Cancer and Metastasis Reviews

, Volume 32, Issue 1–2, pp 123–128 | Cite as

Reconstructing skin cancers using animal models

  • Michael D. Gober
  • Hasan M. Bashir
  • John T. Seykora


The American Cancer Society estimates that skin cancer is the most prevalent of all cancers with over 2 million cases of nonmelanoma skin cancer each year and 75,000 melanoma cases in 2012. Representative animal cancer models are important for understanding the underlying molecular pathogenesis of these cancers and the development of novel targeted anticancer therapeutics. In this review, we will discuss some of the important animal models that have been useful to identify important pathways involved in basal cell carcinoma, squamous cell carcinoma, and melanoma.


Skin cancer Animal model Molecular pathogenesis 


Conflict of interest

The authors declare that no conflict of interest exists.


  1. 1.
    Rubin, A. I., Chen, E. H., & Ratner, D. (2005). Basal-cell carcinoma. The New England Journal of Medicine, 353(21), 2262–2269.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang, M., Qureshi, A. A., Geller, A. C., Frazier, L., Hunter, D. J., & Han, J. (2012). Use of tanning beds and incidence of skin cancer. Journal of Clinical Oncology, 30(14), 1588–1593.PubMedCrossRefGoogle Scholar
  3. 3.
    Howell, J. B., & Caro, M. R. (1959). The basal-cell nevus: its relationship to multiple cutaneous cancers and associated anomalies of development. Archives of Dermatology, 79(1), 67–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Gorlin, R. J., & Goltz, R. W. (1960). Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. The New England Journal of Medicine, 262(18), 908–912.PubMedCrossRefGoogle Scholar
  5. 5.
    Hahn, H., Wicking, C., Zaphiropoulos, P. G., Gailani, M. R., Shanley, S., Chidambaram, A., et al. (1996). Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell, 85(6), 841–851.PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson, R. L., Rothman, A. L., Xie, J., Goodrich, L. V., Bare, J. W., Bonifas, J. M., et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science, 272(5268), 1668–1671.PubMedCrossRefGoogle Scholar
  7. 7.
    Gailani, M. R., Stahle-Backdahl, M., Leffell, D. J., Glyn, M., Zaphiropoulos, P. G., Unden, A. B., et al. (1996). The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genetics, 14(1), 78–81. doi: 10.1038/ng0996-78.PubMedCrossRefGoogle Scholar
  8. 8.
    Kasper, M., Jaks, V., Hohl, D., & Toftgård, R. (2012). Basal cell carcinoma—molecular biology and potential new therapies. The Journal of Clinical Investigation, 122(2), 455–463.PubMedCrossRefGoogle Scholar
  9. 9.
    Hooper, J. E., & Scott, M. P. (1989). The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell, 59(4), 751–765.PubMedCrossRefGoogle Scholar
  10. 10.
    Lum, L., & Beachy, P. A. (2004). The hedgehog response network: sensors, switches, and routers. Science, 304(5678), 1755–1759.PubMedCrossRefGoogle Scholar
  11. 11.
    Oro, A. E., Higgins, K. M., Hu, Z., Bonifas, J. M., Epstein, E. H., & Scott, M. P. (1997). Basal cell carcinomas in mice overexpressing sonic hedgehog. Science, 276(5313), 817–821.PubMedCrossRefGoogle Scholar
  12. 12.
    Xie, J., Murone, M., Luoh, S.-M., Ryan, A., Gu, Q., Zhang, C., et al. (1998). Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature, 391(6662), 90–92. doi: 10.1038/34201.PubMedCrossRefGoogle Scholar
  13. 13.
    Nilsson, M., Undèn, A. B., Krause, D., Malmqwist, U., Raza, K., Zaphiropoulos, P. G., et al. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3438–3443.PubMedCrossRefGoogle Scholar
  14. 14.
    Grachtchouk, M., Mo, R., Yu, S., Zhang, X., Sasaki, H., Hui, C.-c., et al. (2000). Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genetics, 24(3), 216–217. doi: 10.1038/73417.PubMedCrossRefGoogle Scholar
  15. 15.
    Aszterbaum, M., Epstein, J., Oro, A., Douglas, V., LeBoit, P. E., Scott, M. P., et al. (1999). Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nature Medicine, 5(11), 1285–1291. doi: 10.1038/15242.PubMedCrossRefGoogle Scholar
