Advertisement

Cancer and Metastasis Reviews

, Volume 33, Issue 2–3, pp 567–579 | Cite as

Novel drugs targeting the androgen receptor pathway in prostate cancer

  • Joaquin Mateo
  • Alan Smith
  • Michael Ong
  • Johann S. de BonoEmail author
Article

Abstract

After decades of limited success in the treatment of castration-resistant prostate cancer (CRPC), five novel therapeutics were granted Food and Drug Administration regulatory approval in the last 4 years based on several randomized phase III studies that have reported a survival benefit. Among them, two drugs targeting the androgen receptor pathway, namely abiraterone acetate and enzalutamide, have demonstrated that targeting androgen signalling following progression to classical androgen blockade continues to be an effective strategy despite the emergence of resistance mechanisms to sequential treatments. In addition to these two approved drugs, several other promising agents that block steroidogenesis interact with the androgen receptor or modulate post-receptor signal transduction that are undergoing clinical evaluation. This issue reviews the current data and the state of development of novel androgen receptor-targeting drugs and further discusses how this revolution in therapeutic armamentarium for the treatment of CRPC has raised challenges for clinicians about the optimal usage of these compounds.

Keywords

Androgen receptor Prostate cancer CYP17 Abiraterone Enzalutamide 

Notes

Acknowledgments

The Drug Development Unit of the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research is supported in part by a program grant from Cancer Research UK. Support was also provided by the Experimental Cancer Medicine Centre (to The Institute of Cancer Research) and the National Institute for Health Research Biomedical Research Centre (jointly to the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research).

References

  1. 1.
    White W. (1893). Surgical removal of the hypertrophied prostate. Annals of Surgery, 18, 152–158.Google Scholar
  2. 2.
    Adams, J. (1853). The case of scirrhous of the prostate gland with corresponding affliction of the lymphatic glands in the lumbar region and in the pelvis. Lancet, 1, 393.Google Scholar
  3. 3.
    Huggins, C., & Hodges, C. (1941). The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prosta. Cancer Research, 1, 293–297.Google Scholar
  4. 4.
    Sandow, J., Von Rechenberg, W., Jerzabek, G., & Stoll, W. (1978). Pituitary gonadotropin inhibition by a highly active analog of luteinizing hormone-releasing hormone. Fertility and Sterility, 30, 205–209.PubMedGoogle Scholar
  5. 5.
    The Leuprolide Study Group. (1984). Leuprolide versus diethylstilbestrol for metastatic prostate cancer. The Leuprolide Study Group. New England Journal of Medicine, 311, 1281–1286.CrossRefGoogle Scholar
  6. 6.
    Mainwaring, W. I. (1969). A soluble androgen receptor in the cytoplasm of rat prostate. Journal of Endocrinology, 45, 531–541.PubMedCrossRefGoogle Scholar
  7. 7.
    Anderson, K. M., & Liao, S. (1968). Selective retention of dihydrotestosterone by prostatic nuclei. Nature, 219, 277–279. 20.PubMedCrossRefGoogle Scholar
  8. 8.
    Bruchovsky, N., & Wilson, J. D. (1968). The intranuclear binding of testosterone and 5-alpha-androstan-17-beta-ol-3-one by rat prostate. Journal of Biological Chemistry, 243, 5953–5960. 25.PubMedGoogle Scholar
  9. 9.
    Crawford, E. D., Eisenberger, M. A., McLeod, D. G., Spaulding, J. T., Benson, R., Dorr, F. A., et al. (1989). A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. New England Journal of Medicine, 321, 419–424. 17.PubMedCrossRefGoogle Scholar
  10. 10.
    Schellhammer, P. F., Sharifi, R., Block, N. L., Soloway, M. S., Venner, P. M., Patterson, A. L., et al. (1996). A controlled trial of bicalutamide versus flutamide, each in combination with luteinizing hormone-releasing hormone analogue therapy, in patients with advanced prostate carcinoma. Analysis of time to progression. CASODEX Combination Study Group. Cancer, 78, 2164–2169. 15.PubMedCrossRefGoogle Scholar
  11. 11.
