Cancer and Metastasis Reviews

, Volume 32, Issue 3–4, pp 325–340

Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution

  • Henry H. Heng
  • Steven W. Bremer
  • Joshua B. Stevens
  • Steven D. Horne
  • Guo Liu
  • Batoul Y. Abdallah
  • Karen J. Ye
  • Christine J. Ye
Article

Abstract

Results of various cancer genome sequencing projects have “unexpectedly” challenged the framework of the current somatic gene mutation theory of cancer. The prevalence of diverse genetic heterogeneity observed in cancer questions the strategy of focusing on contributions of individual gene mutations. Much of the genetic heterogeneity in tumors is due to chromosomal instability (CIN), a predominant hallmark of cancer. Multiple molecular mechanisms have been attributed to CIN but unifying these often conflicting mechanisms into one general mechanism has been challenging. In this review, we discuss multiple aspects of CIN including its definitions, methods of measuring, and some common misconceptions. We then apply the genome-based evolutionary theory to propose a general mechanism for CIN to unify the diverse molecular causes. In this new evolutionary framework, CIN represents a system behavior of a stress response with adaptive advantages but also serves as a new potential cause of further destabilization of the genome. Following a brief review about the newly realized functions of chromosomes that defines system inheritance and creates new genomes, we discuss the ultimate importance of CIN in cancer evolution. Finally, a number of confusing issues regarding CIN are explained in light of the evolutionary function of CIN.

Keywords

Chromosomal instability (CIN) Evolutionary mechanism of cancer (EMC) Genome chaos Genome heterogeneity Genome instability Genome theory Nonclonal chromosome aberrations (NCCAs) System inheritance 

References

  1. 1.
    Atkin, N. B., & Baker, M. C. (1990). Are human cancers ever diploid—or often trisomic? Conflicting evidence from direct preparations and cultures. Cytogenetics Cell Genetics, 53(1), 58–60.PubMedGoogle Scholar
  2. 2.
    Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34, 369–376.PubMedGoogle Scholar
  3. 3.
    Heng, H. H., Stevens, J. B., Liu, G., Bremer, S. W., & Ye, C. J. (2004). Imaging genome abnormalities in cancer research. Cell Chromosome, 3(1), 1.PubMedGoogle Scholar
  4. 4.
    Ye, C. J., Liu, G., Bremer, S. W., & Heng, H. H. (2007). The dynamics of cancer chromosomes and genomes. Cytogenetics Genome Research, 118, 237–246.PubMedGoogle Scholar
  5. 5.
    Bayani, J., Selvarajah, S., Maire, G., Vukovic, B., Al-Romaih, K., Zielenska, M., et al. (2007). Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Seminal Cancer Biology, 17, 5–18.Google Scholar
  6. 6.
    Heng, H. H. (2007). Cancer genome sequencing: the challenges ahead. BioEssays, 29, 783–794.PubMedGoogle Scholar
  7. 7.
    Heng, H.H. (2013a). 4D-Genomics: the genome dynamics and constraint in evolution. New York: Springer.Google Scholar
  8. 8.
    Rowley, J. D. (1998). The critical role of chromosome translocations in human leukemias. Annual Review of Genetics, 32, 495–519.PubMedGoogle Scholar
  9. 9.
    Hahn, W. C., & Weinberg, R. A. (2002). Modeling the molecular circuitry of cancer. Nat Rev Cancer, 2(5), 331–341.PubMedGoogle Scholar
  10. 10.
    Vogelstein, B., & Kinzler, K. W. (1993). The multistep nature of cancer. Trends in Genetics, 9, 138–141.PubMedGoogle Scholar
  11. 11.
    Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10, 789–799.PubMedGoogle Scholar
  12. 12.
    Mitelman, F. (2006). 50,000 tumors, 40,000 aberrations, and 300 fusion genes: how much remains? 50 years of 46 human chromosomes: progress in cytogenetics. National Cancer Institute, National Institutes of Health, USA.Google Scholar
  13. 13.
    Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMedGoogle Scholar
  14. 14.
    Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjöblom, T., Leary, R. J., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318(5853), 1108–1113.PubMedGoogle Scholar
  15. 15.
    Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458, 719–724.PubMedGoogle Scholar
  16. 16.