  16. 16.
    Grachtchouk, V., Grachtchouk, M., Lowe, L., Johnson, T., Wei, L., Wang, A., et al. (2003). The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO Journal, 22(11), 2741–2751. doi: 10.1093/emboj/cdg271.PubMedCrossRefGoogle Scholar
  17. 17.
    Ramírez, A., Bravo, A., Jorcano, J. L., & Vidal, M. (1994). Sequences 5′ of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation, 58(1), 53–64.PubMedGoogle Scholar
  18. 18.
    Youssef, K. K., Van Keymeulen, A., Lapouge, G., Beck, B., Michaux, C., Achouri, Y., et al. (2010). Identification of the cell lineage at the origin of basal cell carcinoma. Nature Cell Biology, 12(3), 299–305. doi: 10.1038/ncb2031.PubMedGoogle Scholar
  19. 19.
    Wong, S. Y., & Reiter, J. F. (2011). Wounding mobilizes hair follicle stem cells to form tumors. Proceedings of the National Academy of Sciences, 108(10), 4093–4098.CrossRefGoogle Scholar
  20. 20.
    Kasper, M., Jaks, V., Are, A., Bergström, Å., Schwäger, A., Svärd, J., et al. (2011). Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proceedings of the National Academy of Sciences, 108(10), 4099–4104.CrossRefGoogle Scholar
  21. 21.
    Ratushny, V., Gober, M. D., Hick, R., Ridky, T. W., & Seykora, J. T. (2012). From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. The Journal of Clinical Investigation, 122(2), 464–472.PubMedCrossRefGoogle Scholar
  22. 22.
    Cockerell, C. J. (2000). Histopathology of incipient intraepidermal squamous cell carcinoma (“actinic keratosis”). Journal of the American Academy of Dermatology, 42(1), S11–S17.CrossRefGoogle Scholar
  23. 23.
    Marks, R., Rennie, G., & Selwood, T. S. (1988). Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet, 1(8589), 795–797.PubMedCrossRefGoogle Scholar
  24. 24.
    Criscione, V. D., Weinstock, M. A., Naylor, M. F., Luque, C., Eide, M. J., Bingham, S. F., et al. (2009). Actinic keratoses. Cancer, 115(11), 2523–2530.PubMedCrossRefGoogle Scholar
  25. 25.
    Ziegler, A., Jonason, A. S., Leffellt, D. J., Simon, J. A., Sharma, H. W., Kimmelman, J., et al. (1994). Sunburn and p53 in the onset of skin cancer. Nature, 372(6508), 773–776. doi: 10.1038/372773a0.PubMedCrossRefGoogle Scholar
  26. 26.
    Ortonne, J. P. (2002). From actinic keratosis to squamous cell carcinoma. British Journal of Dermatology, 146, 20–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Nakazawa, H., English, D., Randell, P. L., Nakazawa, K., Martel, N., Armstrong, B. K., et al. (1994). UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 360–364.PubMedCrossRefGoogle Scholar
  28. 28.
    Hoeijmakers, J. H. J. (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411(6835), 366–374. doi: 10.1038/35077232.PubMedCrossRefGoogle Scholar
  29. 29.
    Brash, D. E., Rudolph, J. A., Simon, J. A., Lin, A., McKenna, G. J., Baden, H. P., et al. (1991). A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 88(22), 10124–10128.PubMedCrossRefGoogle Scholar
  30. 30.
    Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Butel, J. S., et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366), 215–221. doi: 10.1038/356215a0.PubMedCrossRefGoogle Scholar
  31. 31.
    Jiang, W., Ananthaswamy, H. N., Muller, H. K., & Kripke, M. L. (1999). p53 protects against skin cancer induction by UV-B radiation. Oncogene, 18(29), 4247. Article.PubMedCrossRefGoogle Scholar
  32. 32.
    Matsumoto, T., Jiang, J., Kiguchi, K., Ruffino, L., Carbajal, S., Beltrán, L., et al. (2003). Targeted expression of c-Src in epidermal basal cells leads to enhanced skin tumor promotion, malignant progression, and metastasis. Cancer Research, 63(16), 4819–4828.PubMedGoogle Scholar
  33. 33.
    Kiguchi, K., Bol, D., Carbajal, S., Beltrán, L., Moats, S., Chan, K., et al. (2000). Constitutive expression of erbB2 in epidermis of transgenic mice results in epidermal hyperproliferation and spontaneous skin tumor development. Oncogene, 19(37), 4243. Article.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhao, L., Li, W., Marshall, C., Griffin, T., Hanson, M., Hick, R., et al. (2009). Srcasm inhibits Fyn-induced cutaneous carcinogenesis with modulation of Notch1 and p53. Cancer Research, 69(24), 9439–9447.PubMedCrossRefGoogle Scholar
  35. 35.
    Khavari, P. A. (2006). Modelling cancer in human skin tissue. Nature Reviews. Cancer, 6(4), 270–280. doi: 10.1038/nrc1838.PubMedCrossRefGoogle Scholar
  36. 36.
    Pierceall, W. E., Goldberg, L. H., Tainsky, M. A., Mukhopadhyay, T., & Ananthaswamy, H. N. (1991). Ras gene mutation and amplification in human nonmelanoma skin cancers. Molecular Carcinogenesis, 4(3), 196–202.PubMedCrossRefGoogle Scholar
  37. 37.
    Spencer, J. M., Kahn, S. M., Jiang, W., DeLeo, V. A., & Weinstein, I. B. (1995). Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas. Archives of Dermatology, 131(7), 796–800.PubMedCrossRefGoogle Scholar
  38. 38.
    Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., et al. (2004). The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. British Journal of Cancer, 91(2), 355–358. Scholar
  39. 39.
    Tarutani, M., Cai, T., Dajee, M., & Khavari, P. A. (2003). Inducible activation of Ras and Raf in adult epidermis. Cancer Research, 63(2), 319–323.PubMedGoogle Scholar
  40. 40.
    Scholl, F. A., Dumesic, P. A., & Khavari, P. A. (2004). Mek1 alters epidermal growth and differentiation. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Cancer Research, 64(17), 6035–6040.PubMedCrossRefGoogle Scholar
  41. 41.
    Quadros, M. R. D., Peruzzi, F., Kari, C., & Rodeck, U. (2004). Complex regulation of signal transducers and activators of transcription 3 activation in normal and malignant keratinocytes. Cancer Research, 64(11), 3934–3939.PubMedCrossRefGoogle Scholar
  42. 42.
    Suiqing, C., Min, Z., & Lirong, C. (2005). Overexpression of phosphorylated-STAT3 correlated with the invasion and metastasis of cutaneous squamous cell carcinoma. [Comparative Study Research Support, Non-U.S. Gov't]. Journal of Dermatology, 32(5), 354–360.PubMedGoogle Scholar
  43. 43.
    Kim, D. J., Angel, J. M., Sano, S., & DiGiovanni, J. (2009). Constitutive activation and targeted disruption of signal transducer and activator of transcription 3 (Stat3) in mouse epidermis reveal its critical role in UVB-induced skin carcinogenesis. Oncogene, 28(7), 950–960.PubMedCrossRefGoogle Scholar
  44. 44.
    Chan, K. S., Sano, S., Kataoka, K., Abel, E., Carbajal, S., Beltran, L., et al. (2008). Forced expression of a constitutively active form of Stat3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis. Oncogene, 27(8), 1087–1094.PubMedCrossRefGoogle Scholar
  45. 45.
    Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., et al. (2012). Cancer treatment and survivorship statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 220–241.CrossRefGoogle Scholar
  46. 46.
    Becker, J. C., Houben, R., Schrama, D., Voigt, H., Ugurel, S., & Reisfeld, R. A. (2010). Mouse models for melanoma: a personal perspective. Experimental Dermatology, 19(2), 157–164.PubMedCrossRefGoogle Scholar
  47. 47.
    Kunisada, T., Lu, S.-Z., Yoshida, H., Nishikawa, S., Nishikawa, S.-i., Mizoguchi, M., et al. (1998). Murine cutaneous mastocytosis and epidermal melanocytosis induced by keratinocyte expression of transgenic stem cell factor. The Journal of Experimental Medicine, 187(10), 1565–1573.PubMedCrossRefGoogle Scholar
  48. 48.
    Yamazaki, F., Okamoto, H., Matsumura, Y., Tanaka, K., Kunisada, T., & Horio, T. (2005). Development of a new mouse model (xeroderma pigmentosum A-deficient, stem cell factor-transgenic) of ultraviolet B-induced melanoma. The Journal of Investigative Dermatology, 125(3), 521–525.PubMedCrossRefGoogle Scholar
  49. 49.
    Damsky, W. E., Jr., & Bosenberg, M. (2010). Mouse melanoma models and cell lines. Pigment Cell & Melanoma Research, 23(6), 853–859.CrossRefGoogle Scholar
