Cancer and Metastasis Reviews

, Volume 32, Issue 1–2, pp 109–122 | Cite as

Modeling prostate cancer in mice: something old, something new, something premalignant, something metastatic

  • Shazia Irshad
  • Cory Abate-ShenEmail author


More than 15 years ago, the first generation of genetically engineered mouse (GEM) models of prostate cancer was introduced. These transgenic models utilized prostate-specific promoters to express SV40 oncogenes specifically in prostate epithelium. Since the description of these initial models, there have been a plethora of GEM models of prostate cancer representing various perturbations of oncogenes or tumor suppressors, either alone or in combination. This review describes these GEM models, focusing on their relevance for human prostate cancer and highlighting their strengths and limitations, as well as opportunities for the future.


Prostate cancer Genetically engineered mice GEM models 



We thank our colleagues in the NCI mouse models of human cancer consortium and the community of researchers who have been developing prostate cancer mouse models whose research have inspired us over the years. We are grateful to Drs. Robert Matusik, Michael Shen, Chee Wai Chua, Alvaro Aytes, and Takashi Kobayashi for comments on the manuscript. Research in the CAS laboratory is supported in part by NIH grants (CA084294, CA141535, and CA154293), the T.J. Martell Foundation for Leukemia, Cancer and AIDS Research, and the V-Foundation for Cancer Research. CAS is an American Cancer Society Research Professor supported in part by a generous gift from the F.M. Kirby Foundation.


  1. 1.
    Abate-Shen, C., & Shen, M. M. (2000). Molecular genetics of prostate cancer. Genes & Development, 14(19), 2410–2434.CrossRefGoogle Scholar
  2. 2.
    Shen, M. M., & Abate-Shen, C. (2010). Molecular genetics of prostate cancer: new prospects for old challenges. Genes & Development, 24(18), 1967–2000.CrossRefGoogle Scholar
  3. 3.
    Scher, H. I., & Sawyers, C. L. (2005). Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. Journal of Clinical Oncology, 23(32), 8253–8261.PubMedCrossRefGoogle Scholar
  4. 4.
    McNeal, J. E. (1969). Origin and development of carcinoma in the prostate. Cancer, 23, 24–34.PubMedCrossRefGoogle Scholar
  5. 5.
    McNeal, J. E. (1981). The zonal anatomy of the prostate. Prostate, 2(1), 35–49.PubMedCrossRefGoogle Scholar
  6. 6.
    McNeal, J. E. (1988). Normal histology of the prostate. The American Journal of Surgical Pathology, 12(8), 619–633.PubMedCrossRefGoogle Scholar
  7. 7.
    Timms, B. G. (2008). Prostate development: a historical perspective. Differentiation, 76(6), 565–577.PubMedCrossRefGoogle Scholar
  8. 8.
    Cunha, G. R., et al. (1987). The endocrinology and developmental biology of the prostate. Endocrine Reviews, 8(3), 338–362.PubMedCrossRefGoogle Scholar
  9. 9.
    Berquin, I. M., et al. (2005). Expression signature of the mouse prostate. Journal of Biological Chemistry, 280(43), 36442–36451.PubMedCrossRefGoogle Scholar
  10. 10.
    Gingrich, J. R., et al. (1997). Androgen-independent prostate cancer progression in the TRAMP model. Cancer Research, 57(21), 4687–4691.PubMedGoogle Scholar
  11. 11.
    Gingrich, J. R., et al. (1996). Metastatic prostate cancer in a transgenic mouse. Cancer Research, 56(18), 4096–4102.PubMedGoogle Scholar
  12. 12.
    Greenberg, N. M., et al. (1995). Prostate-cancer in a transgenic mouse. Proceedings of the National Academy of Sciences of the United States of America, 92(8), 3439–3443.PubMedCrossRefGoogle Scholar
  13. 13.
