Walter, T. S., & O'Callaghan, C. A. (2007). The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. The Journal of Biological Chemistry, 282(5), 3165–3172.PubMedGoogle Scholar
  386. 386.
    Watson, A. A., & O'Callaghan, C. A. (2005). Crystallization and X-ray diffraction analysis of human CLEC-2. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 61(Pt 12), 1094–1096.PubMedPubMedCentralGoogle Scholar
  387. 387.
    Suzuki-Inoue, K., Inoue, O., & Ozaki, Y. (2011). Novel platelet activation receptor CLEC-2: from discovery to prospects. Journal of Thrombosis and Haemostasis, 9(Suppl 1), 44–55.PubMedGoogle Scholar
  388. 388.
    Suzuki-Inoue, K., Inoue, O., & Ozaki, Y. (2011). The novel platelet activation receptor CLEC-2. Platelets, 22(5), 380–384.PubMedGoogle Scholar
  389. 389.
    Watson, A. A., & O'Callaghan, C. A. (2011). Molecular analysis of the interaction of the snake venom rhodocytin with the platelet receptor CLEC-2. Toxins (Basel), 3(8), 991–1003.Google Scholar
  390. 390.
    Johnston, G. I., Cook, R. G., & McEver, R. P. (1989). Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell, 56(6), 1033–1044.PubMedGoogle Scholar
  391. 391.
    Stenberg, P. E., McEver, R. P., Shuman, M. A., Jacques, Y. V., & Bainton, D. F. (1985). A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. The Journal of Cell Biology, 101(3), 880–886.PubMedGoogle Scholar
  392. 392.
    Zarbock, A., Muller, H., Kuwano, Y., & Ley, K. (2009). PSGL-1-dependent myeloid leukocyte activation. Journal of Leukocyte Biology, 86(5), 1119–1124.PubMedGoogle Scholar
  393. 393.
    Picker, L. J., Warnock, R. A., Burns, A. R., Doerschuk, C. M., Berg, E. L., & Butcher, E. C. (1991). The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell, 66(5), 921–933.PubMedGoogle Scholar
  394. 394.
    Polley, M. J., Phillips, M. L., Wayner, E., Nudelman, E., Singhal, A. K., Hakomori, S., et al. (1991). CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proceedings of the National Academy of Sciences of the United States of America, 88(14), 6224–6228.PubMedPubMedCentralGoogle Scholar
  395. 395.
    Foxall, C., Watson, S. R., Dowbenko, D., Fennie, C., Lasky, L. A., Kiso, M., et al. (1992). The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. The Journal of Cell Biology, 117(4), 895–902.PubMedGoogle Scholar
  396. 396.
    Habets, K. L., Huizinga, T. W., & Toes, R. E. (2013). Platelets and autoimmunity. European Journal of Clinical Investigation, 43(7), 746–757.PubMedGoogle Scholar
  397. 397.
    Kazmi, R. S., Cooper, A. J., & Lwaleed, B. A. (2011). Platelet function in pre-eclampsia. Seminars in Thrombosis and Hemostasis, 37(2), 131–136.PubMedGoogle Scholar
  398. 398.
    Nurden, A. T. (2011). Platelets, inflammation and tissue regeneration. Thrombosis and Haemostasis, 105(Suppl 1), S13–33.PubMedGoogle Scholar
  399. 399.
    Ozeki, Y., Ito, H., Nagamura, Y., Unemi, F., & Igawa, T. (1998). 12(S)-HETE plays a role as a mediator of expression of platelet CD62 (P-selectin). Platelets, 9(5), 297–302.PubMedGoogle Scholar
  400. 400.
    Borsig, L. (2008). The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 8(8), 1247–1255.PubMedGoogle Scholar
  401. 401.
    Dammacco, F., Vacca, A., Procaccio, P., Ria, R., Marech, I., & Racanelli, V. (2013). Cancer-related coagulopathy (Trousseau’s syndrome): review of the literature and experience of a single center of internal medicine. Clinical and Experimental Medicine, 13(2), 85–97.PubMedGoogle Scholar
  402. 402.
    Kyriazi, V., & Theodoulou, E. (2013). Assessing the risk and prognosis of thrombotic complications in cancer patients. Archives of Pathology & Laboratory Medicine, 137(9), 1286–1295.Google Scholar
  403. 403.
    McEver, R. P. (1997). Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconjugate Journal, 14(5), 585–591.PubMedGoogle Scholar
  404. 404.
    Erpenbeck, L., & Schon, M. P. (2010). Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood, 115(17), 3427–3436.PubMedPubMedCentralGoogle Scholar
  405. 405.
    Gay, L. J., & Felding-Habermann, B. (2011). Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell, 20(5), 553–554.PubMedGoogle Scholar
  406. 406.
    Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 11(2), 123–134.PubMedGoogle Scholar
  407. 407.
    Koziak, K., Sevigny, J., Robson, S. C., Siegel, J. B., & Kaczmarek, E. (1999). Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thrombosis and Haemostasis, 82(5), 1538–1544.PubMedGoogle Scholar
  408. 408.
