Advertisement

Cancer and Metastasis Reviews

, Volume 33, Issue 1, pp 353–359 | Cite as

Gastrointestinal neuroendocrine tumors (NETs): new diagnostic and therapeutic challenges

  • J. P. Castaño
  • A. Sundin
  • H. R. Maecke
  • C. Villabona
  • R. Vazquez-Albertino
  • E. Navarro
  • K. Öberg
Article

Abstract

This paper summarizes the current understanding of the biology of somatostatin receptor (sst), role of immunotherapy in neuroendocrine tumor (NET), new agents for PPRT, and methods to assess response and clinical benefit in NET. One of the most interesting aspects of sst biology is the recent discovery of truncated variants of the sst5 receptor subtype with unique tissue distribution and response to somatostatin (SST). These truncated receptors are associated with bad patient prognosis, decreased response to SST analogs, and may be new targets for diagnoses and treatment. IFN remains a cost-effective agent, particularly in classic mid gut carcinoids, and there is interest to continue examining immunotherapy's in this disease. PRRT remains a key strategy for treatment and imaging. In addition to the classic agents, there are a series of new agents targeting other receptors such as the incretin receptors (GLP-1R; GIPR) and other G-protein coupled receptors with great potential. With regards to therapy monitoring, the most commonly used criteria are Response Criteria Evaluation in Solid Tumors (RECIST). However, for different reasons, these criteria are not very useful in NET. Incorporation of other criteria such as Choi as well as functional imaging assessment with PET would be of great interest in this area.

Keywords

Somatostatin Somatostatin receptor Splicing sst5TMD4 Interferon (IFN) Peptide receptor radionucleotide therapy (PRRT) Incretin receptor (GLP-1R; GIPR) RECIST, SWOG, WHO criteria Functional NET imaging PET 