    Greenberg, N. M., et al. (1994). The rat probasin gene promoter directs hormonally and developmentally-regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Molecular Endocrinology, 8(2), 230–239.PubMedCrossRefGoogle Scholar
  14. 14.
    Chiaverotti, T., et al. (2008). Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. American Journal of Pathology, 172(1), 236–246.PubMedCrossRefGoogle Scholar
  15. 15.
    Abrahamsson, P. A. (1999). Neuroendocrine differentiation in prostatic carcinoma. Prostate, 39(2), 135–148.PubMedCrossRefGoogle Scholar
  16. 16.
    Qi, J., et al. (2010). Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell, 18(1), 23–38.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhou, Z. X., et al. (2006). Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Research, 66(16), 7889–7898.PubMedCrossRefGoogle Scholar
  18. 18.
    Bruckheimer, E. M., et al. (2000). Bcl-2 accelerates multistep prostate carcinogenesis in vivo. Oncogene, 19(46), 5251–5258.PubMedCrossRefGoogle Scholar
  19. 19.
    Thompson, T. C. (1998). Metastasis-related genes in prostate cancer: the role of caveolin-1. Cancer and Metastasis Reviews, 17(4), 439–442.PubMedCrossRefGoogle Scholar
  20. 20.
    Williams, T. M., et al. (2005). Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer—genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. Journal of Biological Chemistry, 280(26), 25134–25145.PubMedCrossRefGoogle Scholar
  21. 21.
    Abdulkadir, S. A., et al. (2001). Impaired prostate tumorigenesis in Egr1-deficient mice. Nature Medicine, 7(1), 101–107.PubMedCrossRefGoogle Scholar
  22. 22.
    Chan, J. M., et al. (1998). Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science, 279(5350), 563–566.PubMedCrossRefGoogle Scholar
  23. 23.
    Severi, G., et al. (2006). Circulating insulin-like growth factor-I and binding protein-3 and risk of prostate cancer. Cancer Epidemiology, Biomarkers & Prevention, 15(6), 1137–1141.CrossRefGoogle Scholar
  24. 24.
    Majeed, N., et al. (2005). A germ line mutation that delays prostate cancer progression and prolongs survival in a murine prostate cancer model. Oncogene, 24(29), 4736–4740.PubMedCrossRefGoogle Scholar
  25. 25.
    Sutherland, B. W., et al. (2008). Conditional deletion of insulin-like growth factor-I receptor in prostate epithelium. Cancer Research, 68(9), 3495–3504.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaplan-Lefko, P. J., et al. (2008). Enforced epithelial expression of IGF-1 causes hyperplastic prostate growth while negative selection is requisite for spontaneous metastogenesis. Oncogene, 27(20), 2868–2876.PubMedCrossRefGoogle Scholar
  27. 27.
    Tien, J. C. Y., Zhou, S. L., & Xu, J. M. (2009). The role of SRC-1 in murine prostate carcinogenesis is nonessential due to a possible compensation of SRC-3/AIB1 overexpression. International Journal of Biological Sciences, 5(3), 256–264.PubMedCrossRefGoogle Scholar
  28. 28.
    Chung, A. C., et al. (2007). Genetic ablation of the amplified-in-breast cancer 1 inhibits spontaneous prostate cancer progression in mice. Cancer Research, 67(12), 5965–5975.PubMedCrossRefGoogle Scholar
  29. 29.
    Kasper, S., et al. (1998). Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Laboratory Investigation, 78(6), 319–333.PubMedGoogle Scholar
  30. 30.
    Yan, Y., et al. (1997). Large fragment of the probasin promoter targets high levels of transgene expression to the prostate of transgenic mice. Prostate, 32(2), 129–139.PubMedCrossRefGoogle Scholar
  31. 31.
    Masumori, N., et al. (2001). A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Research, 61(5), 2239–2249.PubMedGoogle Scholar
  32. 32.
    Klezovitch, O., et al. (2004). Hepsin promotes prostate cancer progression and metastasis. Cancer Cell, 6(2), 185–195.PubMedCrossRefGoogle Scholar
  33. 33.