    Zimmermann, H. (1999). Nucleotides and cd39: principal modulatory players in hemostasis and thrombosis. Nature Medicine, 5(9), 987–988.PubMedGoogle Scholar
  409. 409.
    Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F., & Dvorak, A. M. (1998). Platelets exit venules by a transcellular pathway at sites of F-met peptide-induced acute inflammation in guinea pigs. International Archives of Allergy and Immunology, 116(3), 188–195.PubMedGoogle Scholar
  410. 410.
    Gawaz, M., & Vogel, S. (2013). Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood, 122(15), 2550–2554.PubMedGoogle Scholar
  411. 411.
    Lowenhaupt, R. W., Glueck, H. I., Miller, M. A., & Kline, D. L. (1977). Factors which influence blood platelet migration. The Journal of Laboratory and Clinical Medicine, 90(1), 37–45.PubMedGoogle Scholar
  412. 412.
    Nathan, P. (1973). The migration of human platelets in vitro. Thrombosis et Diathesis Haemorrhagica, 30(1), 173–177.PubMedGoogle Scholar
  413. 413.
    Schmidt, E. M., Munzer, P., Borst, O., Kraemer, B. F., Schmid, E., Urban, B., et al. (2011). Ion channels in the regulation of platelet migration. Biochemical and Biophysical Research Communications, 415(1), 54–60.PubMedGoogle Scholar
  414. 414.
    Aleman, M. M., Gardiner, C., Harrison, P., & Wolberg, A. S. (2011). Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. Journal of Thrombosis and Haemostasis, 9(11), 2251–2261.PubMedPubMedCentralGoogle Scholar
  415. 415.
    Fisher, B., & Fisher, E. R. (1966). Transmigration of lymph nodes by tumor cells. Science, 152(3727), 1397–1398.PubMedGoogle Scholar
  416. 416.
    Sleeman, J. P., Cady, B., & Pantel, K. (2012). The connectivity of lymphogenous and hematogenous tumor cell dissemination: biological insights and clinical implications. Clinical & Experimental Metastasis, 29(7), 737–746.Google Scholar
  417. 417.
    Sleeman, J. P., Nazarenko, I., & Thiele, W. (2011). Do all roads lead to Rome? Routes to metastasis development. International Journal of Cancer, 128(11), 2511–2526.Google Scholar
  418. 418.
    Baker, M., Reynolds, L. E., Robinson, S. D., Lees, D. M., Parsons, M., Elia, G., et al. (2013). Stromal Claudin14-heterozygosity, but not deletion, increases tumour blood leakage without affecting tumour growth. PLoS One, 8(5), e62516.PubMedPubMedCentralGoogle Scholar
  419. 419.
    Brown, P. (2005). Lymphatic system: unlocking the drains. Nature, 436(7050), 456–458.PubMedGoogle Scholar
  420. 420.
    Kushner, E. J., & Bautch, V. L. (2013). Building blood vessels in development and disease. Current Opinion in Hematology, 20(3), 231–236.PubMedGoogle Scholar
  421. 421.
    Mueller, B. M., Reisfeld, R. A., Edgington, T. S., & Ruf, W. (1992). Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proceedings of the National Academy of Sciences of the United States of America, 89(24), 11832–11836.PubMedPubMedCentralGoogle Scholar
  422. 422.
    Bouvenot, G., Escande, M., Xeridat, B., Simonin, G., Boucoiran, J., & Delboy, C. (1977). Thrombocytosis and cancer. Apropos of a chronological series of 100 patients. La Semaine des Hôpitaux, 53(36), 1921–1925.PubMedGoogle Scholar
  423. 423.
    Stone, R. L., Nick, A. M., McNeish, I. A., Balkwill, F., Han, H. D., Bottsford-Miller, J., et al. (2012). Paraneoplastic thrombocytosis in ovarian cancer. The New England Journal of Medicine, 366(7), 610–618.PubMedPubMedCentralGoogle Scholar
  424. 424.
    Rank, A., Liebhardt, S., Zwirner, J., Burges, A., Nieuwland, R., & Toth, B. (2012). Circulating microparticles in patients with benign and malignant ovarian tumors. Anticancer Research, 32(5), 2009–2014.PubMedGoogle Scholar
  425. 425.
    Nieuwland, R., Berckmans, R. J., Rotteveel-Eijkman, R. C., Maquelin, K. N., Roozendaal, K. J., Jansen, P. G., et al. (1997). Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation, 96(10), 3534–3541.PubMedGoogle Scholar
  426. 426.
    van Doormaal, F., Kleinjan, A., Berckmans, R. J., Mackman, N., Manly, D., Kamphuisen, P. W., et al. (2012). Coagulation activation and microparticle-associated coagulant activity in cancer patients. An exploratory prospective study. Thrombosis and Haemostasis, 108(1), 160–165.PubMedGoogle Scholar
  427. 427.