References

  1. 1.
    Oberg, K. E., Reubi, J. C., Kwekkeboom, D. J., & Krenning, E. P. (2010). Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology, 139, 742–753. 753 e741.PubMedCrossRefGoogle Scholar
  2. 2.
    De Martino, M. C., Hofland, L. J., & Lamberts, S. W. (2010). Somatostatin and somatostatin receptors: from basic concepts to clinical applications. Progress in Brain Research, 182, 255–280.PubMedCrossRefGoogle Scholar
  3. 3.
    Heaney, A. P., & Melmed, S. (2004). Molecular targets in pituitary tumors. Nature Reviews Cancer, 4, 285–295.PubMedCrossRefGoogle Scholar
  4. 4.
    Kulaksiz, H., et al. (2002). Identification of somatostatin receptor subtypes 1, 2A, 3, and 5 in neuroendocrine tumors with subtype specific antibodies. Gut, 50, 52–60.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Culler, M. D., et al. (2011). Somatostatin analogs for the treatment of neuroendocrine tumors. Cancer and Metastasis Reviews, 30(Suppl 1), 9–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Salazar, R., Reidy-Lagunes, D., & Yao, J. (2011). Potential synergies for combined targeted therapy in the treatment of neuroendocrine cancer. Drugs, 71, 841–852.PubMedCrossRefGoogle Scholar
  7. 7.
    Kwekkeboom, D. J., et al. (2010). Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocrine-Related Cancer, 17, R53–R73.PubMedCrossRefGoogle Scholar
  8. 8.
    Hofland, L. J., & Lamberts, S. W. (2003). The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocrine Reviews, 24, 28–47.PubMedCrossRefGoogle Scholar
  9. 9.
    Colao, A., Auriemma, R. S., Lombardi, G., & Pivonello, R. (2011). Resistance to somatostatin analogs in acromegaly. Endocrine Reviews, 32, 247–271.PubMedCrossRefGoogle Scholar
  10. 10.
    Dolan, J. T., Miltenburg, D. M., Granchi, T. S., Miller, C. C., 3rd, & Brunicardi, F. C. (2001). Treatment of metastatic breast cancer with somatostatin analogues—a meta-analysis. Ann Surg Oncol, 8, 227–233.Google Scholar
  11. 11.
    Hejna, M., Schmidinger, M., & Raderer, M. (2002). The clinical role of somatostatin analogues as antineoplastic agents: much ado about nothing? Ann Oncol, 13, 653–668.Google Scholar
  12. 12.
    Duran-Prado, M., et al. (2009). Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors. Journal of Clinical Endocrinology and Metabolism, 94, 2634–2643.PubMedCrossRefGoogle Scholar
  13. 13.
    Cordoba-Chacon, J., et al. (2010). Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cellular and Molecular Life Sciences, 67, 1147–1163.PubMedCrossRefGoogle Scholar
  14. 14.
    Duran-Prado, M., et al. (2012). Truncated variants of pig somatostatin receptor subtype 5 (sst5) act as dominant-negative modulators for sst2-mediated signaling. American Journal of Physiology - Endocrinology and Metabolism, 303, E1325–E1334.PubMedCrossRefGoogle Scholar
  15. 15.
    Cordoba-Chacon, J., Gahete, M. D., Duran-Prado, M., Luque, R. M., & Castano, J. P. (2011). Truncated somatostatin receptors as new players in somatostatin-cortistatin pathophysiology. Annals of the New York Academy of Sciences, 1220, 6–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Duran-Prado, M., et al. (2010). A potential inhibitory role for the new truncated variant of somatostatin receptor 5, sst5TMD4, in pituitary adenomas poorly responsive to somatostatin analogs. Journal of Clinical Endocrinology and Metabolism, 95, 2497–2502.PubMedCrossRefGoogle Scholar
  17. 17.
    Duran-Prado, M., et al. (2012). The new truncated somatostatin receptor variant sst5TMD4 is associated to poor prognosis in breast cancer and increases malignancy in MCF-7 cells. Oncogene, 31, 2049–2061.PubMedCrossRefGoogle Scholar
  18. 18.
    Li, D., et al. (2011). Association between somatostatin receptor 5 gene polymorphisms and pancreatic cancer risk and survival. Cancer, 117, 2863–2872.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Lupp, A., et al. (2011). Reassessment of sst(5) somatostatin receptor expression in normal and neoplastic human tissues using the novel rabbit monoclonal antibody UMB-4. Neuroendocrinology, 94, 255–264.PubMedCrossRefGoogle Scholar
  20. 20.
    van der Hoek, J., Lamberts, S. W., & Hofland, L. J. (2010). The somatostatin receptor subtype 5 in neuroendocrine tumors. Expert Opinion on Investigational Drugs, 19, 385–399.PubMedCrossRefGoogle Scholar
  21. 21.
    Funa, K., Alm, G. V., Ronnblom, L., & Oberg, K. (1983). Evaluation of the natural killer cell-interferon system in patients with mid-gut carcinoid tumors treated with leucocyte interferon. Clinical and Experimental Immunology, 53, 716–724.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Oberg, K., Funa, K., & Alm, G. (1983). Effects of leukocyte interferon on clinical symptoms and hormone levels in patients with mid-gut carcinoid tumors and carcinoid syndrome. New England Journal of Medicine, 309, 129–133.PubMedCrossRefGoogle Scholar
  23. 23.
    Platanias, L. C. (2005). Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol, 5, 375–386.Google Scholar
  24. 24.
    Pavel, M. E., & Wiedenmann, B. (2011). Novel therapeutic agents for the treatment of gastroenteropancreatic neuroendocrine tumors. Hormone and Metabolic Research, 43, 844–853.PubMedCrossRefGoogle Scholar
  25. 25.
    Arnold, R., et al. (2005). Octreotide versus octreotide plus interferon-alpha in endocrine gastroenteropancreatic tumors: a randomized trial. Clinical Gastroenterology and Hepatology, 3, 761–771.PubMedCrossRefGoogle Scholar
  26. 26.
    Kolby, L., Persson, G., Franzen, S., & Ahren, B. (2003). Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumors. British Journal of Surgery, 90, 687–693.PubMedCrossRefGoogle Scholar
  27. 27.
    Faiss, S., et al. (2003). Prospective, randomized, multicenter trial on the antiproliferative effect of lanreotide, interferon alfa, and their combination for therapy of metastatic neuroendocrine gastroenteropancreatic tumors-the International Lanreotide and Interferon Alfa Study Grou. Journal of Clinical Oncology, 21, 2689–2696.PubMedCrossRefGoogle Scholar
  28. 28.
    Imhof, A., et al. (2011). Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. Journal of Clinical Oncology, 29, 2416–2423.PubMedCrossRefGoogle Scholar
  29. 29.
    Ginj, M., et al. (2005). Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. Clin Cancer Res, 11, 1136–1145.Google Scholar
  30. 30.
    Hanyaloglu, A. C., & von Zastrow, M. (2008). Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annual Review of Pharmacology and Toxicology, 48, 537–568.PubMedCrossRefGoogle Scholar
  31. 31.
    Cescato, R., Waser, B., Fani, M., & Reubi, J. C. (2011). Evaluation of 177Lu-DOTA-sst2 antagonist versus 177Lu-DOTA-sst2 agonist binding in human cancers in vitro. J Nucl Med, 52, 1886–1890.PubMedCrossRefGoogle Scholar
  32. 32.
    Wild, D., et al. (2011). First clinical evidence that imaging with somatostatin receptor antagonists is feasible. Journal of Nuclear Medicine, 52, 1412–1417.PubMedCrossRefGoogle Scholar
  33. 33.
    Wild, D., Macke, H., Christ, E., Gloor, B., & Reubi, J. C. (2008). Glucagon-like peptide 1-receptor scans to localize occult insulinomas. New England Journal of Medicine, 359, 766–768.PubMedCrossRefGoogle Scholar
  34. 34.
    Christ, E., et al. (2009). Glucagon-like peptide-1 receptor imaging for localization of insulinomas. Journal of Clinical Endocrinology and Metabolism, 94, 4398–4405.PubMedCrossRefGoogle Scholar
  35. 35.
    Waser, B., Rehmann, R., Sanchez, C., Fourmy, D., & Reubi, J. C. (2012). Glucose-dependent insulinotropic polypeptide receptors in most gastroenteropancreatic and bronchial neuroendocrine tumors. Journal of Clinical Endocrinology and Metabolism, 97, 482–488.PubMedCrossRefGoogle Scholar
  36. 36.
    Burzykowski, T., et al. (2008). Evaluation of tumor response, disease control, progression-free survival, and time to progression as potential surrogate end points in metastatic breast cancer. Journal of Clinical Oncology, 26, 1987–1992.PubMedCrossRefGoogle Scholar
  37. 37.
    Choi, H., et al. (2007). Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. Journal of Clinical Oncology, 25, 1753–1759.PubMedCrossRefGoogle Scholar
  38. 38.
    Wahl, R. L., Jacene, H., Kasamon, Y., & Lodge, M. A. (2009). From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. Journal of Nuclear Medicine, 50(Suppl 1), 122S–150S.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Gabriel, M., et al. (2009). 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. Journal of Nuclear Medicine, 50, 1427–1434.PubMedCrossRefGoogle Scholar
  40. 40.
    Velilyan, I., et al. (2010). In vivo binding of [68Ga]-DOTATOC to somatostatin receptors in neuroendocrine tumors—impact of peptide mass. Nuclear Medicine and Biology, 37, 265–275.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. P. Castaño
    • 1
  • A. Sundin
    • 2
  • H. R. Maecke
    • 3
  • C. Villabona
    • 4
  • R. Vazquez-Albertino
    • 5
  • E. Navarro
    • 6
  • K. Öberg
    • 7
  1. 1.Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC) and Hospital Universitario Reina Sofia; and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CordobaSpain
  2. 2.Department of Molecular Medicine and SurgeryKarolinska University HospitalStockholmSweden
  3. 3.Department of Nuclear MedicineUniversity Hospital FreiburgFreiburgGermany
  4. 4.Department of EndocrinologyHospital Universitario de BellvitgeBarcelonaSpain
  5. 5.Department of Nuclear MedicineHospital Universitario Virgen del RocíoSevillaSpain
  6. 6.Department of Endocrinology and NutritionHospital Universitario Virgen del RocíoSevillaSpain
  7. 7.Department of Endocrine OncologyUppsala UniversityUppsalaSweden

Personalised recommendations