    Tu, W. H., et al. (2003). The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia, 5(3), 267–277.PubMedGoogle Scholar
  34. 34.
    Zhang, J. F., et al. (2000). A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology, 141(12), 4698–4710.PubMedCrossRefGoogle Scholar
  35. 35.
    Hill, R., et al. (2005). Heterogeneous tumor evolution initiated by loss of pRb function in a preclinical prostate cancer model. Cancer Research, 65(22), 10243–10254.PubMedCrossRefGoogle Scholar
  36. 36.
    Taylor, B. S., et al. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell, 18(1), 11–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Gabril, M. Y., et al. (2002). Prostate targeting: PSP94 gene promoter/enhancer region directed prostate tissue-specific expression in a transgenic mouse prostate cancer model. Gene Therapy, 9(23), 1589–1599.PubMedCrossRefGoogle Scholar
  38. 38.
    Duan, W., et al. (2005). Knockin of SV40 Tag oncogene in a mouse adenocarcinoma of the prostate model demonstrates advantageous features over the transgenic model. Oncogene, 24(9), 1510–1524.PubMedCrossRefGoogle Scholar
  39. 39.
    Scherl, A., et al. (2004). Prostatic intraepithelial neoplasia and intestinal metaplasia in prostates of probasin-RAS transgenic mice. Prostate, 59(4), 448–459.PubMedCrossRefGoogle Scholar
  40. 40.
    Garabedian, E. M., Humphrey, P. A., & Gordon, J. I. (1998). A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15382–15387.PubMedCrossRefGoogle Scholar
  41. 41.
    Maroulakou, I. G., et al. (1994). Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) Simian-virus-40 large tumor-antigen fusion gene. Proceedings of the National Academy of Sciences of the United States of America, 91(23), 11236–11240.PubMedCrossRefGoogle Scholar
  42. 42.
    PerezStable, C., et al. (1997). Prostate cancer progression, metastasis, and gene expression in transgenic mice. Cancer Research, 57(5), 900–906.Google Scholar
  43. 43.
    Ellwood-Yen, K., et al. (2003). Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell, 4(3), 223–238.PubMedCrossRefGoogle Scholar
  44. 44.
    Iwata, T., et al. (2010). MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One, 5(2), e9427.PubMedCrossRefGoogle Scholar
  45. 45.
    Jin, R. J., et al. (2008). The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Research, 68(16), 6762–6769.PubMedCrossRefGoogle Scholar
  46. 46.
    Nandana, S., et al. (2010). Hepsin cooperates with MYC in the progression of adenocarcinoma in a prostate cancer mouse model. Prostate, 70(6), 591–600.PubMedGoogle Scholar
  47. 47.
    Tomlins, S. A., et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 310(5748), 644–648.PubMedCrossRefGoogle Scholar
  48. 48.
    Tomlins, S. A., et al. (2008). Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia, 10(2), 177–188.PubMedCrossRefGoogle Scholar
  49. 49.
    Tomlins, S. A., et al. (2007). Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature, 448(7153), 595–599.PubMedCrossRefGoogle Scholar
  50. 50.
    Klezovitch, O., et al. (2008). A causal role for ERG in neoplastic transformation of prostate epithelium. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2105–2110.PubMedCrossRefGoogle Scholar
  51. 51.
    Carver, B. S., et al. (2009). Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nature Genetics, 41(5), 619–624.PubMedCrossRefGoogle Scholar
  52. 52.
    King, J. C., et al. (2009). Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nature Genetics, 41(5), 524–526.PubMedCrossRefGoogle Scholar
  53. 53.
    Majumder, P. K., et al. (2003). Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7841–7846.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen, M. L., et al. (2006). The deficiency of Akt1 is sufficient to suppress tumor development in Pten +/− mice. Genes & Development, 20(12), 1569–1574.CrossRefGoogle Scholar
  55. 55.
    Majumder, P. K., et al. (2008). A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell, 14(2), 146–155.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu, Y., et al. (2008). Targeted overexpression of Vav3 oncogene in prostatic epithelium induces nonbacterial prostatitis and prostate cancer. Cancer Research, 68(15), 6396–6406.PubMedCrossRefGoogle Scholar
  57. 57.
    Li, Z., et al. (2006). Prostatic intraepithelial neoplasia and adenocarcinoma in mice expressing a probasin-Neu oncogenic transgene. Carcinogenesis, 27(5), 1054–1067.PubMedCrossRefGoogle Scholar
  58. 58.
    Abate-Shen, C., Shen, M. M., & Gelmann, E. (2008). Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation, 76(6), 717–727.PubMedCrossRefGoogle Scholar
  59. 59.
    Bhatia-Gaur, R., et al. (1999). Roles for Nkx3.1 in prostate development and cancer. Genes & Development, 13(8), 966–977.CrossRefGoogle Scholar
  60. 60.
    Schneider, A., et al. (2000). Targeted disruption of the Nkx3.1 gene in mice results in morphogenetic defects of minor salivary glands: parallels to glandular duct morphogenesis in prostate. Mechanisms of Development, 95(1–2), 163–174.PubMedCrossRefGoogle Scholar
  61. 61.
    Abdulkadir, S. A., et al. (2002). Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Molecular and Cellular Biology, 22(5), 1495–1503.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang, X., et al. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 461(7263), 495–500.PubMedCrossRefGoogle Scholar
  63. 63.
    Sreenath, T., et al. (1999). Androgen-independent expression of hoxb-13 in the mouse prostate. Prostate, 41(3), 203–207.PubMedCrossRefGoogle Scholar
  64. 64.
    Economides, K. D., & Capecchi, M. R. (2003). Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development, 130(10), 2061–2069.PubMedCrossRefGoogle Scholar
  65. 65.
    Ewing, C. M., et al. (2012). Germline mutations in HOXB13 and prostate-cancer risk. The New England Journal of Medicine, 366(2), 141–149.PubMedCrossRefGoogle Scholar
  66. 66.
    McMullin, R. P., Mutton, L. N., & Bieberich, C. J. (2009). Hoxb13 regulatory elements mediate transgene expression during prostate organogenesis and carcinogenesis. Developmental Dynamics, 238(3), 664–672.PubMedCrossRefGoogle Scholar
  67. 67.
    Rao, V., Heard, J. C., Ghaffari, H., et al. (2012). A Hoxb13-driven reverse tetracycline transactivator system for conditional gene expression in the prostate. Prostate, 72, 1045–1051.Google Scholar
  68. 68.
    Thomsen, M. K., et al. (2008). Sox9 is required for prostate development. Developmental Biology, 316(2), 302–311.PubMedCrossRefGoogle Scholar
  69. 69.
    Thomsen, M. K., et al. (2010). SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Research, 70(3), 979–987.PubMedCrossRefGoogle Scholar
  70. 70.
    Freeman, K. W., et al. (2003). Inducible prostate intraepithelial neoplasia with reversible hyperplasia in conditional FGFR1-expressing mice. Cancer Research, 63(23), 8256–8263.PubMedGoogle Scholar
  71. 71.
    Acevedo, V. D., et al. (2007). Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell, 12(6), 559–571.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhong, C., et al. (2006). Cooperation between FGF8b overexpression and PTEN deficiency in prostate tumorigenesis. Cancer Research, 66(4), 2188–2194.PubMedCrossRefGoogle Scholar
  73. 73.
    Wu, X. T., et al. (2001). Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mechanisms of Development, 101(1–2), 61–69.PubMedCrossRefGoogle Scholar
  74. 74.
    Bruxvoort, K. J., et al. (2007). Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer Research, 67(6), 2490–2496.PubMedCrossRefGoogle Scholar
  75. 75.
    Yu, X. P., et al. (2009). Activation of beta-catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate, 69(3), 249–262.PubMedCrossRefGoogle Scholar
  76. 76.
    Placencio, V. R., et al. (2008). Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Research, 68(12), 4709–4718.PubMedCrossRefGoogle Scholar
  77. 77.
    Bhowmick, N. A., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.PubMedCrossRefGoogle Scholar
  78. 78.
    Niu, Y., et al. (2008). Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12188–12193.PubMedCrossRefGoogle Scholar
  79. 79.
    Niu, Y., et al. (2008). Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12182–12187.PubMedCrossRefGoogle Scholar
  80. 80.
    Stanbrough, M., et al. (2001). Prostatic intraepithelial neoplasia in mice expressing an androgen receptor transgene in prostate epithelium. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10823–10828.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhu, C., et al. (2011). Conditional expression of the androgen receptor induces oncogenic transformation of the mouse prostate. Journal of Biological Chemistry, 286(38), 33478–33488.PubMedCrossRefGoogle Scholar
  82. 82.
    Han, G. Z., et al. (2005). Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proceedings of the National Academy of Sciences of the United States of America, 102(4), 1151–1156.PubMedCrossRefGoogle Scholar
  83. 83.
    Wu, C. T., et al. (2007). Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 104(31), 12679–12684.PubMedCrossRefGoogle Scholar
  84. 84.
    Welsh, M., et al. (2011). Smooth muscle cell-specific knockout of androgen receptor: a new model for prostatic disease. Endocrinology, 152(9), 3541–3551.PubMedCrossRefGoogle Scholar
  85. 85.
    Yu, S., et al. (2012). Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts. Prostate, 72(4), 437–449.PubMedCrossRefGoogle Scholar
  86. 86.
    Shen, M. M., & Abate-Shen, C. (2007). Pten inactivation and the emergence of androgen-independent prostate cancer. Cancer Research, 67(14), 6535–6538.PubMedCrossRefGoogle Scholar
  87. 87.
    Di Cristofano, A., et al. (1998). Pten is essential for embryonic development and tumour suppression. Nature Genetics, 19(4), 348–355.PubMedCrossRefGoogle Scholar
  88. 88.
    Podsypanina, K., et al. (1999). Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1563–1568.PubMedCrossRefGoogle Scholar
  89. 89.
    Banach-Petrosky, W., et al. (2007). Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3.1; Pten mutant mice. Cancer Research, 67(19), 9089–9096.PubMedCrossRefGoogle Scholar
  90. 90.
    Trotman, L. C., et al. (2003). Pten dose dictates cancer progression in the prostate. PLoS Biology, 1(3), 385–396.CrossRefGoogle Scholar
  91. 91.
    Wang, S. Y., et al. (2003). Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell, 4(3), 209–221.PubMedCrossRefGoogle Scholar
  92. 92.
    Backman, S. A., et al. (2004). Early onset of neoplasia in the prostate and skin of mice with tissue-specific deletion of Pten. Proceedings of the National Academy of Sciences of the United States of America, 101(6), 1725–1730.PubMedCrossRefGoogle Scholar
  93. 93.
    Trotman, L. C., et al. (2003). Pten dose dictates cancer progression in the prostate. PLoS Biology, 1(3), E59.PubMedCrossRefGoogle Scholar
  94. 94.
    Chen, Z., et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature, 436(7051), 725–730.PubMedCrossRefGoogle Scholar
  95. 95.
    Ratnacaram, C. K., et al. (2008). Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a model of invasive prostatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2521–2526.PubMedCrossRefGoogle Scholar
  96. 96.
    Floc’h, N., Kinkade, C. W., Kobayashi, T., et al. (2012). Dual therapeutic targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model. Cancer Research, 72, 4483–4493.Google Scholar
  97. 97.
    Luchman, H. A., et al. (2008). Temporally controlled prostate epithelium-specific gene alterations. Genesis, 46(4), 229–234.PubMedCrossRefGoogle Scholar
  98. 98.
    Lee, S. H., et al. (2010). A constitutively activated form of the p110beta isoform of PI3-kinase induces prostatic intraepithelial neoplasia in mice. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11002–11007.PubMedCrossRefGoogle Scholar
  99. 99.
    Chen, M., et al. (2011). Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell, 20(2), 173–186.PubMedCrossRefGoogle Scholar
  100. 100.
    Gao, H., et al. (2004). A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17204–17209.PubMedCrossRefGoogle Scholar
  101. 101.
    Di Cristofano, A., et al. (2001). Pten and p27(KIP1) cooperate in prostate cancer tumor suppression in the mouse. Nature Genetics, 27(2), 222–224.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim, M. J., et al. (2002). Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 2884–2889.PubMedCrossRefGoogle Scholar
  103. 103.
    Abate-Shen, C., et al. (2003). Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Research, 63(14), 3886–3890.PubMedGoogle Scholar
  104. 104.
    Park, J. H., et al. (2002). Prostatic intraepithelial neoplasia in genetically engineered mice. American Journal of Pathology, 161(2), 727–735.PubMedCrossRefGoogle Scholar
  105. 105.
    Kim, J., et al. (2009). Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genetics, 5(7), e1000542.PubMedCrossRefGoogle Scholar
  106. 106.
    Kim, J., et al. (2012). A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53. Oncogene, 31(3), 322–332.PubMedCrossRefGoogle Scholar
  107. 107.
    Fernandez-Marcos, P. J., et al. (2009). Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-kappaB activation and invasive prostate carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12962–12967.PubMedCrossRefGoogle Scholar
  108. 108.
    Ding, Z., et al. (2012). Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell, 148(5), 896–907.PubMedCrossRefGoogle Scholar
  109. 109.
    Ding, Z., et al. (2011). SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature, 470(7333), 269–273.PubMedCrossRefGoogle Scholar
  110. 110.
    Wang, X. S., et al. (2011). Characterization of KRAS rearrangements in metastatic prostate cancer. Cancer Discovery, 1(1), 35–43.PubMedCrossRefGoogle Scholar
  111. 111.
    Palanisamy, N., et al. (2010). Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nature Medicine, 16(7), 793–798.PubMedCrossRefGoogle Scholar
  112. 112.
    Dankort, D., et al. (2007). A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes & Development, 21(4), 379–384.CrossRefGoogle Scholar
  113. 113.
    Wang, J., et al. (2012). Braf activation cooperates with Pten loss to regulate c-Myc expression in advanced prostate cancer. Cancer Research, 72, 4765–4776.Google Scholar
  114. 114.
    Tuveson, D. A., et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell, 5(4), 375–387.PubMedCrossRefGoogle Scholar
  115. 115.
    Mulholland, D. J., et al. (2012). Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Research, 72(7), 1878–1889.PubMedCrossRefGoogle Scholar
  116. 116.
    Pearson, H. B., et al. (2011). SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia. The Journal of Clinical Investigation, 121(11), 4257–4267.PubMedCrossRefGoogle Scholar
  117. 117.
    Pearson, H. B., Phesse, T. J., & Clarke, A. R. (2009). K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Research, 69(1), 94–101.PubMedCrossRefGoogle Scholar
  118. 118.
    Gingrich, J. R., et al. (1999). Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer and Prostatic Diseases, 2(2), 70–75.PubMedCrossRefGoogle Scholar
  119. 119.
    Kasper, S., et al. (1998). Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Laboratory Investigation, 78(3), 319–333.PubMedGoogle Scholar
  120. 120.
    Kim, M. J., et al. (2002). Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Research, 62(11), 2999–3004.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Herbert Irving Comprehensive Cancer Center, Departments of Urology and Pathology & Cell BiologyColumbia University College of Physicians and SurgeonsNew YorkUSA
  2. 2.Herbert Irving Comprehensive Cancer CenterColumbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations