Advertisement

Cancer and Metastasis Reviews

, Volume 33, Issue 2–3, pp 595–606 | Cite as

Src signaling pathways in prostate cancer

  • Andreas Varkaris
  • Anastasia D. Katsiampoura
  • John C. Araujo
  • Gary E. Gallick
  • Paul G. Corn
Article

Abstract

Knowledge of the molecular events that contribute to prostate cancer progression has created opportunities to develop novel therapy strategies. It is now well established that c-Src, a non-receptor tyrosine kinase, regulates a complex signaling network that drives the development of castrate-resistance and bone metastases, events that signal the lethal phenotype of advanced disease. Preclinical studies have established a role for c-Src and Src Family Kinases (SFKs) in proliferation, angiogenesis, invasion and bone metabolism, thus implicating Src signaling in both epithelial and stromal mechanisms of disease progression. A number of small molecule inhibitors of SFK now exist, many of which have demonstrated efficacy in preclinical models and several that have been tested in patients with metastatic castrate-resistant prostate cancer. These agents have demonstrated provocative clinic activity, particularly in modulating the bone microenvironment in a therapeutically favorable manner. Here, we review the discovery and basic biology of c-Src and further discuss the role of SFK inhibitors in the treatment of advanced prostate cancer.

Keywords

Src Prostate cancer SFK inhibitors Dasatinib 

References

  1. 1.
    Rous, P. (1911). A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med, 13, 397–411.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Martin, G. S. (1970). Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature, 227, 1021–1023.PubMedCrossRefGoogle Scholar
  3. 3.
    Stehelin, D., Varmus, H. E., Bishop, J. M., & Vogt, P. K. (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature, 260, 170–173.PubMedCrossRefGoogle Scholar
  4. 4.
    Collett, M. S., & Erikson, R. L. (1978). Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A, 75, 2021–2024.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hunter, T., & Sefton, B. M. (1980). Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A, 77, 1311–1315.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Martin, G. S. (2001). The hunting of the Src. Nat Rev Mol Cell Biol, 2, 467–475.PubMedCrossRefGoogle Scholar
  7. 7.
    Thomas, S. M., & Brugge, J. S. (1997). Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol, 13, 513–609.PubMedCrossRefGoogle Scholar
  8. 8.
    Sicheri, F., & Kuriyan, J. (1997). Structures of Src-family tyrosine kinases. Curr Opin Struct Biol, 7, 777–785.PubMedCrossRefGoogle Scholar
  9. 9.
    Patwardhan, P., & Resh, M. D. (2010). Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol, 30, 4094–4107.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Alland, L., Peseckis, S. M., Atherton, R. E., Berthiaume, L., & Resh, M. D. (1994). Dual myristylation and palmitylation of Src family member p59fyn affects subcellular localization. J Biol Chem, 269, 16701–16705.PubMedGoogle Scholar
  11. 11.
    Stahl, M. L., Ferenz, C. R., Kelleher, K. L., Kriz, R. W., & Knopf, J. L. (1988). Sequence similarity of phospholipase C with the non-catalytic region of src. Nature, 332, 269–272.PubMedCrossRefGoogle Scholar
  12. 12.
    Cohen, G. B., Ren, R., & Baltimore, D. (1995). Modular binding domains in signal transduction proteins. Cell, 80, 237–248.PubMedCrossRefGoogle Scholar
  13. 13.
    Moarefi, I., LaFevre-Bernt, M., Sicheri, F., et al. (1997). Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature, 385, 650–653.PubMedCrossRefGoogle Scholar
  14. 14.
    Moran, M. F., Koch, C. A., Anderson, D., et al. (1990). Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci U S A, 87, 8622–8626.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hanks, S. K., Quinn, A. M., & Hunter, T. (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science, 241, 42–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Ingley, E. (2008). Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta, 1784, 56–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Cooper, J. A., Gould, K. L., Cartwright, C. A., & Hunter, T. (1986). Tyr527 is phosphorylated in pp 60c-src: implications for regulation. Science, 231, 1431–1434.PubMedCrossRefGoogle Scholar