    Yates, L. R., & Campbell, P. J. (2012). Evolution of the cancer genome. Nat Rev Genet, 13(11), 795–806.PubMedGoogle Scholar
  17. 17.
    Vincent, M. D. (2011). Cancer: beyond speciation. Adv Cancer Res, 112, 283–350.PubMedGoogle Scholar
  18. 18.
    Stepanenko, A. A., & Kavsan, V. M. (2012). Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. Biopolymers and Cell, 28, 267–280.Google Scholar
  19. 19.
    Miklos, G. L. (2005). The human cancer genome project—one more misstep in the war on cancer. Nat Biotech., 23, 535–537.Google Scholar
  20. 20.
    Heng, H. H., Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., Reddy, P. V., et al. (2006). Stochastic cancer progression driven by nonclonal chromosome aberrations. Journal Cell Physiology, 208, 461–472.Google Scholar
  21. 21.
    Heppner, H. G. (1984). Tumor heterogeneity. Cancer Research, 44(6), 2259–2265.PubMedGoogle Scholar
  22. 22.
    Heng, H. H., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., Abdallah, B. Y., et al. (2011). Decoding the genome beyond sequencing: the next phase of genomic research. Genomics, 98, 242–252.PubMedGoogle Scholar
  23. 23.
    Ye, C. J., Stevens, J. B., Liu, G., Bremer, S. W., Jaiswal, A. S., Ye, K. J., et al. (2009). Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. Journal Cell Physiology, 219, 288–300.Google Scholar
  24. 24.
    Heng, H. H., Stevens, J. B., Lawrenson, L., Liu, G., Ye, K. J., Bremer, S. W., et al. (2008). Patterns of genome dynamics and cancer evolution. Cell Oncology, 30, 513–514.Google Scholar
  25. 25.
    Heng, H. H., Stevens, J. B., Bremer, S. W., Ye, K. J., Liu, G., & Ye, C. J. (2010). The evolutionary mechanism of cancer. Journal Cell Biochemistry, 220, 538–547.Google Scholar
  26. 26.
    Boveri, T. (1914). Zur Frage der Entstehung maligner Tumoren. Jena: Fisher. Translation Boveri, T. (1929). The origin of malignant tumors. Baltimore: Williams and Wilkins.Google Scholar
  27. 27.
    Nowell, P. C., & Hungerford, D. A. (1960). Chromosome studies on normal and leukemic human leukocytes. Journal National Cancer Institute, 25, 85–109.Google Scholar
  28. 28.
    Weemaes, C. M., Hustinx, T. W., Scheres, J. M., van Munster, P. J., Bakkeren, J. A., & Taalman, R. D. (1981). A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatrica Scandinavica, 70(4), 557–564.PubMedGoogle Scholar
  29. 29.
    Högstedt, B., & Mitelman, F. (1981). The interrelations of micronuclei, chromosomal instability, and mutational activity in acute non-lymphocytic leukemia—a hypothesis. Hereditas, 95, 165–167.PubMedGoogle Scholar
  30. 30.
    Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194, 23–28.PubMedGoogle Scholar
  31. 31.
    Loeb, L. A., Springgate, C. F., & Battula, N. (1974). Errors in DNA replication as a basis of malignant change. Cancer Research, 34, 2311–2321.PubMedGoogle Scholar
  32. 32.
    Hartwell, L. (1992). Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell, 71(4), 543–546.PubMedGoogle Scholar
  33. 33.
    Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature, 396, 643–649.PubMedGoogle Scholar
  34. 34.
    Cahill, D. P., Kinzler, K. W., Vogelstein, B., & Lengauer, C. (1999). Genetic instability and darwinian selection in tumours. Trends Cell Biology, 9, M57–M60.Google Scholar
  35. 35.
    Artandi, S. E., Chang, S., Lee, S. L., Alson, S., Gottlieb, G. J., Chin, L., et al. (2000). Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature, 406, 641–645.PubMedGoogle Scholar
  36. 36.
    Ferguson, D. O. (2000). The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proceedings National Academy Sciences U S A, 97, 6630–6633.Google Scholar
  37. 37.
    Bassing, C. H., Suh, H., Ferguson, D. O., Chua, K. F., Manis, J., Eckersdorff, M., et al. (2003). Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell, 114, 359–370.PubMedGoogle Scholar
  38. 38.
    Shen, K. C., Heng, H., Wang, Y., Lu, S., Liu, G., Deng, C. H., et al. (2005). ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Research, 65(19), 8747–8753.PubMedGoogle Scholar
  39. 39.
    Hanks, S., Coleman, K., Reid, S., Plaja, A., Firth, H., Fitzpatrick, D., et al. (2004). Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nature Genetics, 36, 1159–1161.PubMedGoogle Scholar
  40. 40.
    Duesberg, P. (1999). How aneuploidy may cause cancer and genetic instability. Anticancer Research, 19, 4887–4906.PubMedGoogle Scholar
  41. 41.
    Li, R., Sonik, A., Stindl, R., Rasnick, D., & Duesberg, P. (2000). Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proceedings National Academy Sciences U S A, 97, 3236–3241.Google Scholar
  42. 42.
    Marx, J. (2002). Debate surges over the origins of genetic defects in cancer. Science, 297, 544–546.PubMedGoogle Scholar
  43. 43.
    Sieber, O. M., Heinimann, K., & Tomlinson, I. P. (2003). Genomic instability—the engine of tumorigenesis? Nature Reviews Cancer, 3(9), 701–708.PubMedGoogle Scholar
  44. 44.
    Gisselsson, D. (2003). Chromosome instability in cancer: how, when, and why? Advances Cancer Research, 87, 1–29.Google Scholar
  45. 45.
    Rajagopalan, H., Nowak, M. A., Vogelstein, B., & Lengauer, C. (2003). The significance of unstable chromosomes in colorectal cancer. Nature Reviews Cancer, 3, 695–701.PubMedGoogle Scholar
  46. 46.
    Matzke, M. A., Mette, M. F., Kanno, T., & Matzke, A. J. (2003). Does the intrinsic instability of aneuploidy genomes have a causal role in cancer? Trends in Genetics, 19, 253–256.PubMedGoogle Scholar
  47. 47.
    Gibbs, W. W. (2003). Untangling the roots of cancer. Scientific American, 289, 56–65.PubMedGoogle Scholar
  48. 48.
    Heng, H. H., Bremer, S. W., Stevens, J., Ye, K. J., Miller, F., Liu, G., et al. (2006). Cancer progression by non-clonal chromosome aberrations. Journal Cell Biochemistry, 98, 1424–1435.Google Scholar
  49. 49.
    Heng, H. H., Liu, G., Bremer, S., Ye, K. J., Stevens, J., & Ye, C. J. (2006). Clonal and nonclonal chromosome aberrations and genome variation and aberration. Genome, 49, 195–204.PubMedGoogle Scholar
  50. 50.
    Mitelman, F. (2000). Recurrent chromosome aberrations in cancer. Mutation Research, 462(2–3), 247–453.PubMedGoogle Scholar
  51. 51.
    Gisselsson, D., Jonson, T., Petersén, A., Strömbeck, B., Dal Cin, P., Höglund, M., et al. (2001). Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proceedings National Academy Sciences U S A, 98(22), 12683–12688.Google Scholar
  52. 52.
    Mitelman, F., Johansson, B., & Mertens, F. (2007). The impact of translocations and gene fusions on cancer causation. Nature Reviews Cancer, 7, 233–245.PubMedGoogle Scholar
  53. 53.
    Mai, S. (2010). Initiation of telomere-mediated chromosomal rearrangements in cancer. J Cell Biochem, 109(6), 1095–1102.PubMedGoogle Scholar
  54. 54.
    Negrini, S., Gorgoulis, V. G., & Halazonetis, H. D. (2010). Genomic instability—an evolving hallmark of cancer. Nature Reviews Molecular Cell Biology, 11, 225.Google Scholar
  55. 55.
    Rasnick, D. (2011). The chromosomal imbalance theory of cancer: the autocatalyzed progression of aneuploidy is carcinogenesis. Boca Raton: Science Publishers.Google Scholar
  56. 56.
    Gordon, D. J., Resio, B., & Pellman, D. (2012). Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics, 13, 189–203.PubMedGoogle Scholar
  57. 57.
    Chen, G., Rubinstein, B., & Li, R. (2012). Whole chromosome aneuploidy: big mutations drive adaptation by phenotypic leap. BioEssays, 34(10), 893–900.PubMedGoogle Scholar
  58. 58.
    Heng, H. H. (2009). The genome-centric concept: re-synthesis of evolutionary theory. BioEssays, 31, 512–525.PubMedGoogle Scholar
  59. 59.
    Heng, H. H., Bremer, S. W., Stevens, J. B., Ye, K. J., Liu, G., & Ye, C. J. (2009). Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. Journal Cellular Physiology, 220, 538–547.Google Scholar
  60. 60.
    Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., Xu, W., Xu, J., et al. (2007). Mitotic cell death by chromosome fragmentation. Cancer Research, 67, 7686–7694.PubMedGoogle Scholar
  61. 61.
    Stevens, J. B., Abdallah, B. Y., Liu, G., Ye, C. J., Horne, S. D., Wang, G., et al. (2011). Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Disease, 2, e178.PubMedGoogle Scholar
  62. 62.
    Heng, H. H., Spyropoulos, B., & Moens, P. B. (1997). FISH technology in chromosome and genome research. BioEssays, 19(1), 75–84.PubMedGoogle Scholar
  63. 63.
    Heng, H. H., Ye, C. J., Yang, F., Ebrahim, S., Liu, G., Bremer, S. W., et al. (2003). Analysis of marker or complex chromosomal rearrangements present in pre- and post-natal karyotypes utilizing a combination of G-banding, spectral karyotyping and fluorescence in situ hybridization. Clinical Genetics, 63(5), 358–367.PubMedGoogle Scholar
  64. 64.
    Heng, H. Q., Chen, W. Y., & Wang, Y. C. (1988). Effects of pingyanymycin on chromosomes: a possible structural basis for chromosome aberration. Mutation Research, 199(1), 199–205.PubMedGoogle Scholar
  65. 65.
    Stevens, J.B., Horne, S.D., Abdallah, B.Y., Ye, C.J., & Heng, H.H. (2013). Chromosomal instability and transcriptome dynamics in cancer. Cancer and Metastasis Review (in press).Google Scholar
  66. 66.
    Kitada, K., Taima, A., Ogasawara, K., Metsugi, S., & Aikawa, S. (2011). Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes. Genes Chromosomes Cancer, 50(4), 217–227.PubMedGoogle Scholar
  67. 67.
    Yuen, K. W. (2010). Chromosome instability (CIN). Aneuploidy and Cancer. doi:10.1002/9780470015902.a0022413.Google Scholar
  68. 68.
    1000 Genomes Project Consortium. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073.Google Scholar
  69. 69.
    Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K. W., Velculescu, V. E., et al. (2007). Genetic progression and the waiting time to cancer, 3(11), e225.Google Scholar
  70. 70.
    Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., & Ye, C. J. (2011). Evolutionary mechanisms and diversity in cancer. Advances Cancer Research, 112, 217–253.Google Scholar
  71. 71.
    Merlo, L. M., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 6(12), 924–935.PubMedGoogle Scholar
  72. 72.
    Heng, H, H., Liu, G., Stevens, J.B., Abdallah, B.Y., Horne, S.D., Ye, K.J., et al. (2013). Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenetic and Genome Research. doi:10.1159/000348682.
  73. 73.
    Duncan, A. W., Taylor, M. H., Hickey, R. D., Hanlon Newell, A. E., Lenzi, M. L., Olson, S. B., et al. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature, 467(7316), 707–710.PubMedGoogle Scholar
  74. 74.
    Duncan, A. W., Hanlon, Newell, A. E., Bi, W., Finegold, M. J., Olson, S. B., et al. (2012). Aneuploidy as a mechanism for stress-induced liver adaptation. Journal Clinical Investigation, 122, 3307–3315.Google Scholar
  75. 75.
    Wilkins, A. S. (2010). The enemy within: an epigenetic role of retrotransposons in cancer initiation. BioEssays, 32, 856–865.PubMedGoogle Scholar
  76. 76.
    Aguilera, A., & Gomez-Gonzalez, B. (2008). Genome instability: a mechanistic view of its causes and consequences. Nature Reviews Genetics, 9(3), 204–217.PubMedGoogle Scholar
  77. 77.