    Rank, A., Nieuwland, R., Roesner, S., Nikolajek, K., Hiller, E., & Toth, B. (2012). Climacteric lowers plasma levels of platelet-derived microparticles: a pilot study in pre- versus postmenopausal women. Acta Haematologica, 128(1), 53–59.PubMedGoogle Scholar
  428. 428.
    Hunter, M. P., Ismail, N., Zhang, X., Aguda, B. D., Lee, E. J., Yu, L., et al. (2008). Detection of microRNA expression in human peripheral blood microvesicles. PLoS One, 3(11), e3694.PubMedPubMedCentralGoogle Scholar
  429. 429.
    Fidler, I. J. (1978). Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Research, 38(9), 2651–2660.PubMedGoogle Scholar
  430. 430.
    Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Research, 70(14), 5649–5669.PubMedGoogle Scholar
  431. 431.
    Bidard, F. C., Pierga, J. Y., Soria, J. C., & Thiery, J. P. (2013). Translating metastasis-related biomarkers to the clinic—progress and pitfalls. Nature Reviews. Clinical Oncology, 10(3), 169–179.PubMedGoogle Scholar
  432. 432.
    Morello, M., Minciacchi, V. R., de Candia, P., Yang, J., Posadas, E., Kim, H., et al. (2013). Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle, 12(22), 3526–3536.PubMedPubMedCentralGoogle Scholar
  433. 433.
    Uchide, K., Sakon, M., Ariyoshi, H., Nakamori, S., Tokunaga, M., & Monden, M. (2007). Cancer cells cause vascular endothelial cell (vEC) retraction via 12(S)HETE secretion; the possible role of cancer cell derived microparticle. Annals of Surgical Oncology, 14(2), 862–868.PubMedGoogle Scholar
  434. 434.
    van der Pol, E., Boing, A. N., Harrison, P., Sturk, A., & Nieuwland, R. (2012). Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews, 64(3), 676–705.PubMedGoogle Scholar
  435. 435.
    Williams, S. C. (2013). Circulating tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 4861.PubMedPubMedCentralGoogle Scholar
  436. 436.
    Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472(7341), 90–94.PubMedGoogle Scholar
  437. 437.
    Green, D. L., & Karpatkin, S. (2009). Effect of cancer on platelets. Cancer Treatment and Research, 148, 17–30.PubMedGoogle Scholar
  438. 438.
    Pearlstein, E., Salk, P. L., Yogeeswaran, G., & Karpatkin, S. (1980). Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic-variant derivatives of a rat renal sarcoma cell line. Proceedings of the National Academy of Sciences of the United States of America, 77(7), 4336–4339.PubMedPubMedCentralGoogle Scholar
  439. 439.
    Grignani, G., Pacchiarini, L., Almasio, P., Pagliarino, M., Gamba, G., Rizzo, S. C., et al. (1986). Characterization of the platelet-aggregating activity of cancer cells with different metastatic potential. International Journal of Cancer, 38(2), 237–244.Google Scholar
  440. 440.
    Menter, D. G., Onoda, J. M., Moilanen, D., Sloane, B. F., Taylor, J. D., & Honn, K. V. (1987). Inhibition by prostacyclin of the tumor cell-induced platelet release reaction and platelet aggregation. Journal of the National Cancer Institute, 78(5), 961–969.PubMedGoogle Scholar
  441. 441.
    Lee, J. J., Yu, J. Y., Lee, J. H., Zhang, W. Y., Kim, T. J., Myung, C. S., et al. (2010). The protective effects of paclitaxel on platelet aggregation through the inhibition of thromboxane A2 synthase. Archives of Pharmacal Research, 33(3), 387–394.PubMedGoogle Scholar
  442. 442.
    de Leval, X., Benoit, V., Delarge, J., Julemont, F., Masereel, B., Pirotte, B., et al. (2003). Pharmacological evaluation of the novel thromboxane modulator BM-567 (II/II). Effects of BM-567 on osteogenic sarcoma-cell-induced platelet aggregation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68(1), 55–59.PubMedGoogle Scholar
  443. 443.
    Pacchiarini, L., Zucchella, M., Milanesi, G., Tacconi, F., Bonomi, E., Canevari, A., et al. (1991). Thromboxane production by platelets during tumor cell-induced platelet activation. Invasion & Metastasis, 11(2), 102–109.Google Scholar
  444. 444.
    Tzanakakis, G. N., Krambovitis, E., Tsatsakis, A. M., & Vezeridis, M. P. (2002). The preventive effect of ketoconazole on experimental metastasis from a human pancreatic carcinoma may be related to its effect on prostaglandin synthesis. International Journal of Gastrointestinal Cancer, 32(1), 23–30.PubMedGoogle Scholar
  445. 445.
    Honn, K. V., Cicone, B., & Skoff, A. (1981). Prostacyclin: a potent antimetastatic agent. Science, 212(4500), 1270–1272.PubMedGoogle Scholar
  446. 446.
    Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.PubMedGoogle Scholar
  447. 447.