    Pienta, K. J., & Bradley, D. (2006). Mechanisms nnderlying the development of androgen-independent prostate cancer. Clinical Cancer Research, 12, 1665–1671. 15.PubMedCrossRefGoogle Scholar
  12. 12.
    De Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., et al. (2011). Abiraterone and increased survival in metastatic prostate cancer. New England Journal of Medicine, 364, 1995–2005. 26.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ryan, C. J., Smith, M. R., De Bono, J. S., Molina, A., Logothetis, C. J., De Souza, P., et al. (2013). Abiraterone in metastatic prostate cancer without previous chemotherapy. New England Journal of Medicine, 368, 138–148. 10.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Scher, H. I., Fizazi, K., Saad, F., Taplin, M.-E., Sternberg, C. N., Miller, K., et al. (2012). Increased survival with enzalutamide in prostate cancer after chemotherapy. New England Journal of Medicine, 367, 1187–1197. 27.PubMedCrossRefGoogle Scholar
  15. 15.
    Cunha, G. R., Ricke, W., Thomson, A., Marker, P. C., Risbridger, G., Hayward, S. W., et al. (2004). Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. Journal of Steroid Biochemistry and Molecular Biology, 92, 221–236.PubMedCrossRefGoogle Scholar
  16. 16.
    Auchus, M. L., & Auchus, R. J. (2012). Human steroid biosynthesis for the oncologist. Journal of Investigative Medicine, 60, 495–503.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Sharifi, N., & Auchus, R. J. (2012). Steroid biosynthesis and prostate cancer. Steroids, 77, 719–726.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller, W. L., & Auchus, R. J. (2011). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine Reviews, 32, 81–151.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Brinkmann, A. O., Klaasen, P., Kuiper, G. G., Van der Korput, J. A., Bolt, J., De Boer, W., et al. (1989). Structure and function of the androgen receptor. Urological Research, 17, 87–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Klokk, T. I., Kurys, P., Elbi, C., Nagaich, A. K., Hendarwanto, A., Slagsvold, T., et al. (2007). Ligand-specific dynamics of the androgen receptor at its response element in living cells. Molecular and Cellular Biology, 27, 1823–1843.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Taplin, M.-E., Bubley, G. J., Shuster, T. D., Frantz, M. E., Spooner, A. E., Ogata, G. K., et al. (1995). Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. New England Journal of Medicine, 332, 1393–1398.PubMedCrossRefGoogle Scholar
  22. 22.
    Pratt, W. B., & Toft, D. O. (1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrine Reviews, 18, 306–360.PubMedGoogle Scholar
  23. 23.
    Velasco, A. M., Gillis, K. A., Li, Y., Brown, E. L., Sadler, T. M., Achilleos, M., et al. (2004). Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology, 145, 3913–3924.PubMedCrossRefGoogle Scholar
  24. 24.
    Agoulnik, I. U., & Weigel, N. L. (2009). Coactivator selective regulation of androgen receptor activity. Steroids, 74, 669–674.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Attard, G., Belldegrun, A. S., & De Bono, J. S. (2005). Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer. BJU International, 96, 1241–1246.PubMedCrossRefGoogle Scholar
  26. 26.
    Brendler, H. (1973). Adrenalectomy and hypophysectomy for prostatic cancer. Urology, 2, 99–102.PubMedCrossRefGoogle Scholar
  27. 27.
    Stanbrough, M., Bubley, G. J., Ross, K., Golub, T. R., Rubin, M. a., Penning, T. M., et al. (2006). Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Research, 66, 2815–2825.PubMedCrossRefGoogle Scholar
  28. 28.
    Montgomery, R. B., Mostaghel, E. a., Vessella, R., Hess, D. L., Kalhorn, T. F., Higano, C. S., et al. (2008). Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Research, 68, 4447–4454.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Isaacs, J. T., & Coffey, D. S. (1981). Adaptation versus selection as the mechanism responsible for the relapse of prostatic cancer to androgen ablation therapy as studied in the Dunning R-3327-H adenocarcinoma. Cancer Research, 41, 5070–5075.PubMedGoogle Scholar
  30. 30.
    Page, S. T., Lin, D. W., Mostaghel, E. a., Hess, D. L., True, L. D., Amory, J. K., et al. (2006). Persistent intraprostatic androgen concentrations after medical castration in healthy men. Journal of Clinical Endocrinology and Metabolism, 91, 3850–3856.PubMedCrossRefGoogle Scholar
  31. 31.
    Donovan, M. J., Osman, I., Khan, F. M., Vengrenyuk, Y., Capodieci, P., Koscuiszka, M., et al. (2010). Androgen receptor expression is associated with prostate cancer-specific survival in castrate patients with metastatic disease. BJU International, 105, 462–467.PubMedCrossRefGoogle Scholar
  32. 32.
    Bubendorf, L., Kononen, J., Koivisto, P., Schraml, P., Moch, H., Gasser, T. C., et al. (1999). Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Research, 59, 803–806. 15.PubMedGoogle Scholar
  33. 33.
    Watson, P. a., Chen, Y. F., Balbas, M. D., Wongvipat, J., Socci, N. D., Viale, A., et al. (2010). Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 107, 16759–16765. 28.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Dehm, S. M., Schmidt, L. J., Heemers, H. V., Vessella, R. L., & Tindall, D. J. (2008). Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Research, 68, 5469–5477.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Waltering, K. K., Helenius, M. A., Sahu, B., Manni, V., Linja, M. J., Jänne, O. A., et al. (2009). Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Research, 69, 8141–8149. 15.PubMedCrossRefGoogle Scholar
  36. 36.
    Taplin, M.-E., Rajeshkumar, B., Halabi, S., Werner, C. P., Woda, B. a., Picus, J., et al. (2003). Androgen receptor mutations in androgen-independent prostate cancer: cancer and leukemia group B study 9663. Journal of Clinical Oncology, 21, 2673–2678. 15.PubMedCrossRefGoogle Scholar
  37. 37.
    Matias, P. M., Carrondo, M. A., Coelho, R., Thomaz, M., Zhao, X.-Y., Wegg, A., et al. (2002). Structural basis for the glucocorticoid response in a mutant human androgen receptor (AR(ccr)) derived from an androgen-independent prostate cancer. Journal of Medicinal Chemistry, 45, 1439–1446. 28.PubMedCrossRefGoogle Scholar
  38. 38.
    Miller, W. L., Auchus, R. J., & Geller, D. H. (1997). The regulation of 17,20 lyase activity. Steroids, 62, 133–142.PubMedCrossRefGoogle Scholar
  39. 39.
    Attard, G., Reid, A. H. M., Auchus, R. J., Hughes, B. A., Cassidy, A. M., Thompson, E., et al. (2012). Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. Journal of Clinical Endocrinology and Metabolism, 97, 507–516.PubMedCrossRefGoogle Scholar
  40. 40.
    Pont, A., Williams, P. L., Azhar, S., Reitz, R. E., Bochra, C., Smith, E. R., et al. (1982). Ketoconazole blocks testosterone synthesis. Archives of Internal Medicine, 142, 2137–2140.PubMedCrossRefGoogle Scholar
  41. 41.
    Haidar, S., Ehmer, P. B., Barassin, S., Batzl-Hartmann, C., & Hartmann, R. W. (2003). Effects of novel 17alpha-hydroxylase/C17, 20-lyase (P450 17, CYP 17) inhibitors on androgen biosynthesis in vitro and in vivo. Journal of Steroid Biochemistry and Molecular Biology, 84, 555–562.PubMedCrossRefGoogle Scholar
  42. 42.
    Reid, A. H., Attard, G., Barrie, E., & De Bono, J. S. (2008). CYP17 inhibition as a hormonal strategy for prostate cancer. Nature Clinical Practice Urology, 5, 610–620.PubMedCrossRefGoogle Scholar
  43. 43.
    Barrie, S. E., Potter, G. A., Goddard, P. M., Haynes, B. P., Dowsett, M., & Jarman, M. (1994). Pharmacology of novel steroidal inhibitors of cytochrome P450(17) alpha (17 alpha-hydroxylase/C17-20 lyase). Journal of Steroid Biochemistry and Molecular Biology, 50, 267–273.PubMedCrossRefGoogle Scholar
  44. 44.
    Potter, G. A., Barrie, S. E., Jarman, M., & Rowlands, M. G. (1995). Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. Journal of Medicinal Chemistry, 38, 2463–2471. 23.PubMedCrossRefGoogle Scholar
  45. 45.
    Attard, G., Reid, A. H. M., A’Hern, R., Parker, C., Oommen, N. B., Folkerd, E., et al. (2009). Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. Journal of Clinical Oncology, 27, 3742–3748. 10.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    O’Donnell, A., Judson, I., Dowsett, M., Raynaud, F., Dearnaley, D., Mason, M., et al. (2004). Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. British Journal of Cancer, 90, 2317–2325. 14.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Reid, A. H. M., Attard, G., Danila, D. C., Oommen, N. B., Olmos, D., Fong, P. C., et al. (2010). Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. Journal of Clinical Oncology, 28, 1489–1495. 20.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Luthy, I. A., Begin, D. J., & Labrie, F. (1988). Androgenic activity of synthetic progestins and spironolactone in androgen-sensitive mouse mammary carcinoma (Shionogi) cells in culture. Journal of Steroid Biochemistry, 31, 845–852.PubMedCrossRefGoogle Scholar
  49. 49.
    Attard, G., Cooper, C. S., & De Bono, J. S. (2009). Steroid hormone receptors in prostate cancer: a hard habit to break? Cancer Cell, 16, 458–462. 8.PubMedCrossRefGoogle Scholar
  50. 50.
    Ryan, C. J., Smith, M. R., Fong, L., Rosenberg, J. E., Kantoff, P., Raynaud, F., et al. (2010). Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. Journal of Clinical Oncology, 28, 1481–1488. 20.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Danila, D. C., Morris, M. J., De Bono, J. S., Ryan, C. J., Denmeade, S. R., Smith, M. R., et al. (2010). Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. Journal of Clinical Oncology, 28, 1496–1501. 20.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Logothetis, C. J., Basch, E., Molina, A., Fizazi, K., North, S. A., Chi, K. N., et al. (2012). Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial. Lancet Oncology, 13, 1210–1217.PubMedCrossRefGoogle Scholar
  53. 53.
    Matsunaga, N., Kaku, T., Ojida, A., Tanaka, T., Hara, T., Yamaoka, M., et al. (2004). C(17,20)-lyase inhibitors. Part 2: design, synthesis and structure-activity relationships of (2-naphthylmethyl)-1H-imidazoles as novel C(17,20)-lyase inhibitors. Bioorganic & Medicinal Chemistry, 12, 4313–4336.CrossRefGoogle Scholar
  54. 54.
    Yamaoka, M., Hara, T., Hitaka, T., Kaku, T., Takeuchi, T., Takahashi, J., et al. (2012). Orteronel (TAK-700), a novel non-steroidal 17,20-lyase inhibitor: effects on steroid synthesis in human and monkey adrenal cells and serum steroid levels in cynomolgus monkeys. The Journal of Steroid Biochemistry and Molecular Biology, 129, 115–128.PubMedCrossRefGoogle Scholar
  55. 55.
    Hara, T., Kouno, J., Kaku, T., Takeuchi, T., Kusaka, M., Tasaka, A., et al. (2013). Effect of a novel 17,20-lyase inhibitor, orteronel (TAK-700), on androgen synthesis in male rats. The Journal of Steroid Biochemistry and Molecular Biology, 134, 80–91.PubMedCrossRefGoogle Scholar
  56. 56.
    Dreicer, R., Agus, D. B. , Bellmunt, J., De Bono, J.S., Petrylak, D., Tejura, B., et al. (2012). A phase III, randomized, double-blind, multicenter trial comparing the investigational agent orteronel (TAK-700) plus prednisone (P) with placebo plus P in patients with metastatic castration-resistant prostate cancer (mCRPC) that has progressed during or following docetaxel-based chemotherapy [abstract]. Journal of Clinical Oncology, 30, 2012 (suppl; abstr TPS4693).Google Scholar
  57. 57.
    Agus, D. B., Stadler, W. M., Shevrin, D. H., Hart, L., Macvicar, G. R., Hainsworth, J. D., et al. (2012). Safety, efficacy, and pharmacodynamics of the investigational agent orteronel (TAK-700) in metastatic castration-resistant prostate cancer (mCRPC): updated data from a phase I/II study. [abstract]. Journal of Clinical Oncology, 50, 50–51. 30, 2012 (suppl 5; abstr 98).Google Scholar
  58. 58.
    Handratta, V. D., Vasaitis, T. S., Njar, V. C. O., Gediya, L. K., Kataria, R., Chopra, P., et al. (2005). Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. Journal of Medicinal Chemistry, 48, 2972–2984. 21.PubMedCrossRefGoogle Scholar
  59. 59.
    Vasaitis, T., Belosay, A., Schayowitz, A., Khandelwal, A., Chopra, P., Gediya, L. K., et al. (2008). Androgen receptor inactivation contributes to antitumor efficacy of 17{alpha}-hydroxylase/17,20-lyase inhibitor 3beta-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene in prostate cancer. Molecular Cancer Therapeutics, 7, 2348–2357.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    DeVore, N. M., & Scott, E. E. (2012). Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature, 482(7383), 116–119.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Bruno, R., Lu, J.-F., Sun, Y.-N., & Claret, L. (2011). A modeling and simulation framework to support early clinical drug development decisions in oncology. Journal of Clinical Pharmacology, 51, 6–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Schayowitz, A., Sabnis, G., Njar, V. C. O., & Brodie, A. M. H. (2008). Synergistic effect of a novel antiandrogen, VN/124-1, and signal transduction inhibitors in prostate cancer progression to hormone independence in vitro. Molecular Cancer Therapeutics, 7, 121–132.PubMedCrossRefGoogle Scholar
  63. 63.
    Montgomery, R. B., Eisenberger, M. a., Rettig, M., Chu, F., Pili, R., Stephenson, J., et al. (2012). Phase I clinical trial of galeterone (TOK-001), a multifunctional antiandrogen and CYP17 inhibitor in castration resistant prostate cancer (CRPC). [abstract]. Journal of Clinical Oncology, 30, 2012 (suppl; abstr 4665). 2012.Google Scholar
  64. 64.
    Eisner, J. R., Aboott, D., I.M. B, Rafferty, S. W., Schotzinger, R. J. (2012). Assessment of Steroid Hormones Upstream of P450c17 (CYP17) in Chemically Castrate Male Rhesus Monkeys Following Treatment with the CYP17 Inhibitors VT‐464 and Abiraterone Acetate (AA) [abstract]. Endocrine Reviews, 2012; Vol 33 (03_MeetingAbstracts): Sat 266.Google Scholar
  65. 65.
    Tran, C., Ouk, S., Clegg, N. J., Chen, Y., Watson, P. A., Wongvipat, J., et al. (2009). Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science, 324, 787–790.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Balbas, M. D., Evans, M. J., Hosfield, D. J., Wongvipat, J., Arora, V. K., Watson, P. a., et al. (2013). Overcoming mutation-based resistance to antiandrogens with rational drug design. eLife, 2, e00499.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Scher, H. I., Beer, T. M., Higano, C. S., Anand, A., Taplin, M.-E., Efstathiou, E., et al. (2010). Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet, 375, 1437–1446.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Treiman, D. M. (2001). GABAergic mechanisms in epilepsy. Epilepsia, 42(Suppl 3), 8–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Clegg, N. J., Wongvipat, J., Joseph, J. D., Tran, C., Ouk, S., Dilhas, A., et al. (2012). ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Research, 72, 1494–1503.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Rathkopf, D. E., Morris, M. J., Danila, D. C., Slovin, S., Steinbrecher, J., Arauz, G., et al. (2012). A phase I study of the androgen signaling inhibitor ARN-509 in patients with metastatic castration-resistant prostate cancer (mCRPC) [abstract]. Journal of Clinical Oncology, 30, 2012 (suppl; abstr 4548). 2012.Google Scholar
  71. 71.
    Smith, M., Antonarakis, E. S., Ryan, C. J., Berry, W., Shore, N., Liu, G., et al. (2012) Arn-509 in men with high risk non-metastatic castration-resistant prostate cancer [abstract]. Annals of Oncology, 23 (suppl 9) abst 920.Google Scholar
  72. 72.
    Rathkopf, D. E., Antonarakis, E. S., Shore, N., Tutrone, R., Amlukai, J., Ryan, C. J., et al. (2012). Arn-509 in men with metastatic castration-resistant prostate cancer (CRPC) [abstract]. Annals of Oncology, 23 (suppl 9) abst 964.Google Scholar
  73. 73.
    Bradbury, R. H., Acton, D. G., Broadbent, N. L., Brooks, a. N., Carr, G. R., Hatter, G., et al. (2013). Discovery of AZD3514, a small-molecule androgen receptor downregulator for treatment of advanced prostate cancer. Bioorganic & Medicinal Chemistry Letters, 23, 1945–1948.CrossRefGoogle Scholar
  74. 74.
    Loddick, S. a., Bradbury, R., Broadbent, N., Campbell, H., Gaughan, L., Growcott, J., et al. (2012). Preclinical profile of AZD3514: A small molecule-targeting androgen receptor function with a novel mechanism of action and the potential to treat castration-resistant prostate cancer [abstract]. Cancer Research, 72, 3848–3848.CrossRefGoogle Scholar
  75. 75.
    Omlin, A., Jones, R. J., vn der Noll, R., Graham, J., Ong, M., Schellens, J. H. M., et al. (2013). A first-in-human study of the oral selective androgen receptor down-regulating drug (SARD) AZD3514 in patients with castration-resistant prostate cancer (CRPC) [abstract]. Journal of Clinical Oncology, 31, 2013 (suppl; abstr 4511).Google Scholar
  76. 76.
    Massard, C., James, N., Culine, S., Jones, R., Vuorela, A., Mustonen, M., et al. (2012). ARADES trial: a first- in-man, open-label, phase I/II safety, pharmacokinetic, and proof-of-concept study of ODM-201 in patients (pts) with progressive metastatic castration-resistant prostate cancer (mCRPC) [abstract]. Annals of Oncology, 23 (suppl 9) abst LBA25.Google Scholar
  77. 77.
    Attar, R. M., Jure-Kunkel, M., Balog, A., Cvijic, M. E., Dell-John, J., Rizzo, C. A., et al. (2009). Discovery of BMS-641988, a novel and potent inhibitor of androgen receptor signaling for the treatment of prostate cancer. Cancer Research, 69, 6522–6530.PubMedCrossRefGoogle Scholar
  78. 78.
    Rathkopf, D., Liu, G., Carducci, M. A., Eisenberger, M. A., Anand, A., Morris, M. J., et al. (2011). Phase I dose-escalation study of the novel antiandrogen BMS-641988 in patients with castration-resistant prostate cancer. Clinical Cancer Research, 17, 880–887.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Georget, V., Térouanne, B., Nicolas, J.-C., & Sultan, C. (2002). Mechanism of antiandrogen action: key role of hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry, 41, 11824–11831.PubMedCrossRefGoogle Scholar
  80. 80.
    Prescott, J., & Coetzee, G. A. (2006). Molecular chaperones throughout the life cycle of the androgen receptor. Cancer Letters, 231, 12–19.PubMedCrossRefGoogle Scholar
  81. 81.
    Saporita, A. J., Ai, J., & Wang, Z. (2007). The Hsp90 inhibitor, 17-AAG, prevents the ligand-independent nuclear localization of androgen receptor in refractory prostate cancer cells. Prostate, 67, 509–520.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Tsui, K.-H., Feng, T.-H., Lin, C.-M., Chang, P.-L., & Juang, H.-H. (2008). Curcumin blocks the activation of androgen and interlukin-6 on prostate-specific antigen expression in human prostatic carcinoma cells. Journal of Andrology, 29, 661–668.PubMedCrossRefGoogle Scholar
  83. 83.
    Oh, W. K., Galsky, M. D., Stadler, W. M., Srinivas, S., Chu, F., Bubley, G., et al. (2011). Multicenter phase II trial of the heat shock protein 90 inhibitor, retaspimycin hydrochloride (IPI-504), in patients with castration-resistant prostate cancer. Urology, 78, 626–630.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Zoubeidi, A., Zardan, A., Beraldi, E., Fazli, L., Sowery, R., Rennie, P., et al. (2007). Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Research, 67, 10455–10465.PubMedCrossRefGoogle Scholar
  85. 85.
    Rocchi, P., Beraldi, E., Ettinger, S., Fazli, L., Vessella, R. L., Nelson, C., et al. (2005). Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Research, 65, 11083–11093.PubMedCrossRefGoogle Scholar
  86. 86.
    Andrieu, C., Taieb, D., Baylot, V., Ettinger, S., Soubeyran, P., De-Thonel, A., et al. (2010). Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene, 29, 1883–1896.PubMedCrossRefGoogle Scholar
  87. 87.
    Shiota, M., Bishop, J. L., Nip, K. M., Zardan, A., Takeuchi, A., Cordonnier, T., et al. (2013). Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Research, 73, 3109–3119.PubMedCrossRefGoogle Scholar
  88. 88.
    Chi, K. N., Hotte, S. J., Ellard, S. L., Gingerich, J., Joshua, A., Yu, E. Y., et al. (2012). A randomized phase II study of OGX-427 plus prednisone (P) versus P alone in patients (pts) with metastatic castration resistant prostate cancer (CRPC). [abstract]. Journal of Clinical Oncology, 30, 2012 (suppl; abstr 4514). 2012.Google Scholar
  89. 89.
    Chi, K. N., Hotte, S. J., Yu, E. Y., Tu, D., Eigl, B. J., Tannock, I., et al. (2010). Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. Journal of Clinical Oncology, 28, 4247–4254.PubMedCrossRefGoogle Scholar
  90. 90.
    Chi, K. N., Siu, L. L., Hirte, H., Hotte, S. J., Knox, J., Kollmansberger, C., et al. (2008). A phase I study of OGX-011, a 2′-methoxyethyl phosphorothioate antisense to clusterin, in combination with docetaxel in patients with advanced cancer. Clinical Cancer Research, 14, 833–839.PubMedCrossRefGoogle Scholar
  91. 91.
    Darshan, M. S., Loftus, M. S., Thadani-Mulero, M., Levy, B. P., Escuin, D., Zhou, X. K., et al. (2011). Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Research, 71, 6019–6029.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Cook, P. D. (1999). Making drugs out of oligonucleotides: a brief review and perspective. Nucleosides & Nucleotides, 18, 1141–1162.CrossRefGoogle Scholar
  93. 93.
    Gleave, M. E., & Monia, B. P. (2005). Antisense therapy for cancer. Nature Reviews Cancer, 5, 468–479.PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang, Y., Castaneda, S., Dumble, M., Wang, M., Mileski, M., Qu, Z., et al. (2011). Reduced expression of the androgen receptor by third generation of antisense shows antitumor activity in models of prostate cancer. Molecular Cancer Therapeutics, 10, 2309–2319.PubMedCrossRefGoogle Scholar
  95. 95.
    Bianchini, D., Omlin, A., Pezaro, C., Mukherji, D., Lorente Estelles. D., Zivi, A., et al. (2013). First-in-human phase I study of EZN-4176, a locked nucleic acid antisense oligonucleotide (LNA-ASO) to androgen receptor (AR) mRNA in patients with castration-resistant prostate cancer (CRPC) [abstract]. Journal of Clinical Oncology, 31 (suppl; abstr 5052).Google Scholar
  96. 96.
    Richards, J., Lim, A. C., Hay, C. W., Taylor, A. E., Wingate, A., Nowakowska, K., et al. (2012). Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: a rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Research, 72, 2176–2182.PubMedCrossRefGoogle Scholar
  97. 97.
    Loriot, Y., Bianchini, D., Ileana, E., Sandhu, S., Patrikidou, A., Pezaro, C., et al. (2013). Antitumour activity of abiraterone acetate against metastatic castration-resistant prostate cancer progressing after docetaxel and enzalutamide (MDV3100). Annals of Oncology, 24(7), 1807–1812.PubMedCrossRefGoogle Scholar
  98. 98.
    Noonan, K. L., North, S., Bitting, R. L., Armstrong, a. J., Ellard, S. L., & Chi, K. N. (2013). Clinical activity of abiraterone acetate in patients with metastatic castration-resistant prostate cancer progressing after enzalutamide. Annals of Oncology, 24(7), 1802–1807.PubMedCrossRefGoogle Scholar
  99. 99.