    Heng, H. H. (2007). Elimination of altered karyotypes by sexual reproduction preserves species identity. Genome, 50, 517–524.PubMedGoogle Scholar
  78. 78.
    Wilkins, A. S., & Holliday, R. (2009). The evolution of meiosis from mitosis. Genetics, 181, 3–12.PubMedGoogle Scholar
  79. 79.
    Gorelick, R., & Heng, H. H. (2011). Sex reduces genetic variation: a multidisciplinary review. Evolution, 65, 1088–1098.PubMedGoogle Scholar
  80. 80.
    Horne, S.D., Abdallah, B.Y., Stevens, J.B., Liu, G., Ye, K.J., Bremer, S.W., et al. (2013a). Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology. Systems Biology in Reproductive Medicine. doi:10.3109/19396368.2012.754969.
  81. 81.
    Colson, I., Delneri, D., & Oliver, S. G. (2004). Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae. EMBO Reports, 5, 392–398.PubMedGoogle Scholar
  82. 82.
    Blount, Z. D., Barrick, J. E., Davidson, C. J., & Lenski, R. E. (2012). Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature, 489, 513–518.PubMedGoogle Scholar
  83. 83.
    Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., Walton, K., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135(5), 879–893.PubMedGoogle Scholar
  84. 84.
    Vincent, M. D. (2010). The animal within: carcinogenesis and the clonal evolution of cancer cells are speciation events sensu stricto. Evolution, 64(4), 1173–1183.PubMedGoogle Scholar
  85. 85.
    Duesberg, P., Mandrioli, D., McCormack, A., & Nicholson, J. M. (2011). Is carcinogenesis a form of speciation? Cell Cycle, 10, 2100–2114.PubMedGoogle Scholar
  86. 86.
    Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., Florens, L., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.PubMedGoogle Scholar
  87. 87.
    Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313.PubMedGoogle Scholar
  88. 88.
    Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472, 90–94.PubMedGoogle Scholar
  89. 89.
    Horne, S. D., Stevens, J. B., Abdallah, B. Y., Liu, G., Bremer, S. W., Ye, C. J., et al. (2013). Why imatinib remains an exception of cancer research. Journal of Cellular Physiology, 228, 665–670.PubMedGoogle Scholar
  90. 90.
    Heng, H.H. (2007c). Karyotypic chaos, a form of non-clonal chromosome aberrations, plays a key role for cancer progression and drug resistance. FASEB Meeting: Nuclear Structure and Cancer, Vermont Academy, Saxtons River, Vermont, June 16–21.Google Scholar
  91. 91.
    Heng, H. H., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., & Ye, C. J. (2010). Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy. Current Drug Targets, 11, 1304–1316.PubMedGoogle Scholar
  92. 92.
    Ao, P. (2009). Global view of bionetwork dynamics: adaptive landscape. Journal Genetics Genomics, 36, 63–73.Google Scholar
  93. 93.
    Huang, S., Ernberg, I., & Kauffman, S. (2009). Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Seminars in Cell and Developmental Biology, 20, 869–876.PubMedGoogle Scholar
  94. 94.
    Johansson, B., Mertens, F., & Mitelman, F. (1996). Primary vs. secondary neoplasia-associated chromosomal abnormalities—balanced rearrangements vs. genomic imbalances? Genes Chromosomes Cancer, 16(3), 155–163.PubMedGoogle Scholar
  95. 95.
    Zimonjic, D., Brooks, M. W., Popescu, N., Weinberg, R. A., & Hahn, W. C. (2001). Derivation of human tumor cells in vitro without widespread genomic instability. Cancer Research, 61(24), 8838–8844.PubMedGoogle Scholar
  96. 96.
    Li, R., Rasnick, D., & Duesberg, P. (2002). Correspondence re: D. Zimonjic et al., Derivation of human tumor cells in vitro without widespread genomic instability. Cancer Research, 62(21), 6345–6348.PubMedGoogle Scholar
  97. 97.
    Bodmer, W. (2008). Genetic instability is not a requirement for tumor development. Cancer Research, 68, 3558–3561.PubMedGoogle Scholar
  98. 98.
    Harris, H. (2005). A long view of fashions in cancer research. BioEssays, 27(8), 833–838.PubMedGoogle Scholar
  99. 99.