  18. 18.
    Kmiecik, T. E., & Shalloway, D. (1987). Activation and suppression of pp 60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell, 49, 65–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Xu, W., Harrison, S. C., & Eck, M. J. (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature, 385, 595–602.PubMedCrossRefGoogle Scholar
  20. 20.
    Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., & Nakagawa, H. (1991). CSK: a protein-tyrosine kinase involved in regulation of src family kinases. J Biol Chem, 266, 24249–24252.PubMedGoogle Scholar
  21. 21.
    Chong, Y. P., Mulhern, T. D., & Cheng, H. C. (2005). C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)—endogenous negative regulators of Src-family protein kinases. Growth Factors, 23, 233–244.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim, L. C., Song, L., & Haura, E. B. (2009). Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol, 6, 587–595.PubMedCrossRefGoogle Scholar
  23. 23.
    Irby, R. B., Mao, W., Coppola, D., et al. (1999). Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet, 21, 187–190.PubMedCrossRefGoogle Scholar
  24. 24.
    Belsches, A. P., Haskell, M. D., & Parsons, S. J. (1997). Role of c-Src tyrosine kinase in EGF-induced mitogenesis. Front Biosci, 2, d501–d518.PubMedGoogle Scholar
  25. 25.
    Parsons, J. T., & Parsons, S. J. (1997). Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Curr Opin Cell Biol, 9, 187–192.PubMedCrossRefGoogle Scholar
  26. 26.
    Krystal, G. W., DeBerry, C. S., Linnekin, D., & Litz, J. (1998). Lck associates with and is activated by Kit in a small cell lung cancer cell line: inhibition of SCF-mediated growth by the Src family kinase inhibitor PP1. Cancer Res, 58, 4660–4666.PubMedGoogle Scholar
  27. 27.
    Biscardi, J. S., Tice, D. A., & Parsons, S. J. (1999). c-Src, receptor tyrosine kinases, and human cancer. Adv Cancer Res, 76, 61–119.PubMedCrossRefGoogle Scholar
  28. 28.
    Abram, C. L., & Courtneidge, S. A. (2000). Src family tyrosine kinases and growth factor signaling. Exp Cell Res, 254, 1–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Dey, A., She, H., Kim, L., et al. (2000). Colony-stimulating factor-1 receptor utilizes multiple signaling pathways to induce cyclin D2 expression. Mol Biol Cell, 11, 3835–3848.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hong, L., Munugalavadla, V., & Kapur, R. (2004). c-Kit-mediated overlapping and unique functional and biochemical outcomes via diverse signaling pathways. Mol Cell Biol, 24, 1401–1410.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Mohamed, A. S., Rivas-Plata, K. A., Kraas, J. R., Saleh, S. M., & Swope, S. L. (2001). Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering. J Neurosci, 21, 3806–3818.PubMedGoogle Scholar
  32. 32.
    Maejima, Y., Ueba, H., Kuroki, M., et al. (2003). Src family kinases and nitric oxide production are required for hepatocyte growth factor-stimulated endothelial cell growth. Atherosclerosis, 167, 89–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Bromann, P. A., Korkaya, H., & Courtneidge, S. A. (2004). The interplay between Src family kinases and receptor tyrosine kinases. Oncogene, 23, 7957–7968.PubMedCrossRefGoogle Scholar
  34. 34.
    Fizazi, K. (2007). The role of Src in prostate cancer. Ann Oncol, 18, 1765–1773.PubMedCrossRefGoogle Scholar
  35. 35.
    Goldenberg-Furmanov, M., Stein, I., Pikarsky, E., et al. (2004). Lyn is a target gene for prostate cancer: sequence-based inhibition induces regression of human tumor xenografts. Cancer Res, 64, 1058–1066.PubMedCrossRefGoogle Scholar
  36. 36.
    Posadas, E. M., Al-Ahmadie, H., Robinson, V. L., et al. (2009). FYN is overexpressed in human prostate cancer. BJU Int, 103, 171–177.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Tatarov, O., Mitchell, T. J., Seywright, M., Leung, H. Y., Brunton, V. G., & Edwards, J. (2009). SRC family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin Cancer Res, 15, 3540–3549.PubMedCrossRefGoogle Scholar
  38. 38.
    Cai, H., Smith, D. A., Memarzadeh, S., Lowell, C. A., Cooper, J. A., & Witte, O. N. (2011). Differential transformation capacity of Src family kinases during the initiation of prostate cancer. Proc Natl Acad Sci U S A, 108, 6579–6584.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Cai, H., Babic, I., Wei, X., Huang, J., & Witte, O. N. (2011). Invasive prostate carcinoma driven by c-Src and androgen receptor synergy. Cancer Res, 71, 862–872.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Park, S. I., Zhang, J., Phillips, K. A., et al. (2008). Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Res, 68, 3323–3333.PubMedCrossRefGoogle Scholar
  41. 41.
    Chang, Y. M., Bai, L., Liu, S., Yang, J. C., Kung, H. J., & Evans, C. P. (2008). Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530. Oncogene, 27, 6365–6375.PubMedCrossRefGoogle Scholar
  42. 42.
    Gray, M. J., Zhang, J., Ellis, L. M., et al. (2005). HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene, 24, 3110–3120.PubMedCrossRefGoogle Scholar
  43. 43.
    Niu, G., Wright, K. L., Huang, M., et al. (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 21, 2000–2008.PubMedCrossRefGoogle Scholar
  44. 44.
    Trevino, J. G., Summy, J. M., Gray, M. J., et al. (2005). Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Res, 65, 7214–7222.PubMedCrossRefGoogle Scholar
  45. 45.
    Karantanos, T., Corn, P. G., Thompson, T. C. (2013). Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene Google Scholar
  46. 46.
    Migliaccio, A., Castoria, G., Di, D. M., et al. (2000). Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J, 19, 5406–5417.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Migliaccio, A., Castoria, G., Di, D. M., et al. (2002). Sex steroid hormones act as growth factors. J Steroid Biochem Mol Biol, 83, 31–35.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhoul, J., Hernandez, G., Tu, S. W., Huang, C. L., Tseng, C. P., & Hsieh, J. T. (2005). The role of DOC-2/DAB2 in modulating androgen receptor-mediated cell growth via the nongenomic c-Src-mediated pathway in normal prostatic epithelium and cancer. Cancer Res, 65, 9906–9913.PubMedCrossRefGoogle Scholar
  49. 49.
    Scher, H. I., & Sawyers, C. L. (2005). Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol, 23, 8253–8261.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen, Y., Clegg, N. J., & Scher, H. I. (2009). Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol, 10, 981–991.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Guo, Z., Dai, B., Jiang, T., et al. (2006). Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell, 10, 309–319.PubMedCrossRefGoogle Scholar
  52. 52.
    Asim, M., Siddiqui, I. A., Hafeez, B. B., Baniahmad, A., & Mukhtar, H. (2008). Src kinase potentiates androgen receptor transactivation function and invasion of androgen-independent prostate cancer C4-2 cells. Oncogene, 27, 3596–3604.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee, L. F., Guan, J., Qiu, Y., & Kung, H. J. (2001). Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol, 21, 8385–8397.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Desai, S. J., Ma, A. H., Tepper, C. G., Chen, H. W., & Kung, H. J. (2006). Inappropriate activation of the androgen receptor by nonsteroids: involvement of the Src kinase pathway and its therapeutic implications. Cancer Res, 66, 10449–10459.PubMedCrossRefGoogle Scholar
  55. 55.
    Hobisch, A., Eder, I. E., Putz, T., et al. (1998). Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res, 58, 4640–4645.PubMedGoogle Scholar
  56. 56.
    Lee, L. F., Louie, M. C., Desai, S. J., et al. (2004). Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene, 23, 2197–2205.PubMedCrossRefGoogle Scholar
  57. 57.
    Ding, Y., Wang, X., Xu, A., et al. (2011). Associations of saposin C, Src, and androgen receptor upregulate the expression and function of androgen receptor in human prostate cancer cells. J Cell Biochem, 112, 818–828.PubMedCrossRefGoogle Scholar
  58. 58.
    Asim, M., Hafeez, B. B., Siddiqui, I. A., et al. (2011). Ligand-dependent corepressor acts as a novel androgen receptor corepressor, inhibits prostate cancer growth, and is functionally inactivated by the Src protein kinase. J Biol Chem, 286, 37108–37117.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Liu, Y., Karaca, M., Zhang, Z., Gioeli, D., Earp, H. S., & Whang, Y. E. (2010). Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases. Oncogene, 29, 3208–3216.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Migliaccio, A., Varricchio, L., de Falco, A., et al. (2007). Inhibition of the SH3 domain-mediated binding of Src to the androgen receptor and its effect on tumor growth. Oncogene, 26, 6619–6629.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhu, D., & Bourguignon, L. Y. (1998). The ankyrin-binding domain of CD44s is involved in regulating hyaluronic acid-mediated functions and prostate tumor cell transformation. Cell Motil Cytoskeleton, 39, 209–222.PubMedCrossRefGoogle Scholar
  62. 62.
    Wu, D., Thakore, C. U., Wescott, G. G., McCubrey, J. A., & Terrian, D. M. (2004). Integrin signaling links protein kinase Cepsilon to the protein kinase B/Akt survival pathway in recurrent prostate cancer cells. Oncogene, 23, 8659–8672.PubMedCrossRefGoogle Scholar
  63. 63.
    Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol, 18, 516–523.PubMedCrossRefGoogle Scholar
  64. 64.
    Ren, J., Bharti, A., Raina, D., Chen, W., Ahmad, R., & Kufe, D. (2006). MUC1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90. Oncogene, 25, 20–31.PubMedGoogle Scholar
  65. 65.
    Parri, M., Buricchi, F., Giannoni, E., et al. (2007). EphrinA1 activates a Src/focal adhesion kinase-mediated motility response leading to rho-dependent actino/myosin contractility. J Biol Chem, 282, 19619–19628.PubMedCrossRefGoogle Scholar
  66. 66.
    Sabbota, A. L., Kim, H. R., Zhe, X., Fridman, R., Bonfil, R. D., & Cher, M. L. (2010). Shedding of RANKL by tumor-associated MT1-MMP activates Src-dependent prostate cancer cell migration. Cancer Res, 70, 5558–5566.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Varkaris, A., Gaur, S., Parikh, N. U., et al. (2013). Ligand-independent activation of MET through IGF-1/IGF-1R signaling. Int J Cancer, 133, 1536–1546.PubMedCrossRefGoogle Scholar
  68. 68.
    Yu, H. S., Lin, T. H., & Tang, C. H. (2013). Bradykinin enhances cell migration in human prostate cancer cells through B2 receptor/PKCdelta/c-Src dependent signaling pathway. Prostate, 73, 89–100.PubMedCrossRefGoogle Scholar
  69. 69.
    Giannoni, E., Buricchi, F., Raugei, G., Ramponi, G., & Chiarugi, P. (2005). Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol, 25, 6391–6403.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Destaing, O., Block, M. R., Planus, E., & Albiges-Rizo, C. (2011). Invadosome regulation by adhesion signaling. Curr Opin Cell Biol, 23, 597–606.PubMedCrossRefGoogle Scholar
  71. 71.
    Wadhawan, A., Smith, C., Nicholson, R. I., Barrett-Lee, P., & Hiscox, S. (2011). Src-mediated regulation of homotypic cell adhesion: implications for cancer progression and opportunities for therapeutic intervention. Cancer Treat Rev, 37, 234–241.PubMedCrossRefGoogle Scholar
  72. 72.
    Burridge, K., & Chrzanowska-Wodnicka, M. (1996). Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol, 12, 463–518.PubMedCrossRefGoogle Scholar
  73. 73.
    Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C., & Carragher, N. O. (2004). SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol, 24, 8113–8133.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Webb, D. J., Donais, K., Whitmore, L. A., et al. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol, 6, 154–161.PubMedCrossRefGoogle Scholar
  75. 75.
    Harris, T. J., & Tepass, U. (2010). Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol, 11, 502–514.PubMedCrossRefGoogle Scholar
  76. 76.
    Behrens, J., Vakaet, L., Friis, R., et al. (1993). Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol, 120, 757–766.PubMedCrossRefGoogle Scholar
  77. 77.
    Hamaguchi, M., Matsuyoshi, N., Ohnishi, Y., Gotoh, B., Takeichi, M., & Nagai, Y. (1993). p60v-src causes tyrosine phosphorylation and inactivation of the N-cadherin-catenin cell adhesion system. EMBO J, 12, 307–314.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Mariner, D. J., Anastasiadis, P., Keilhack, H., Bohmer, F. D., Wang, J., & Reynolds, A. B. (2001). Identification of Src phosphorylation sites in the catenin p120ctn. J Biol Chem, 276, 28006–28013.PubMedCrossRefGoogle Scholar
  79. 79.
    Woodcock, S. A., Rooney, C., Liontos, M., et al. (2009). SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the rac activator tiam1. Mol Cell, 33, 639–653.PubMedCrossRefGoogle Scholar
  80. 80.
    Kelley, L. C., Ammer, A. G., Hayes, K. E., et al. (2010). Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation. J Cell Sci, 123, 3923–3932.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Boateng, L. R., & Huttenlocher, A. (2012). Spatiotemporal regulation of Src and its substrates at invadosomes. Eur J Cell Biol, 91, 878–888.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Park, S. J., Suetsugu, S., & Takenawa, T. (2005). Interaction of HSP90 to N-WASP leads to activation and protection from proteasome-dependent degradation. EMBO J, 24, 1557–1570.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Seals, D. F., Azucena, E. F., Jr., Pass, I., et al. (2005). The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell, 7, 155–165.PubMedCrossRefGoogle Scholar
  84. 84.
    Buschman, M. D., Bromann, P. A., Cejudo-Martin, P., Wen, F., Pass, I., & Courtneidge, S. A. (2009). The novel adaptor protein Tks4 (SH3PXD2B) is required for functional podosome formation. Mol Biol Cell, 20, 1302–1311.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev, 22, 337–358.PubMedCrossRefGoogle Scholar
  86. 86.
    Nam, S., Kim, D., Cheng, J. Q., et al. (2005). Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res, 65, 9185–9189.PubMedCrossRefGoogle Scholar
  87. 87.
    Rabbani, S. A., Valentino, M. L., Arakelian, A., Ali, S., & Boschelli, F. (2010). SKI-606 (Bosutinib) blocks prostate cancer invasion, growth, and metastasis in vitro and in vivo through regulation of genes involved in cancer growth and skeletal metastasis. Mol Cancer Ther, 9, 1147–1157.PubMedCrossRefGoogle Scholar
  88. 88.
    Loberg, R. D., Logothetis, C. J., Keller, E. T., & Pienta, K. J. (2005). Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. J Clin Oncol, 23, 8232–8241.PubMedCrossRefGoogle Scholar
  89. 89.
    Guise, T. A., Mohammad, K. S., Clines, G., et al. (2006). Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res, 12, 6213s–6216s.PubMedCrossRefGoogle Scholar
  90. 90.
    Kingsley, L. A., Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2007). Molecular biology of bone metastasis. Mol Cancer Ther, 6, 2609–2617.PubMedCrossRefGoogle Scholar
  91. 91.
    Araujo, J., & Logothetis, C. (2009). Targeting Src signaling in metastatic bone disease. Int J Cancer, 124, 1–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Soriano, P., Montgomery, C., Geske, R., & Bradley, A. (1991). Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell, 64, 693–702.PubMedCrossRefGoogle Scholar
  93. 93.
    Horne, W. C., Sanjay, A., Bruzzaniti, A., & Baron, R. (2005). The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev, 208, 106–125.PubMedCrossRefGoogle Scholar
  94. 94.
    Marzia, M., Sims, N. A., Voit, S., et al. (2000). Decreased c-Src expression enhances osteoblast differentiation and bone formation. J Cell Biol, 151, 311–320.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Lee, Y. C., Huang, C. F., Murshed, M., et al. (2010). Src family kinase/abl inhibitor dasatinib suppresses proliferation and enhances differentiation of osteoblasts. Oncogene, 29, 3196–3207.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Dayyani, F., Varkaris, A., Araujo, J. C., et al. (2013). Increased serum insulin-like growth factor-1 levels are associated with prolonged response to dasatinib-based regimens in metastatic prostate cancer. Prostate, 73, 979–985.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Clezardin, P., & Teti, A. (2007). Bone metastasis: pathogenesis and therapeutic implications. Clin Exp Metastasis, 24, 599–608.PubMedCrossRefGoogle Scholar
  98. 98.
    Sturge, J., Caley, M. P., & Waxman, J. (2011). Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat Rev Clin Oncol, 8, 357–368.PubMedGoogle Scholar
  99. 99.
    Koreckij, T., Nguyen, H., Brown, L. G., Yu, E. Y., Vessella, R. L., & Corey, E. (2009). Dasatinib inhibits the growth of prostate cancer in bone and provides additional protection from osteolysis. Br J Cancer, 101, 263–268.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Mukhopadhyay, D., Tsiokas, L., Zhou, X. M., Foster, D., Brugge, J. S., & Sukhatme, V. P. (1995). Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature, 375, 577–581.PubMedCrossRefGoogle Scholar
  101. 101.
    Trevino, J. G., Gray, M. J., Nawrocki, S. T., et al. (2006). Src activation of Stat3 is an independent requirement from NF-kappaB activation for constitutive IL-8 expression in human pancreatic adenocarcinoma cells. Angiogenesis, 9, 101–110.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim, M. P., Park, S. I., Kopetz, S., & Gallick, G. E. (2009). Src family kinases as mediators of endothelial permeability: effects on inflammation and metastasis. Cell Tissue Res, 335, 249–259.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Hu, G., Place, A. T., & Minshall, R. D. (2008). Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact, 171, 177–189.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Sverdlov, M., Shajahan, A. N., & Minshall, R. D. (2007). Tyrosine phosphorylation-dependence of caveolae-mediated endocytosis. J Cell Mol Med, 11, 1239–1250.PubMedCrossRefGoogle Scholar
  105. 105.
    Puls, L. N., Eadens, M., & Messersmith, W. (2011). Current status of SRC inhibitors in solid tumor malignancies. Oncologist, 16, 566–578.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Demetri, G. D., Lo, R. P., MacPherson, I. R., et al. (2009). Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin Cancer Res, 15, 6232–6240.PubMedCrossRefGoogle Scholar
  107. 107.
    Yu, E. Y., Wilding, G., Posadas, E., et al. (2009). Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res, 15, 7421–7428.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Yu, E. Y., Massard, C., Gross, M. E., et al. (2011). Once-daily dasatinib: expansion of phase II study evaluating safety and efficacy of dasatinib in patients with metastatic castration-resistant prostate cancer. Urology, 77, 1166–1171.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Tannock, I. F., De, W. R., Berry, W. R., et al. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med, 351, 1502–1512.PubMedCrossRefGoogle Scholar
  110. 110.
    Araujo, J. C., Mathew, P., Armstrong, A. J., et al. (2012). Dasatinib combined with docetaxel for castration-resistant prostate cancer: results from a phase 1–2 study. Cancer, 118, 63–71.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Araujo, J. C., Trudel, G. C., Saad, F., (2013). et al. Overall survival (OS) and safety of dasatinib/docetaxel versus docetaxel in patients with metastatic castration-resistant prostate cancer (mCRPC): results from the randomized phase III READY trial. J Clin Oncol (suppl 6; abstr LBA8)Google Scholar
  112. 112.
    Baselga, J., Cervantes, A., Martinelli, E., et al. (2010). Phase I safety, pharmacokinetics, and inhibition of SRC activity study of saracatinib in patients with solid tumors. Clin Cancer Res, 16, 4876–4883.PubMedCrossRefGoogle Scholar
  113. 113.
    Lara, P. N., Jr., Longmate, J., Evans, C. P., et al. (2009). A phase II trial of the Src-kinase inhibitor AZD0530 in patients with advanced castration-resistant prostate cancer: a California Cancer Consortium study. Anticancer Drugs, 20, 179–184.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Fallah-Tafti, A., Foroumadi, A., Tiwari, R., et al. (2011). Thiazolyl N-benzyl-substituted acetamide derivatives: synthesis, Src kinase inhibitory and anticancer activities. Eur J Med Chem, 46, 4853–4858.PubMedCrossRefGoogle Scholar
  115. 115.
    Anbalagan, M., Ali, A., Jones, R. K., et al. (2012). Peptidomimetic Src/pretubulin inhibitor KX-01 alone and in combination with paclitaxel suppresses growth, metastasis in human ER/PR/HER2-negative tumor xenografts. Mol Cancer Ther, 11, 1936–1947.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Naing, A., Cohen, R., Dy, G. K., et al. (2013). A phase I trial of KX2-391, a novel non-ATP competitive substrate-pocket- directed SRC inhibitor, in patients with advanced malignancies. Invest New Drugs, 31, 967–973.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andreas Varkaris
    • 1
    • 2
    • 3
  • Anastasia D. Katsiampoura
    • 3
  • John C. Araujo
    • 1
  • Gary E. Gallick
    • 1
    • 2
  • Paul G. Corn
    • 1
  1. 1.Department of Genitourinary Medical OncologyThe University of Texas, M.D. Anderson Cancer CenterHoustonUSA
  2. 2.David H. Koch Center for Applied Research of Genitourinary CancersThe University of Texas, M.D. Anderson Cancer CenterHoustonUSA
  3. 3.Evangelismos General HospitalUniversity of AthensAthensGreece

Personalised recommendations