    Kanazawa, S., Yamaguchi, K., Kinoshita, Y., Muramatsu, M., Komiyama, Y., & Nomura, S. (2005). Gefitinib affects functions of platelets and blood vessels via changes in prostanoids balance. Clinical and Applied Thrombosis/Hemostasis, 11(4), 429–434.PubMedGoogle Scholar
  448. 448.
    Gordon, S. G., & Chelladurai, M. (1992). Non-tissue factor procoagulants in cancer cells. Cancer Metastasis Reviews, 11(3–4), 267–282.PubMedGoogle Scholar
  449. 449.
    Jurasz, P., Alonso-Escolano, D., & Radomski, M. W. (2004). Platelet–cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. British Journal of Pharmacology, 143(7), 819–826.PubMedPubMedCentralGoogle Scholar
  450. 450.
    Schaffner, F., & Ruf, W. (2009). Tissue factor and PAR2 signaling in the tumor microenvironment. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Arteriosclerosis Thrombosis and Vascular Biology, 29(12), 1999–2004.Google Scholar
  451. 451.
    Kirwan, C. C., McDowell, G., McCollum, C. N., Kumar, S., & Byrne, G. J. (2008). Early changes in the haemostatic and procoagulant systems after chemotherapy for breast cancer. British Journal of Cancer, 99(7), 1000–1006.PubMedPubMedCentralGoogle Scholar
  452. 452.
    Levine, M. N. (2007). Adjuvant therapy and thrombosis: how to avoid the problem? Breast, 16(Suppl 2), S169–174.PubMedGoogle Scholar
  453. 453.
    Starakis, I., Koutras, A., & Mazokopakis, E. E. (2010). Drug-induced thromboembolic events in patients with malignancy. Cardiovascular & Hematological Disorders Drug Targets, 10(2), 94–102.Google Scholar
  454. 454.
    Anand, M., & Brat, D. J. (2012). Oncogenic regulation of tissue factor and thrombosis in cancer. Thrombosis Research, 129(Suppl 1), S46–49.PubMedGoogle Scholar
  455. 455.
    Falanga, A., Consonni, R., Marchetti, M., Locatelli, G., Garattini, E., Passerini, C. G., et al. (1998). Cancer procoagulant and tissue factor are differently modulated by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood, 92(1), 143–151.PubMedGoogle Scholar
  456. 456.
    Ogiichi, T., Hirashima, Y., Nakamura, S., Endo, S., Kurimoto, M., & Takaku, A. (2000). Tissue factor and cancer procoagulant expressed by glioma cells participate in their thrombin-mediated proliferation. Journal of Neuro-Oncology, 46(1), 1–9.PubMedGoogle Scholar
  457. 457.
    Belloc, C., Lu, H., Soria, C., Fridman, R., Legrand, Y., & Menashi, S. (1995). The effect of platelets on invasiveness and protease production of human mammary tumor cells. International Journal of Cancer, 60(3), 413–417.Google Scholar
  458. 458.
    Deryugina, E. I., Bourdon, M. A., Jungwirth, K., Smith, J. W., & Strongin, A. Y. (2000). Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. International Journal of Cancer, 86(1), 15–23.Google Scholar
  459. 459.
    Jurasz, P., North, S., Venner, P., & Radomski, M. W. (2003). Matrix metalloproteinase-2 contributes to increased platelet reactivity in patients with metastatic prostate cancer: a preliminary study. Thrombosis Research, 112(1–2), 59–64.PubMedGoogle Scholar
  460. 460.
    Alonso-Escolano, D., Strongin, A. Y., Chung, A. W., Deryugina, E. I., & Radomski, M. W. (2004). Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins. British Journal of Pharmacology, 141(2), 241–252.PubMedPubMedCentralGoogle Scholar
  461. 461.
    Dilly, A. K., Ekambaram, P., Guo, Y., Cai, Y., Tucker, S. C., Fridman, R., et al. (2013). Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-kappaB. International Journal of Cancer, 133(8), 1784–1791.Google Scholar
  462. 462.
    Lindenmeyer, F., Legrand, Y., & Menashi, S. (1997). Upregulation of MMP-9 expression in MDA-MB231 tumor cells by platelet granular membrane. FEBS Letters, 418(1–2), 19–22.PubMedGoogle Scholar
  463. 463.
    Radomski, A., Jurasz, P., Sanders, E. J., Overall, C. M., Bigg, H. F., Edwards, D. R., et al. (2002). Identification, regulation and role of tissue inhibitor of metalloproteinases-4 (TIMP-4) in human platelets. British Journal of Pharmacology, 137(8), 1330–1338.PubMedPubMedCentralGoogle Scholar
  464. 464.
    Zhong, J., Gencay, M. M., Bubendorf, L., Burgess, J. K., Parson, H., Robinson, B. W., et al. (2006). ERK1/2 and p38 MAP kinase control MMP-2, MT1-MMP, and TIMP action and affect cell migration: a comparison between mesothelioma and mesothelial cells. Journal of Cellular Physiology, 207(2), 540–552.PubMedGoogle Scholar
  465. 465.
    Axelrad, T. W., Deo, D. D., Ottino, P., Van Kirk, J., Bazan, N. G., Bazan, H. E., et al. (2004). Platelet-activating factor (PAF) induces activation of matrix metalloproteinase 2 activity and vascular endothelial cell invasion and migration. The FASEB Journal, 18(3), 568–570.Google Scholar
  466. 466.
    Melnikova, V. O., Mourad-Zeidan, A. A., Lev, D. C., & Bar-Eli, M. (2006). Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. The Journal of Biological Chemistry, 281(5), 2911–2922.PubMedGoogle Scholar
  467. 467.
    Oleksowicz, L., Mrowiec, Z., Schwartz, E., Khorshidi, M., Dutcher, J. P., & Puszkin, E. (1995). Characterization of tumor-induced platelet aggregation: the role of immunorelated GPIb and GPIIb/IIIa expression by MCF-7 breast cancer cells. Thrombosis Research, 79(3), 261–274.PubMedGoogle Scholar
  468. 468.
    Jurasz, P., Stewart, M. W., Radomski, A., Khadour, F., Duszyk, M., & Radomski, M. W. (2001). Role of von Willebrand factor in tumour cell-induced platelet aggregation: differential regulation by NO and prostacyclin. British Journal of Pharmacology, 134(5), 1104–1112.PubMedPubMedCentralGoogle Scholar
  469. 469.
    Karpatkin, S., Pearlstein, E., Ambrogio, C., & Coller, B. S. (1988). Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. The Journal of Clinical Investigation, 81(4), 1012–1019.PubMedPubMedCentralGoogle Scholar
  470. 470.
    Chopra, H., Timar, J., Rong, X., Grossi, I. M., Hatfield, J. S., Fligiel, S. E., et al. (1992). Is there a role for the tumor cell integrin alpha IIb beta 3 and cytoskeleton in tumor cell-platelet interaction? Clinical & Experimental Metastasis, 10(2), 125–137.Google Scholar
  471. 471.
    Timar, J., Trikha, M., Szekeres, K., Bazaz, R., & Honn, K. (1998). Expression and function of the high affinity alphaIIbbeta3 integrin in murine melanoma cells. Clinical & Experimental Metastasis, 16(5), 437–445.Google Scholar
  472. 472.
    Trikha, M., Timar, J., Lundy, S. K., Szekeres, K., Cai, Y., Porter, A. T., et al. (1997). The high affinity alphaIIb beta3 integrin is involved in invasion of human melanoma cells. Cancer Research, 57(12), 2522–2528.PubMedGoogle Scholar
  473. 473.
    Trikha, M., Timar, J., Zacharek, A., Nemeth, J. A., Cai, Y., Dome, B., et al. (2002). Role for beta3 integrins in human melanoma growth and survival. International Journal of Cancer, 101(2), 156–167.Google Scholar
  474. 474.
    Felding-Habermann, B., O'Toole, T. E., Smith, J. W., Fransvea, E., Ruggeri, Z. M., Ginsberg, M. H., et al. (2001). Integrin activation controls metastasis in human breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1853–1858.PubMedPubMedCentralGoogle Scholar
  475. 475.
    Iwamura, T., Caffrey, T. C., Kitamura, N., Yamanari, H., Setoguchi, T., & Hollingsworth, M. A. (1997). P-selectin expression in a metastatic pancreatic tumor cell line (SUIT-2). Cancer Research, 57(6), 1206–1212.PubMedGoogle Scholar
  476. 476.
    Kim, Y. J., Borsig, L., Varki, N. M., & Varki, A. (1998). P-selectin deficiency attenuates tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 95(16), 9325–9330.PubMedPubMedCentralGoogle Scholar
  477. 477.
    Pottratz, S. T., Hall, T. D., Scribner, W. M., Jayaram, H. N., & Natarajan, V. (1996). P-selectin-mediated attachment of small cell lung carcinoma to endothelial cells. The American Journal of Physiology, 271(6 Pt 1), L918–923.PubMedGoogle Scholar
  478. 478.
    Stone, J. P., & Wagner, D. D. (1993). P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. The Journal of Clinical Investigation, 92(2), 804–813.PubMedPubMedCentralGoogle Scholar
  479. 479.
    Varki, A., & Varki, N. M. (2001). P-selectin, carcinoma metastasis and heparin: novel mechanistic connections with therapeutic implications. Brazilian Journal of Medical and Biological Research, 34(6), 711–717.PubMedGoogle Scholar
  480. 480.
    Ulrych, T., Bohm, A., Polzin, A., Daum, G., Nusing, R. M., Geisslinger, G., et al. (2011). Release of sphingosine-1-phosphate from human platelets is dependent on thromboxane formation. Journal of Thrombosis and Haemostasis, 9(4), 790–798.PubMedGoogle Scholar
  481. 481.
    Boucharaba, A., Serre, C. M., Gres, S., Saulnier-Blache, J. S., Bordet, J. C., Guglielmi, J., et al. (2004). Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. The Journal of Clinical Investigation, 114(12), 1714–1725.PubMedPubMedCentralGoogle Scholar
  482. 482.
    Goschnick, M. W., & Jackson, D. E. (2007). Tetraspanins-structural and signalling scaffolds that regulate platelet function. Mini Reviews in Medicinal Chemistry, 7(12), 1248–1254.PubMedGoogle Scholar
  483. 483.
    Haining, E. J., Yang, J., & Tomlinson, M. G. (2011). Tetraspanin microdomains: fine-tuning platelet function. Biochemical Society Transactions, 39(2), 518–523.PubMedGoogle Scholar
  484. 484.
    Protty, M. B., Watkins, N. A., Colombo, D., Thomas, S. G., Heath, V. L., Herbert, J. M., et al. (2009). Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains. The Biochemical Journal, 417(1), 391–400.PubMedPubMedCentralGoogle Scholar
  485. 485.
    Sordat, I., Decraene, C., Silvestre, T., Petermann, O., Auffray, C., Pietu, G., et al. (2002). Complementary DNA arrays identify CD63 tetraspanin and alpha3 integrin chain as differentially expressed in low and high metastatic human colon carcinoma cells. Laboratory Investigation, 82(12), 1715–1724.PubMedGoogle Scholar
  486. 486.
    Israels, S. J., McMillan, E. M., Robertson, C., Singhory, S., & McNicol, A. (1996). The lysosomal granule membrane protein, LAMP-2, is also present in platelet dense granule membranes. Thrombosis and Haemostasis, 75(4), 623–629.PubMedGoogle Scholar
  487. 487.
    Vanags, D. M., Rodgers, S. E., Duncan, E. M., Lloyd, J. V., & Bochner, F. (1992). Potentiation of ADP-induced aggregation in human platelet-rich plasma by 5-hydroxytryptamine and adrenaline. British Journal of Pharmacology, 106(4), 917–923.PubMedPubMedCentralGoogle Scholar
  488. 488.
    Billroth, T. (1878). Lectures on surgical pathology and therapeutics, a handbook for students and practitioners (vol. II). London: The New Sydenham Society.Google Scholar
  489. 489.
    Baserga, R., & Saffiotti, U. (1955). Experimental studies on histogenesis of blood-borne metastases. AMA Archives of Pathology, 59(1), 26–34.PubMedGoogle Scholar
  490. 490.
    Jones, D. S., Wallace, A. C., & Fraser, E. E. (1971). Sequence of events in experimental metastases of Walker 256 tumor: light, immunofluorescent, and electron microscopic observations. Journal of the National Cancer Institute, 46(3), 493–504.PubMedGoogle Scholar
  491. 491.
    Chew, E. C., & Wallace, A. C. (1976). Demonstration of fibrin in early stages of experimental metastases. Cancer Research, 36(6), 1904–1909.PubMedGoogle Scholar
  492. 492.
    Warren, B. A., & Vales, O. (1972). The release of vesicles from platelets following adhesion to vessel walls in vitro. British Journal of Experimental Pathology, 53(2), 206–215.PubMedPubMedCentralGoogle Scholar
  493. 493.
    Warren, B. A. (1976). Some aspects of blood borne tumour emboli associated with thrombosis. Zeitschrift für Krebsforschung und Klinische Onkologie. Cancer Research and Clinical Oncology, 87(1), 1–15.PubMedGoogle Scholar
  494. 494.
    Banfalvi, G. (2008). Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nature Protocols, 3(4), 663–673.PubMedGoogle Scholar
  495. 495.
    Oleksowicz, L., & Dutcher, J. P. (1995). Adhesive receptors expressed by tumor cells and platelets: novel targets for therapeutic anti-metastatic strategies. Medical Oncology, 12(2), 95–102.PubMedGoogle Scholar
  496. 496.
    Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., Schonberger, T., Gnerlich, S., Ring, S., et al. (2012). Engagement of alphaIIbbeta3 (GPIIb/IIIa) with alphanubeta3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. The Journal of Biological Chemistry, 287(3), 2168–2178.PubMedPubMedCentralGoogle Scholar
  497. 497.
    Timp, J. F., Braekkan, S. K., Versteeg, H. H., & Cannegieter, S. C. (2013). Epidemiology of cancer-associated venous thrombosis. Blood, 122(10), 1712–1723.PubMedGoogle Scholar
  498. 498.
    Beleva, E., & Grudeva-Popova, J. (2013). From Virchow’s triad to metastasis: circulating hemostatic factors as predictors of risk for metastasis in solid tumors. Journal of BUON, 18(1), 25–33.PubMedGoogle Scholar
  499. 499.
    Lee, A. Y., & Peterson, E. A. (2013). Treatment of cancer-associated thrombosis. Blood, 122(14), 2310–2317.PubMedGoogle Scholar
  500. 500.
    Barsam, S. J., Patel, R., & Arya, R. (2013). Anticoagulation for prevention and treatment of cancer-related venous thromboembolism. British Journal of Haematology, 161(6), 764–777.PubMedGoogle Scholar
  501. 501.
    Rajalingham, S., & Das, S. (2012). Antagonizing IL-6 in ankylosing spondylitis: a short review. Inflammation & Allergy Drug Targets, 11(4), 262–265.Google Scholar
  502. 502.
    Schoels, M. M., van der Heijde, D., Breedveld, F. C., Burmester, G. R., Dougados, M., Emery, P., et al. (2013). Blocking the effects of interleukin-6 in rheumatoid arthritis and other inflammatory rheumatic diseases: systematic literature review and meta-analysis informing a consensus statement. Annals of the Rheumatic Diseases, 72(4), 583–589.PubMedPubMedCentralGoogle Scholar
  503. 503.
    Homeida, S., Ebdon, C., Batty, P., Jackson, B., Kolade, S., Bateman, C., et al. (2012). New thrombopoietin receptor agonists for platelet disorders. Drugs of Today (Barcelona, Spain), 48(4), 293–301.Google Scholar
  504. 504.
    Kuter, D. J. (2009). Thrombopoietin and thrombopoietin mimetics in the treatment of thrombocytopenia. Annual Review of Medicine, 60, 193–206.PubMedGoogle Scholar
  505. 505.
    Hinson, R. M., Williams, J. A., & Shacter, E. (1996). Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: possible role of cyclooxygenase-2. Proceedings of the National Academy of Sciences of the United States of America, 93(10), 4885–4890.PubMedPubMedCentralGoogle Scholar
  506. 506.
    Abnet, C. C., Freedman, N. D., Kamangar, F., Leitzmann, M. F., Hollenbeck, A. R., & Schatzkin, A. (2009). Non-steroidal anti-inflammatory drugs and risk of gastric and oesophageal adenocarcinomas: results from a cohort study and a meta-analysis. British Journal of Cancer, 100(3), 551–557.PubMedPubMedCentralGoogle Scholar
  507. 507.
    Bosetti, C., Gallus, S., & La Vecchia, C. (2006). Aspirin and cancer risk: an updated quantitative review to 2005. Cancer Causes & Control, 17(7), 871–888.Google Scholar
  508. 508.
    Cole, B. F., Logan, R. F., Halabi, S., Benamouzig, R., Sandler, R. S., Grainge, M. J., et al. (2009). Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. Journal of the National Cancer Institute, 101(4), 256–266.PubMedGoogle Scholar
  509. 509.
    Harris, R. E. (2009). Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology, 17(2), 55–67.PubMedGoogle Scholar
  510. 510.
    Jafari, S., Etminan, M., & Afshar, K. (2009). Nonsteroidal anti-inflammatory drugs and prostate cancer: a systematic review of the literature and meta-analysis. Canadian Urological Association Journal, 3(4), 323–330.PubMedPubMedCentralGoogle Scholar
  511. 511.
    Khuder, S. A., Herial, N. A., Mutgi, A. B., & Federman, D. J. (2005). Nonsteroidal antiinflammatory drug use and lung cancer: a metaanalysis. Chest, 127(3), 748–754.PubMedGoogle Scholar
  512. 512.
    Takkouche, B., Regueira-Mendez, C., & Etminan, M. (2008). Breast cancer and use of nonsteroidal anti-inflammatory drugs: a meta-analysis. Journal of the National Cancer Institute, 100(20), 1439–1447.PubMedGoogle Scholar
  513. 513.
    Chan, A. T., Giovannucci, E. L., Meyerhardt, J. A., Schernhammer, E. S., Curhan, G. C., & Fuchs, C. S. (2005). Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA, 294(8), 914–923.PubMedPubMedCentralGoogle Scholar
  514. 514.
    Chan, A. T., Zauber, A. G., Hsu, M., Breazna, A., Hunter, D. J., Rosenstein, R. B., et al. (2009). Cytochrome P450 2C9 variants influence response to celecoxib for prevention of colorectal adenoma. Gastroenterology. doi: 10.1053/j.gastro.2009.02.045.Google Scholar
  515. 515.
    Baron, J. A., Cole, B. F., Sandler, R. S., Haile, R. W., Ahnen, D., Bresalier, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas. The New England Journal of Medicine, 348(10), 891–899.PubMedGoogle Scholar
  516. 516.
    Gallicchio, L., McSorley, M. A., Newschaffer, C. J., Thuita, L. W., Huang, H. Y., Hoffman, S. C., et al. (2006). Nonsteroidal antiinflammatory drugs, cyclooxygenase polymorphisms, and the risk of developing breast carcinoma among women with benign breast disease. Cancer, 106(7), 1443–1452.PubMedGoogle Scholar
  517. 517.
    Sandler, R. S., Halabi, S., Baron, J. A., Budinger, S., Paskett, E., Keresztes, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. The New England Journal of Medicine, 348(10), 883–890.PubMedGoogle Scholar
  518. 518.
    Shen, J., Gammon, M. D., Terry, M. B., Teitelbaum, S. L., Neugut, A. I., & Santella, R. M. (2006). Genetic polymorphisms in the cyclooxygenase-2 gene, use of nonsteroidal anti-inflammatory drugs, and breast cancer risk. Breast Cancer Research, 8(6), R71.PubMedPubMedCentralGoogle Scholar
  519. 519.
    Slatore, C. G., Au, D. H., Littman, A. J., Satia, J. A., & White, E. (2009). Association of nonsteroidal anti-inflammatory drugs with lung cancer: results from a large cohort study. Cancer Epidemiology, Biomarkers & Prevention, 18(4), 1203–1207.Google Scholar
  520. 520.
    Van Dyke, A. L., Cote, M. L., Prysak, G., Claeys, G. B., Wenzlaff, A. S., & Schwartz, A. G. (2008). Regular adult aspirin use decreases the risk of non-small cell lung cancer among women. Cancer Epidemiology, Biomarkers & Prevention, 17(1), 148–157.Google Scholar
  521. 521.
    Cuzick, J., Otto, F., Baron, J. A., Brown, P. H., Burn, J., Greenwald, P., et al. (2009). Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. The Lancet Oncology, 10(5), 501–507.PubMedGoogle Scholar
  522. 522.
    Arber, N., Eagle, C. J., Spicak, J., Racz, I., Dite, P., Hajer, J., et al. (2006). Celecoxib for the prevention of colorectal adenomatous polyps. The New England Journal of Medicine, 355(9), 885–895.PubMedGoogle Scholar
  523. 523.
    Baron, J. A., Sandler, R. S., Bresalier, R. S., Lanas, A., Morton, D. G., Riddell, R., et al. (2008). Cardiovascular events associated with rofecoxib: final analysis of the APPROVe trial. Lancet, 372(9651), 1756–1764.PubMedGoogle Scholar
  524. 524.
    Bertagnolli, M. M., Eagle, C. J., Zauber, A. G., Redston, M., Breazna, A., Kim, K., et al. (2009). Five-year efficacy and safety analysis of the Adenoma Prevention with Celecoxib Trial. Cancer Prevention Research, 2(4), 310–321.PubMedPubMedCentralGoogle Scholar
  525. 525.
    Bertagnolli, M. M., Eagle, C. J., Zauber, A. G., Redston, M., Solomon, S. D., Kim, K., et al. (2006). Celecoxib for the prevention of sporadic colorectal adenomas. The New England Journal of Medicine, 355(9), 873–884.PubMedGoogle Scholar
  526. 526.
    Bresalier, R. S., Sandler, R. S., Quan, H., Bolognese, J. A., Oxenius, B., Horgan, K., et al. (2005). Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. The New England Journal of Medicine, 352(11), 1092–1102.PubMedGoogle Scholar
  527. 527.
    Harris, R. E., Beebe-Donk, J., & Alshafie, G. A. (2007). Reduced risk of human lung cancer by selective cyclooxygenase 2 (COX-2) blockade: results of a case control study. International Journal of Biological Sciences, 3(5), 328–334.PubMedPubMedCentralGoogle Scholar
  528. 528.
    Pruthi, R. S., Derksen, J. E., Moore, D., Carson, C. C., Grigson, G., Watkins, C., et al. (2006). Phase II trial of celecoxib in prostate-specific antigen recurrent prostate cancer after definitive radiation therapy or radical prostatectomy. Clinical Cancer Research, 12(7 Pt 1), 2172–2177.PubMedGoogle Scholar
  529. 529.
    Dovizio, M., Maier, T. J., Alberti, S., Di Francesco, L., Marcantoni, E., Munch, G., et al. (2013). Pharmacological inhibition of platelet-tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Molecular Pharmacology, 84(1), 25–40.PubMedGoogle Scholar
  530. 530.
    Konya, V., Marsche, G., Schuligoi, R., & Heinemann, A. (2013). E-type prostanoid receptor 4 (EP4) in disease and therapy. Pharmacology & Therapeutics, 138(3), 485–502.Google Scholar
  531. 531.
    Norberg, J. K., Sells, E., Chang, H. H., Alla, S. R., Zhang, S., & Meuillet, E. J. (2013). Targeting inflammation: multiple innovative ways to reduce prostaglandin E2. Pharmaceutical Patent Analyst, 2(2), 265–288.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David G. Menter
    • 1
    • 3
  • Stephanie C. Tucker
    • 5
  • Scott Kopetz
    • 1
  • Anil K. Sood
    • 2
    • 3
    • 4
  • John D. Crissman
    • 6
  • Kenneth V. Honn
    • 5
    • 6
    Email author
  1. 1.Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Gynecologic Oncology & Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Cancer BiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Center for RNA Interference and Non-Coding RNAThe University of Texas MD Anderson Cancer CenterHoustonUSA
  5. 5.Bioactive Lipids Research Program, Department of PathologyWayne State UniversityDetroitUSA
  6. 6.Cancer Biology Division, Department of Pathology, School of MedicineWayne State University School of MedicineDetroitUSA

Personalised recommendations