    Garber, J. E., & Offit, K. (2005). Hereditary cancer predisposition syndromes. Journal Clinical Oncology, 23(2), 276–292.Google Scholar
  100. 100.
    Issa, J. P., & Garber, J. E. (2011). Time to think outside the (genetic) box. Cancer Prevention Research, 4, 6–8.PubMedGoogle Scholar
  101. 101.
    Nana-Sinkam, S. P., & Croce, C. M. (2011). Non-coding RNAs in cancer initiation and progression and as novel biomarkers. Mol Oncol, 5(6), 483–491.PubMedGoogle Scholar
  102. 102.
    Gibb, E. A., Brown, C. J., & Lam, W. L. (2011). The functional role of long non-coding RNA in human carcinomas. Mol Cancer, 10, 38.PubMedGoogle Scholar
  103. 103.
    Gatenby, R. (2012). Perspective: finding cancer's first principles. Nature, 491, S55.PubMedGoogle Scholar
  104. 104.
    Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11(1), 25–36.PubMedGoogle Scholar
  105. 105.
    Weaver, B. A., & Cleveland, D. W. (2008). The aneuploidy paradox in cell growth and tumorigenesis. Cancer Cell, 14(6), 431–433.PubMedGoogle Scholar
  106. 106.
    Sheltzer, J. M., & Amon, A. (2011). The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends in Genetics, 27(11), 446–453.PubMedGoogle Scholar
  107. 107.
    Heng, H. H. (2010). Missing heritability and stochastic genome alterations. Nature Reviews Genetics, 11, 813.PubMedGoogle Scholar
  108. 108.
    Hultén, M. A., Jonasson, J., Iwarsson, E., Uppal, P., Vorsanova, S. G., Yurov, Y. B., et al. (2013). Trisomy 21 mosaicism: we may all have a touch of Down syndrome. Cytogenetic and Genome Research. doi:10.1159/000346028.PubMedGoogle Scholar
  109. 109.
    Yurov, Y. B., Vorsanova, S. G., & Iourov, I. Y. (2009). GIN'n'CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Molecular Cytogenetics, 2, 23.PubMedGoogle Scholar
  110. 110.
    Heng HH (2013b). Preface: back to the future. Cytogenetic and Genome Research. doi:10.1159/000347035.
  111. 111.
    Williams, B. R., Prabhu, V. R., Hunter, K. E., Glazier, C. M., Whittaker, C. A., Housman, D. E., et al. (2008). Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science, 322(5902), 703–709.PubMedGoogle Scholar
  112. 112.
    Torres, E. M., Sokolsky, T., Tucker, C. M., Chan, L. Y., Boselli, M., Dunham, M. J., et al. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science., 317, 916–924.PubMedGoogle Scholar
  113. 113.
    Brock, A., Chang, H., & Huang, S. (2009). Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet, 10(5), 336–342.PubMedGoogle Scholar
  114. 114.
    Okochi, E., Mochizuki, M., Sugimura, T., & Ushijima, T. (2001). The presence of single nucleotide instability in human breast cancer cell lines. Can Res, 61, 7739–7742.Google Scholar
  115. 115.
    Watanabe, N., Okochi, E., Mochizuki, M., Sugimura, T., & Ushijima, T. (2001). The presence of single nucleotide instability in human breast cancer cell lines. Cancer Research, 61(21), 7739–7742.PubMedGoogle Scholar
  116. 116.
    Grady, W. M., & Carethers, J. M. (2008). Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology, 135(4), 1079–1099.PubMedGoogle Scholar
  117. 117.
    Alabert, C., & Groth, A. (2012). Chromatin replication and epigenome maintenance. Nature Reviews Molecular Cell Biology, 13(3), 153–167.PubMedGoogle Scholar
  118. 118.
    Gadji, M., Vallente, R., Klewes, L., Righolt, C., Wark, L., Kongruttanachok, N., et al. (2011). Nuclear remodeling as a mechanism for genomic instability in cancer. Advances in Cancer Research, 112, 77–126.PubMedGoogle Scholar
  119. 119.
    Carone, D.M, & Lawrence, J.B. (2013). Heterochromatin instability in cancer: From the Barr body to satellites and the nuclear periphery. Seminars in Cancer Biology, 23(2), 99–108.Google Scholar
  120. 120.
    Chida, Y., Hamer, M., Wardle, J., & Steptoe, A. (2008). Do stress-related psychological factors contribute to cancer incidence and survival? Nature Clinical Practice Oncology, 5(8), 466–475.PubMedGoogle Scholar
  121. 121.
    Andersen, B. L., Yang, H. C., Farrar, W. B., Golden-Kreutz, D. M., Emery, C. F., Thornton, L. M., et al. (2008). Psychological intervention improves survival for breast cancer patients. Cancer, 113(12), 3450–3458.PubMedGoogle Scholar
  122. 122.
    Stepanenko, A. A., & Kavsan, V. M. (2012). Immortalization and malignant transformation of eukaryotic cells, 46(2), 36–75.Google Scholar
  123. 123.
    Watson, J. (2013). Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol, 3(1), 120144.PubMedGoogle Scholar
  124. 124.
    Galipeau, P. C., Li, X., Blount, P. L., Maley, C. C., Sanchez, C. A., Odze, R. D., et al. (2007). NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Medicine, 4(2), e67.PubMedGoogle Scholar
  125. 125.
    Li, X., Blount, P. L., Vaughan, T. L., & Reid, B. J. (2011). Application of biomarkers in cancer risk management: evaluation from stochastic clonal evolutionary and dynamic system optimization points of view. PLoS Computational Biology, 7, e1001087.PubMedGoogle Scholar
  126. 126.
    Park, S. Y., Gönen, M., Kim, H. J., Michor, F., & Polyak, K. (2010). Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. The Journal of Clinical Investigation, 120(2), 636–644.PubMedGoogle Scholar
  127. 127.
    Chandrakasan, S., Ye, C. J., Chitlur, M., Mohamed, A. N., Rabah, R., Konski, A., et al. (2011). Malignant fibrous histiocytoma two years after autologous stem cell transplant for Hodgkin lymphoma: evidence for genomic instability. Pediatric Blood Cancer, 56(7), 1143–1145.PubMedGoogle Scholar
  128. 128.
    Burrell, R. A., Juul, N., Johnston, S. R., Reis-Filho, J. S., Szallasi, Z., & Swanton, C. (2010). Targeting chromosomal instability and tumour heterogeneity in HER2-positive breast cancer. Journal of Cellular Biochemistry, 111(4), 782–790.PubMedGoogle Scholar
  129. 129.
    Roschke, A. V., & Kirsch, I. R. (2010). Targeting karyotypic complexity and chromosomal instability of cancer cells. Current Drug Targets, 11(10), 1341–1350.PubMedGoogle Scholar
  130. 130.
    Duesberg, P. (2007). Chromosomal chaos and cancer. Scientific American, 296(5), 52–59.PubMedGoogle Scholar
  131. 131.
    Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., Mudie, L. J., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144, 27–40.PubMedGoogle Scholar
  132. 132.
    Heng, H. H. (2008). The conflict between complex system and reductionism. Journal American Medical Association, 300, 1580–1581.Google Scholar
  133. 133.
    Gatenby, R. A., Gillies, R. J., & Brown, J. S. (2010). Evolutionary dynamics of cancer prevention. Nature Reviews Cancer, 10(8), 526–527.PubMedGoogle Scholar
  134. 134.
    Breivik, J. (2005). The evolutionary origin of genetic instability in cancer development. Seminars Cancer Biology, 15(1), 51–60.Google Scholar
  135. 135.
    Bissell, M. J., & Hines, W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine, 17, 320–329.PubMedGoogle Scholar
  136. 136.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Henry H. Heng
    • 1
    • 4
  • Steven W. Bremer
    • 1
  • Joshua B. Stevens
    • 1
  • Steven D. Horne
    • 1
  • Guo Liu
    • 1
  • Batoul Y. Abdallah
    • 1
  • Karen J. Ye
    • 2
  • Christine J. Ye
    • 3
  1. 1.Center for Molecular Medicine and GeneticsWayne State University School of MedicineDetroitUSA
  2. 2.SeeDNA IncWindsorCanada
  3. 3.Department of Hematology OncologyKarmanos Cancer InstituteDetroitUSA
  4. 4.Department of PathologyWayne State University School of MedicineDetroitUSA

Personalised recommendations