    Manning, B. D., & Cantley, L. C. (2007). AKT/PKB signaling: navigating downstream. Cell, 129, 1261–1274.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Mediwala, S. N., Sun, H., Szafran, A. T., Hartig, S. M., Sonpavde, G., Hayes, T. G., et al. (2013). The activity of the androgen receptor variant AR-V7 is regulated by FOXO1 in a PTEN-PI3K-AKT-dependent way. Prostate, 73, 267–277.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Trotta, A. P., Need, E. F., Selth, L. A., Chopra, S., Pinnock, C. B., Leach, D. A., et al. (2013). Knockdown of the co-chaperone SGTA results in the suppression of androgen and PI3K/AKT signaling and inhibition of prostate cancer cell proliferation. International Journal of Cancer, 133(12), 2812–2823.Google Scholar
  102. 102.
    Yoshimoto, M., Cunha, I. W., Coudry, R. A., Fonseca, F. P., Torres, C. H., Soares, F. A., et al. (2007). FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. British Journal of Cancer, 97, 678–685.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Gao, H., Ouyang, X., Banach-Petrosky, W. A., Shen, M. M., & Abate-Shen, C. (2006). Emergence of androgen independence at early stages of prostate cancer progression in Nkx3.1; Pten mice. Cancer Research, 66, 7929–7933.PubMedCrossRefGoogle Scholar
  104. 104.
    Carver, B. S., Chapinski, C., Wongvipat, J., Hieronymus, H., Chen, Y., Chandarlapaty, S., et al. (2011). Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell, 19, 575–586.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Mostaghel, E. a., Page, S. T., Lin, D. W., Fazli, L., Coleman, I. M., True, L. D., et al. (2007). Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Research, 67, 5033–5041.PubMedCrossRefGoogle Scholar
  106. 106.
    Smith, M., Borre, M., Rathenborg, P., Werbrouck, P., Van Poppel, H., Heidenreich, A., et al. (2013). Efficacy and safety of enzalutamide (ENZA) monotherapy in hormone-naive prostate cancer (HNPC). [abstract]. Journal of Clinical Oncology, 31, 2013 (suppl; abstr 5001).Google Scholar
  107. 107.
    Kumar, S., Shelley, M., Harrison, C., Coles, B., Wilt, T. J., Mason, M. D. (2006). Neo-adjuvant and adjuvant hormone therapy for localised and locally advanced prostate cancer. Cochrane Database Systematic Reviews. doi:  10.1002/14651858.CD006019.pub2
  108. 108.
    Pilepich, M. V., Winter, K., Lawton, C. A., Krisch, R. E., Wolkov, H. B., Movsas, B., et al. (2005). Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma—long-term results of phase III RTOG 85–31. International Journal of Radiation Oncology Biology and Physics, 61, 1285–1290.CrossRefGoogle Scholar
  109. 109.
    Bolla, M., De Reijke, T. M., Van Tienhoven, G., Oddens, J., Poortmans, P. M. P., Gez, E., et al. (2009). Duration of androgen suppression in the treatment of prostate cancer. New England Journal of Medicine, 360, 2516–2527.PubMedCrossRefGoogle Scholar
  110. 110.
    McGuire, S. E., Lee, A. K., Cerne, J. Z., Munsell, M. F., Levy, L. B., Kudchadker, R. J., et al. (2013). PSA response to neoadjuvant androgen deprivation therapy is a strong independent predictor of survival in high-risk prostate cancer in the dose-escalated radiation therapy era. International Journal of Radiation Oncology Biology and Physics, 85, e39–e46.CrossRefGoogle Scholar
  111. 111.
    Taplin, M.-E., Montgomery, R. B., Logothetis, C. J., Bubley, G. J., Richie, J. P., Dalkin, B. L., et al. (2012). Effect of neoadjuvant abiraterone acetate (AA) plus leuprolide acetate (LHRHa) on PSA, pathological complete response (pCR), and near pCR in localized high-risk prostate cancer (LHRPC): Results of a randomized phase II study. [abstract]. Journal of Clinical Oncology, 30, 2012 (suppl; abstr 4521).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Joaquin Mateo
    • 1
  • Alan Smith
    • 1
  • Michael Ong
    • 1
  • Johann S. de Bono
    • 1
    Email author
  1. 1.Drug Development Unit, Division of Cancer Therapeutics and Division of Clinical StudiesThe Royal Marsden NHS Foundation Trust - The Institute of Cancer ResearchSurreyUK

Personalised recommendations