  50. 50.
    Mintz, B., & Silvers, W. K. (1993). Transgenic mouse model of malignant skin melanoma. Proceedings of the National Academy of Sciences of the United States of America, 90(19), 8817–8821.PubMedCrossRefGoogle Scholar
  51. 51.
    Chin, L., Pomerantz, J., Polsky, D., Jacobson, M., Cohen, C., Cordon-Cardo, C., et al. (1997). Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes & Development, 11(21), 2822–2834.CrossRefGoogle Scholar
  52. 52.
    Bardeesy, N., Bastian, B. C., Hezel, A., Pinkel, D., DePinho, R. A., & Chin, L. (2001). Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Molecular and Cellular Biology, 21(6), 2144–2153.PubMedCrossRefGoogle Scholar
  53. 53.
    Hacker, E., Muller, H. K., Irwin, N., Gabrielli, B., Lincoln, D., Pavey, S., et al. (2006). Spontaneous and UV radiation-induced multiple metastatic melanomas in Cdk4R24C/R24C/TPras mice. Cancer Research, 66(6), 2946–2952.PubMedCrossRefGoogle Scholar
  54. 54.
    Kannan, K., Sharpless, N. E., Xu, J., O’Hagan, R. C., Bosenberg, M., & Chin, L. (2003). Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1221–1225.PubMedCrossRefGoogle Scholar
  55. 55.
    Sotillo, R., Garcia, J. F., Ortega, S., Martin, J., Dubus, P., Barbacid, M., et al. (2001). Invasive melanoma in Cdk4-targeted mice. [Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13312–13317.PubMedCrossRefGoogle Scholar
  56. 56.
    Powell, M. B., Hyman, P., Bell, O. D., Balmain, A., Brown, K., Alberts, D., et al. (1995). Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Molecular Carcinogenesis, 12(2), 82–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417(6892), 949–954. doi: 10.1038/nature00766.PubMedCrossRefGoogle Scholar
  58. 58.
    Goel, V. K., Ibrahim, N., Jiang, G., Singhal, M., Fee, S., Flotte, T., et al. (2009). Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene, 28(23), 2289–2298.PubMedCrossRefGoogle Scholar
  59. 59.
    Dhomen, N., Reis-Filho, J. S., da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., et al. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell, 15(4), 294–303.PubMedCrossRefGoogle Scholar
  60. 60.
    Dankort, D., Curley, D. P., Cartlidge, R. A., Nelson, B., Karnezis, A. N., Damsky, W. E., Jr., et al. (2009). BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nature Genetics, 41(5), 544–552. doi: 10.1038/ng.356.PubMedCrossRefGoogle Scholar
  61. 61.
    Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33(1), 19–20. doi: 10.1038/ng1054.PubMedCrossRefGoogle Scholar
  62. 62.
    Patton, E. E., Widlund, H. R., Kutok, J. L., Kopani, K. R., Amatruda, J. F., Murphey, R. D., et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Current Biology, 15(3), 249–254.PubMedCrossRefGoogle Scholar
  63. 63.
    Michaloglou, C., Vredeveld, L. C. W., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M. A. M., et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436(7051), 720–724. doi: 10.1038/nature03890.PubMedCrossRefGoogle Scholar
  64. 64.
    Gruis, N. A., Van der Velden, P. A., Sandkuijl, L. A., Prins, D. E., Weaver-Feldhaus, J., Kamb, A., et al. (1995). Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nature Genetics, 10(3), 351–353.PubMedCrossRefGoogle Scholar
  65. 65.
    Ruiz, A., Puig, S., Malvehy, J., Lázaro, C., Lynch, M., Gimenez-Arnau, A. M., et al. (1999). CDKN2A mutations in Spanish cutaneous malignant melanoma families and patients with multiple melanomas and other neoplasia. Journal of Medical Genetics, 36(6), 490–493.PubMedGoogle Scholar
  66. 66.
    Goldstein, A. M., Chan, M., Harland, M., Hayward, N. K., Demenais, F., Bishop, D. T., et al. (2007). Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. Journal of Medical Genetics, 44(2), 99–106.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Michael D. Gober
    • 1
  • Hasan M. Bashir
    • 1
  • John T. Seykora
    • 1
  1. 1.Department of Dermatology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations