Cancer and Metastasis Reviews

, Volume 32, Issue 1–2, pp 25–37

Mouse models of BRCA1 and their application to breast cancer research

Article

Abstract

Germline mutations of human breast cancer-associated gene 1 (BRCA1) predispose women to breast and ovarian cancers. In mice, over 20 distinct mutations, including null, hypomorphic, isoform, conditional, and point mutations, have been created to study functions of Brca1 in mammary development and tumorigenesis. Analyses using these mutant mice have yielded an enormous amount of information that greatly facilitates our understanding of the gender- and tissue-specific tumor suppressor functions of BRCA1, as well as enriches our insights into applying these preclinical models of disease to breast cancer research. Here, we review features of these mutant mice and their applications to cancer prevention and therapeutic treatment.

Keywords

BRCA1 Breast cancer Disease mechanism Modeling Therapy 

References

  1. 1.
    DeSantis, C., Siegel, R., Bandi, P., & Jemal, A. (2011). Breast cancer statistics, 2011. CA: a Cancer Journal for Clinicians, 61, 409–418.CrossRefGoogle Scholar
  2. 2.
    Hall, J. M., Lee, M. K., Newman, B., Morrow, J. E., Anderson, L. A., Huey, B., & King, M. C. (1990). Linkage of early-onset familial breast cancer to chromosome 17q21. Science, 250, 1684–1689.PubMedCrossRefGoogle Scholar
  3. 3.
    Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., Liu, Q., Cochran, C., Bennett, L. M., Ding, W., et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266, 66–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Alberg, A. J., & Helzlsouer, K. J. (1997). Epidemiology, prevention, and early detection of breast cancer. Current Opinion in Oncology, 9, 505–511.PubMedCrossRefGoogle Scholar
  5. 5.
    Brody, L. C., & Biesecker, B. B. (1998). Breast cancer susceptibility genes. BRCA1 and BRCA2. Medicine (Baltimore), 77, 208–226.CrossRefGoogle Scholar
  6. 6.
    Eccles, D. M., & Pichert, G. (2005). Familial non-BRCA1/BRCA2-associated breast cancer. The Lancet Oncology, 6, 705–711.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang, J., & Powell, S. N. (2005). The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Molecular Cancer Research, 3, 531–539.PubMedCrossRefGoogle Scholar
  8. 8.
    Lane, T. F., Deng, C., Elson, A., Lyu, M. S., Kozak, C. A., & Leder, P. (1995). Expression of Brca1 is associated with terminal differentiation of ectodermally and mesodermally derived tissues in mice. Genes & Development, 9, 2712–2722.CrossRefGoogle Scholar
  9. 9.
    ElShamy, W. M., & Livingston, D. M. (2004). Identification of BRCA1-IRIS, a BRCA1 locus product. Nature Cell Biology, 6, 954–967. Epub 2004 Sep 2026.PubMedCrossRefGoogle Scholar
  10. 10.
    Thakur, S., Zhang, H. B., Peng, Y., Le, H., Carroll, B., Ward, T., Yao, J., Farid, L. M., Couch, F. J., Wilson, R. B., & Weber, B. L. (1997). Localization of BRCA1 and a splice variant identifies the nuclear localization signal. Molecular and Cellular Biology, 17, 444–452.PubMedGoogle Scholar
  11. 11.
    Wilson, C. A., Payton, M. N., Elliott, G. S., Buaas, F. W., Cajulis, E. E., Grosshans, D., Ramos, L., Reese, D. M., Slamon, D. J., & Calzone, F. J. (1997). Differential subcellular localization, expression and biological toxicity of BRCA1 and the splice variant BRCA1-delta11b. Oncogene, 14, 1–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Xu, X., Weaver, Z., Linke, S. P., Li, C., Gotay, J., Wang, X. W., Harris, C. C., Ried, T., & Deng, C. X. (1999). Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Molecular Cell, 3, 389–395.PubMedCrossRefGoogle Scholar
  13. 13.
    Paterson, J. W. (1998). BRCA1: a review of structure and putative functions. Disease Markers, 13, 261–274.PubMedGoogle Scholar
  14. 14.
    Deng, C. X. (2006). BRCA1: cell cycle checkpoint, genetic instability, DNA damage response, and cancer evolution. Nucleic Acids Research, 34, 1416–1426.PubMedCrossRefGoogle Scholar
  15. 15.
    Deng, C. X., & Brodie, S. G. (2000). Roles of BRCA1 and its interacting proteins. Bioessays, 22, 728–737.PubMedCrossRefGoogle Scholar
  16. 16.
    Deng, C. X. (2002). Tumor formation in Brca1 conditional mutant mice. Environmental and Molecular Mutagenesis, 39, 171–177.PubMedCrossRefGoogle Scholar
  17. 17.
    Deng, C. X., & Wang, R. H. (2003). Roles of BRCA1 in DNA damage repair: a link between development and cancer. Human Molecular Genetics, 12, R113–R123.PubMedCrossRefGoogle Scholar
  18. 18.
    Diaz-Cruz, E. S., Cabrera, M. C., Nakles, R., Rutstein, B. H., & Furth, P. A. (2010). BRCA1 deficient mouse models to study pathogenesis and therapy of triple negative breast cancer. Breast Disease, 32, 85–97.PubMedGoogle Scholar
  19. 19.
    Drost, R. M., & Jonkers, J. (2009). Preclinical mouse models for BRCA1-associated breast cancer. British Journal of Cancer, 101, 1651–1657.PubMedCrossRefGoogle Scholar
  20. 20.
    Hu, Y. (2009). BRCA1, hormone, and tissue-specific tumor suppression. International Journal of Biological Sciences, 5, 20–27.PubMedCrossRefGoogle Scholar
  21. 21.
    Roy, R., Chun, J., & Powell, S. N. (2012). BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nature Reviews. Cancer, 12, 68–78.CrossRefGoogle Scholar
  22. 22.
    Venkitaraman, A. R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell, 108, 171–182.PubMedCrossRefGoogle Scholar
  23. 23.
    Capecchi, M. R. (1989). Altering the genome by homologous recombination. Science, 244, 1288–1292 [Review].PubMedCrossRefGoogle Scholar
  24. 24.
    Xu, X., Li, C., Garrett-Beal, L., Larson, D., Wynshaw-Boris, A., & Deng, C. X. (2001). Direct removal in the mouse of a floxed neo gene from a three-loxP conditional knockout allele by two novel approaches. Genesis, 30, 1–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hakem, R., de la Pompa, J. L., Elia, A., Potter, J., & Mak, T. W. (1997). Partial rescue of Brca1 (5–6) early embryonic lethality by p53 or p21 null mutation. Nature Genetics, 16, 298–302.PubMedCrossRefGoogle Scholar
  26. 26.
    Ludwig, T., Chapman, D. L., Papaioannou, V. E., & Efstratiadis, A. (1997). Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes & Development, 11, 1226–1241.CrossRefGoogle Scholar
  27. 27.
    Shen, S. X., Weaver, Z., Xu, X., Li, C., Weinstein, M., Chen, L., Guan, X. Y., Ried, T., & Deng, C. X. (1998). A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene, 17, 3115–3124.PubMedCrossRefGoogle Scholar
  28. 28.
    Ludwig, T., Fisher, P., Ganesan, S., & Efstratiadis, A. (2001). Tumorigenesis in mice carrying a truncating Brca1 mutation. Genes & Development, 15, 1188–1193.CrossRefGoogle Scholar
  29. 29.
    Kim, S. S., Cao, L., Lim, S. C., Li, C., Wang, R. H., Xu, X., Bachelier, R., & Deng, C. X. (2006). Hyperplasia and spontaneous tumor development in the gynecologic system in mice lacking the BRCA1-Delta11 isoform. Molecular and Cellular Biology, 26, 6983–6992.PubMedCrossRefGoogle Scholar
  30. 30.
    Xu, X., Qiao, W., Linke, S. P., Cao, L., Li, W. M., Furth, P. A., Harris, C. C., & Deng, C. X. (2001). Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nature Genetics, 28, 266–271.PubMedCrossRefGoogle Scholar
  31. 31.
    Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., & Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356, 215–221.PubMedCrossRefGoogle Scholar
  32. 32.
    Bachelier, R., Xu, X., Wang, X., Li, W., Naramura, M., Gu, H., & Deng, C. X. (2003). Normal lymphocyte development and thymic lymphoma formation in Brca1 exon 11-deficient mice. Oncogene, 22, 528–537.PubMedCrossRefGoogle Scholar
  33. 33.
    Cao, L., Li, W., Kim, S., Brodie, S. G., & Deng, C. X. (2003). Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes & Development, 17, 201–213.CrossRefGoogle Scholar
  34. 34.
    Cao, L., Xu, X., Cao, L. L., Wang, R. H., Coumoul, X., Kim, S. S., & Deng, C. X. (2007). Absence of full-length Brca1 sensitizes mice to oxidative stress and carcinogen-induced tumorigenesis in the esophagus and forestomach. Carcinogenesis, 28, 1401–1407.PubMedCrossRefGoogle Scholar
  35. 35.
    Crook, T., Brooks, L. A., Crossland, S., Osin, P., Barker, K. T., Waller, J., Philp, E., Smith, P. D., Yulug, I., Peto, J., Parker, G., Allday, M. J., Crompton, M. R., & Gusterson, B. A. (1998). p53 mutation with frequent novel condons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours. Oncogene, 17, 1681–1689.PubMedCrossRefGoogle Scholar
  36. 36.
    Crook, T., Crossland, S., Crompton, M. R., Osin, P., & Gusterson, B. A. (1997). p53 mutations in BRCA1-associated familial breast cancer. Lancet, 350, 638–639.PubMedCrossRefGoogle Scholar
  37. 37.
    Bunting, S. F., Callen, E., Wong, N., Chen, H. T., Polato, F., Gunn, A., Bothmer, A., Feldhahn, N., Fernandez-Capetillo, O., Cao, L., Xu, X., Deng, C. X., Finkel, T., Nussenzweig, M., Stark, J. M., & Nussenzweig, A. (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell, 141, 243–254.PubMedCrossRefGoogle Scholar
  38. 38.
    Cao, L., Kim, S., Xiao, C., Wang, R. H., Coumoul, X., Wang, X., Li, W., Xu, X., De Soto, J., Takai, H., Mai, S., Elledge, S. J., Motoyama, N., & Deng, C. (2006). ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency. EMBO Journal, 25, 2167–2177.PubMedCrossRefGoogle Scholar
  39. 39.
    Cao, L., Xu, X., Bunting, S. F., Liu, J., Wang, R. H., Cao, L. L., Wu, J. J., Peng, T. N., Chen, J., Nussenzweig, A., Deng, C. X., & Finkel, T. (2009). A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. Molecular Cell, 35, 534–541.PubMedCrossRefGoogle Scholar
  40. 40.
    Bunting, S. F., Callen, E., Kozak, M. L., Kim, J. M., Wong, N., Lopez-Contreras, A. J., Ludwig, T., Baer, R., Faryabi, R. B., Malhowski, A., Chen, H. T., Fernandez-Capetillo, O., D’Andrea, A., & Nussenzweig, A. (2012). BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Molecular Cell, 46(2), 125–135.PubMedCrossRefGoogle Scholar
  41. 41.
    Xu, X., Wagner, K. U., Larson, D., Weaver, Z., Li, C., Ried, T., Hennighausen, L., Wynshaw-Boris, A., & Deng, C. X. (1999). Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genetics, 22, 37–43 [see comments].PubMedCrossRefGoogle Scholar
  42. 42.
    Wagner, K. U., Wall, R. J., St-Onge, L., Gruss, P., Wynshaw-Boris, A., Garrett, L., Li, M., Furth, P. A., & Hennighausen, L. (1997). Cre-mediated gene deletion in the mammary gland. Nucleic Acids Research, 25, 4323–4330.PubMedCrossRefGoogle Scholar
  43. 43.
    Weaver, Z., Montagna, C., Xu, X., Howard, T., Gadina, M., Brodie, S. G., Deng, C. X., & Ried, T. (2002). Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene, 21, 5097–5107.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang, R. H., Yu, H., & Deng, C. X. (2004). A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 101, 17108–17113.PubMedCrossRefGoogle Scholar
  45. 45.
    Nanda, R. (2011). “Targeting” triple-negative breast cancer: the lessons learned from BRCA1-associated breast cancers. Seminars in Oncology, 38, 254–262.PubMedCrossRefGoogle Scholar
  46. 46.
    Rastelli, F., Biancanelli, S., Falzetta, A., Martignetti, A., Casi, C., Bascioni, R., Giustini, L., & Crispino, S. (2010). Triple-negative breast cancer: current state of the art. Tumori, 96, 875–888.PubMedGoogle Scholar
  47. 47.
    Cortez, D., Wang, Y., Qin, J., & Elledge, S. J. (1999). Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science, 286, 1162–1166.PubMedCrossRefGoogle Scholar
  48. 48.
    Lou, Z., Chini, C. C., Minter-Dykhouse, K., & Chen, J. (2003). Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. Journal of Biological Chemistry, 278, 13599–13602.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou, B. B., & Elledge, S. J. (2000). The DNA damage response: putting checkpoints in perspective. Nature, 408, 433–439.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim, S. S., Cao, L., Baek, H. J., Lim, S. C., Li, C., Wang, R. H., Xu, X., Cho, K. H., & Deng, C. X. (2009). Impaired skin and mammary gland development and increased gamma-irradiation-induced tumorigenesis in mice carrying a mutation of S1152-ATM phosphorylation site in Brca1. Cancer Research, 69, 9291–9300.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim, S. S., Cao, L., Li, C., Xu, X., Huber, L. J., Chodosh, L. A., & Deng, C. X. (2004). Uterus hyperplasia and increased carcinogen-induced tumorigenesis in mice carrying a targeted mutation of the Chk2 phosphorylation site in Brca1. Molecular and Cellular Biology, 24, 9498–9507.PubMedCrossRefGoogle Scholar
  52. 52.
    Chang, S., Biswas, K., Martin, B. K., Stauffer, S., & Sharan, S. K. (2009). Expression of human BRCA1 variants in mouse ES cells allows functional analysis of BRCA1 mutations. The Journal of Clinical Investigation, 119, 3160–3171.PubMedCrossRefGoogle Scholar
  53. 53.
    Deng, C. X. (2002). Roles of BRCA1 in centrosome duplication. Oncogene, 21, 6222–6227.PubMedCrossRefGoogle Scholar
  54. 54.
    Turner, J. M., Aprelikova, O., Xu, X., Wang, R., Kim, S., Chandramouli, G. V., Barrett, J. C., Burgoyne, P. S., & Deng, C. X. (2004). BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Current Biology, 14, 2135–2142.PubMedCrossRefGoogle Scholar
  55. 55.
    Xu, X., Aprelikova, O., Moens, P., Deng, C. X., & Furth, P. A. (2003). Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development, 130, 2001–2012.PubMedCrossRefGoogle Scholar
  56. 56.
    Monteiro, A. N. (2003). BRCA1: the enigma of tissue-specific tumor development. Trends in Genetics, 19, 312–315.PubMedCrossRefGoogle Scholar
  57. 57.
    Elledge, S. J., & Amon, A. (2002). The BRCA1 suppressor hypothesis: an explanation for the tissue-specific tumor development in BRCA1 patients. Cancer Cell, 1, 129–132.PubMedCrossRefGoogle Scholar
  58. 58.
    Trauernicht, A. M., & Boyer, T. G. (2003). BRCA1 and estrogen signaling in breast cancer. Breast Disease, 18, 11–20.PubMedGoogle Scholar
  59. 59.
    Calderon-Margalit, R., & Paltiel, O. (2004). Prevention of breast cancer in women who carry BRCA1 or BRCA2 mutations: a critical review of the literature. International Journal of Cancer, 112, 357–364.CrossRefGoogle Scholar
  60. 60.
    Gadducci, A., Biglia, N., Sismondi, P., & Genazzani, A. R. (2005). Breast cancer and sex steroids: critical review of epidemiological, experimental and clinical investigations on etiopathogenesis, chemoprevention and endocrine treatment of breast cancer. Gynecological Endocrinology, 20, 343–360.PubMedCrossRefGoogle Scholar
  61. 61.
    Prall, O. W., Rogan, E. M., & Sutherland, R. L. (1998). Estrogen regulation of cell cycle progression in breast cancer cells. The Journal of Steroid Biochemistry and Molecular Biology, 65, 169–174.PubMedCrossRefGoogle Scholar
  62. 62.
    Fan, S., Wang, J., Yuan, R., Ma, Y., Meng, Q., Erdos, M. R., Pestell, R. G., Yuan, F., Auborn, K. J., Goldberg, I. D., & Rosen, E. M. (1999). BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science, 284, 1354–1356.PubMedCrossRefGoogle Scholar
  63. 63.
    Zheng, L., Annab, L. A., Afshari, C. A., Lee, W. H., & Boyer, T. G. (2001). BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America, 98, 9587–9592.PubMedCrossRefGoogle Scholar
  64. 64.
    Hu, Y., Ghosh, S., Amleh, A., Yue, W., Lu, Y., Katz, A., & Li, R. (2005). Modulation of aromatase expression by BRCA1: a possible link to tissue-specific tumor suppression. Oncogene, 24, 8343–8348.PubMedCrossRefGoogle Scholar
  65. 65.
    Jones, L. P., Tilli, M. T., Assefnia, S., Torre, K., Halama, E. D., Parrish, A., Rosen, E. M., & Furth, P. A. (2008). Activation of estrogen signaling pathways collaborates with loss of Brca1 to promote development of ERalpha-negative and ERalpha-positive mammary preneoplasia and cancer. Oncogene, 27, 794–802.PubMedCrossRefGoogle Scholar
  66. 66.
    Li, W., Xiao, C., Vonderhaar, B. K., & Deng, C. X. (2007). A role of estrogen/ERalpha signaling in BRCA1-associated tissue-specific tumor formation. Oncogene, 26, 7204–7212.PubMedCrossRefGoogle Scholar
  67. 67.
    Eisinger, F., Jacquemier, J., Nogues, C., Birnbaum, D., & Sobol, H. (1999). Steroid receptors in hereditary breast carcinomas associated with BRCA1 or BRCA2 mutations or unknown susceptibility genes. Cancer, 85, 2291–2295.PubMedCrossRefGoogle Scholar
  68. 68.
    Johannsson, O. T., Idvall, I., Anderson, C., Borg, A., Barkardottir, R. B., Egilsson, V., & Olsson, H. (1997). Tumour biological features of BRCA1-induced breast and ovarian cancer. European Journal of Cancer, 33, 362–371.PubMedCrossRefGoogle Scholar
  69. 69.
    Karp, S. E., Tonin, P. N., Begin, L. R., Martinez, J. J., Zhang, J. C., Pollak, M. N., & Foulkes, W. D. (1997). Influence of BRCA1 mutations on nuclear grade and estrogen receptor status of breast carcinoma in Ashkenazi Jewish women. Cancer, 80, 435–441.PubMedCrossRefGoogle Scholar
  70. 70.
    Foulkes, W. D., Metcalfe, K., Sun, P., Hanna, W. M., Lynch, H. T., Ghadirian, P., Tung, N., Olopade, O. I., Weber, B. L., McLennan, J., Olivotto, I. A., Begin, L. R., & Narod, S. A. (2004). Estrogen receptor status in BRCA1- and BRCA2-related breast cancer: the influence of age, grade, and histological type. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 10, 2029–2034.CrossRefGoogle Scholar
  71. 71.
    Hosey, A. M., Gorski, J. J., Murray, M. M., Quinn, J. E., Chung, W. Y., Stewart, G. E., James, C. R., Farragher, S. M., Mulligan, J. M., Scott, A. N., Dervan, P. A., Johnston, P. G., Couch, F. J., Daly, P. A., Kay, E., McCann, A., Mullan, P. B., & Harkin, D. P. (2007). Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. Journal of the National Cancer Institute, 99, 1683–1694.PubMedCrossRefGoogle Scholar
  72. 72.
    Barone, I., Brusco, L., & Fuqua, S. A. (2010). Estrogen receptor mutations and changes in downstream gene expression and signaling. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 16, 2702–2708.CrossRefGoogle Scholar
  73. 73.
    Cui, Y., Zhang, M., Pestell, R., Curran, E. M., Welshons, W. V., & Fuqua, S. A. (2004). Phosphorylation of estrogen receptor alpha blocks its acetylation and regulates estrogen sensitivity. Cancer Research, 64, 9199–9208.PubMedCrossRefGoogle Scholar
  74. 74.
    Herynk, M. H., & Fuqua, S. A. (2004). Estrogen receptor mutations in human disease. Endocrine Reviews, 25, 869–898.PubMedCrossRefGoogle Scholar
  75. 75.
    Ma, Y., Fan, S., Hu, C., Meng, Q., Fuqua, S. A., Pestell, R. G., Tomita, Y. A., & Rosen, E. M. (2010). BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha. Molecular Endocrinology, 24, 76–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Kauff, N. D., Satagopan, J. M., Robson, M. E., Scheuer, L., Hensley, M., Hudis, C. A., Ellis, N. A., Boyd, J., Borgen, P. I., Barakat, R. R., Norton, L., Castiel, M., Nafa, K., & Offit, K. (2002). Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. The New England Journal of Medicine, 346, 1609–1615.PubMedCrossRefGoogle Scholar
  77. 77.
    Bachelier, R., Li, C., Qiao, W., Furth, P. A., Lubet, R. A., & Deng, C. X. (2005). Effects of bilateral oophorectomy on mammary tumor formation in breast cancer associated gene 1 (Brca1) mutant mice. Oncology Reports, 14, 1117–1120.PubMedGoogle Scholar
  78. 78.
    Ma, Y., Katiyar, P., Jones, L. P., Fan, S., Zhang, Y., Furth, P. A., & Rosen, E. M. (2006). The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Molecular Endocrinology, 20, 14–34.PubMedCrossRefGoogle Scholar
  79. 79.
    Poole, A. J., Li, Y., Kim, Y., Lin, S. C., Lee, W. H., & Lee, E. Y. (2006). Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science, 314, 1467–1470.PubMedCrossRefGoogle Scholar
  80. 80.
    Burga, L. N., Hu, H., Juvekar, A., Tung, N. M., Troyan, S. L., Hofstatter, E. W., & Wulf, G. M. (2011). Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast Cancer Research: BCR, 13, R30.PubMedCrossRefGoogle Scholar
  81. 81.
    Rottenberg, S., Nygren, A. O., Pajic, M., van Leeuwen, F. W., van der Heijden, I., van de Wetering, K., Liu, X., de Visser, K. E., Gilhuijs, K. G., van Tellingen, O., Schouten, J. P., Jonkers, J., & Borst, P. (2007). Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 104, 12117–12122.PubMedCrossRefGoogle Scholar
  82. 82.
    Shafee, N., Smith, C. R., Wei, S., Kim, Y., Mills, G. B., Hortobagyi, G. N., Stanbridge, E. J., & Lee, E. Y. (2008). Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Research, 68, 3243–3250.PubMedCrossRefGoogle Scholar
  83. 83.
    Byrski, T., Huzarski, T., Dent, R., Gronwald, J., Zuziak, D., Cybulski, C., Kladny, J., Gorski, B., Lubinski, J., & Narod, S. A. (2009). Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Research and Treatment, 115, 359–363.PubMedCrossRefGoogle Scholar
  84. 84.
    Bryant, H. E., & Helleday, T. (2004). Poly(ADP-ribose) polymerase inhibitors as potential chemotherapeutic agents. Biochemical Society Transactions, 32, 959–961.PubMedCrossRefGoogle Scholar
  85. 85.
    Dantzer, F., Schreiber, V., Niedergang, C., Trucco, C., Flatter, E., De La Rubia, G., Oliver, J., Rolli, V., Menissier-de Murcia, J., & de Murcia, G. (1999). Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie, 81, 69–75.PubMedCrossRefGoogle Scholar
  86. 86.
    Bryant, H. E., Schultz, N., Thomas, H. D., Parker, K. M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N. J., & Helleday, T. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 434, 913–917.PubMedCrossRefGoogle Scholar
  87. 87.
    Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N., Johnson, D. A., Richardson, T. B., Santarosa, M., Dillon, K. J., Hickson, I., Knights, C., Martin, N. M., Jackson, S. P., Smith, G. C., & Ashworth, A. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434, 917–921.PubMedCrossRefGoogle Scholar
  88. 88.
    De Soto, J. A., Wang, X., Tominaga, Y., Wang, R. H., Cao, L., Qiao, W., Li, C., Xu, X., Skoumbourdis, A. P., Prindiville, S. A., Thomas, C. J., & Deng, C. X. (2006). The inhibition and treatment of breast cancer with poly (ADP-ribose) polymerase (PARP-1) inhibitors. International Journal of Biological Sciences, 2, 179–185.PubMedCrossRefGoogle Scholar
  89. 89.
    De Soto, J. A., & Deng, C. (2006). PARP-1 inhibitors, are they the long-sought genetically specific drugs for BRCA1/2-associated breast cancers? International Journal of Medical Sciences, 3, 117–123.PubMedCrossRefGoogle Scholar
  90. 90.
    Rottenberg, S., Jaspers, J. E., Kersbergen, A., van der Burg, E., Nygren, A. O., Zander, S. A., Derksen, P. W., de Bruin, M., Zevenhoven, J., Lau, A., Boulter, R., Cranston, A., O’Connor, M. J., Martin, N. M., Borst, P., & Jonkers, J. (2008). High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proceedings of the National Academy of Sciences of the United States of America, 105, 17079–17084.PubMedCrossRefGoogle Scholar
  91. 91.
    Fong, P. C., Boss, D. S., Yap, T. A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O’Connor, M. J., Ashworth, A., Carmichael, J., Kaye, S. B., Schellens, J. H., & de Bono, J. S. (2009). Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. The New England Journal of Medicine, 361, 123–134.PubMedCrossRefGoogle Scholar
  92. 92.
    Foulkes, W. D. (2004). BRCA1 functions as a breast stem cell regulator. Journal of Medical Genetics, 41, 1–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Somasundaram, V., & Srinivas, P. (2010). Insights into the targeted elimination of BRCA1-defective cancer stem cells. Medicinal Research Reviews, 32(5), 948–967.PubMedCrossRefGoogle Scholar
  94. 94.
    Hakem, R., de la Pompa, J. L., Sirard, C., Mo, R., Woo, M., Hakem, A., Wakeham, A., Potter, J., Reitmair, A., Billia, F., Firpo, E., Hui, C. C., Roberts, J., Rossant, J., & Mak, T. W. (1996). The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell, 85, 1009–1023.PubMedCrossRefGoogle Scholar
  95. 95.
    Liu, C. Y., Flesken-Nikitin, A., Li, S., Zeng, Y., & Lee, W. H. (1996). Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes & Development, 10, 1835–1843.CrossRefGoogle Scholar
  96. 96.
    Gowen, L. C., Johnson, B. L., Latour, A. M., Sulik, K. K., & Koller, B. H. (1996). Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nature Genetics, 12, 191–194.PubMedCrossRefGoogle Scholar
  97. 97.
    Hohenstein, P., Kielman, M. F., Breukel, C., Bennett, L. M., Wiseman, R., Krimpenfort, P., Cornelisse, C., van Ommen, G. J., Devilee, P., & Fodde, R. (2001). A targeted mouse Brca1 mutation removing the last BRCT repeat results in apoptosis and embryonic lethality at the headfold stage. Oncogene, 20, 2544–2550.PubMedCrossRefGoogle Scholar
  98. 98.
    Liu, X., Holstege, H., van der Gulden, H., Treur-Mulder, M., Zevenhoven, J., Velds, A., Kerkhoven, R. M., van Vliet, M. H., Wessels, L. F., Peterse, J. L., Berns, A., & Jonkers, J. (2007). Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 104, 12111–12116.PubMedCrossRefGoogle Scholar
  99. 99.
    McCarthy, A., Savage, K., Gabriel, A., Naceur, C., Reis-Filho, J. S., & Ashworth, A. (2007). A mouse model of basal-like breast carcinoma with metaplastic elements. The Journal of Pathology, 211, 389–398.PubMedCrossRefGoogle Scholar
  100. 100.
    Shakya, R., Szabolcs, M., McCarthy, E., Ospina, E., Basso, K., Nandula, S., Murty, V., Baer, R., & Ludwig, T. (2008). The basal-like mammary carcinomas induced by Brca1 or Bard1 inactivation implicate the BRCA1/BARD1 heterodimer in tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 105, 7040–7045.PubMedCrossRefGoogle Scholar
  101. 101.
    Mak, T. W., Hakem, A., McPherson, J. P., Shehabeldin, A., Zablocki, E., Migon, E., Duncan, G. S., Bouchard, D., Wakeham, A., Cheung, A., Karaskova, J., Sarosi, I., Squire, J., Marth, J., & Hakem, R. (2000). Brcal required for T cell lineage development but not TCR loci rearrangement. Nature Immunology, 1, 77–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Berton, T. R., Matsumoto, T., Page, A., Conti, C. J., Deng, C. X., Jorcano, J. L., & Johnson, D. G. (2003). Tumor formation in mice with conditional inactivation of Brca1 in epithelial tissues. Oncogene, 22, 5415–5426.PubMedCrossRefGoogle Scholar
  103. 103.
    Chodankar, R., Kwang, S., Sangiorgi, F., Hong, H., Yen, H. Y., Deng, C., Pike, M. C., Shuler, C. F., Maxson, R., & Dubeau, L. (2005). Cell-nonautonomous induction of ovarian and uterine serous cystadenomas in mice lacking a functional Brca1 in ovarian granulosa cells. Current Biology, 15, 561–565.PubMedCrossRefGoogle Scholar
  104. 104.
    Quinn, B. A., Brake, T., Hua, X., Baxter-Jones, K., Litwin, S., Ellenson, L. H., & Connolly, D. C. (2009). Induction of ovarian leiomyosarcomas in mice by conditional inactivation of Brca1 and p53. PLoS One, 4, e8404.PubMedCrossRefGoogle Scholar
  105. 105.
    Shakya, R., Reid, L. J., Reczek, C. R., Cole, F., Egli, D., Lin, C. S., deRooij, D. G., Hirsch, S., Ravi, K., Hicks, J. B., Szabolcs, M., Jasin, M., Baer, R., & Ludwig, T. (2011). BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science, 334, 525–528.PubMedCrossRefGoogle Scholar
  106. 106.
    Pulvers, J. N., & Huttner, W. B. (2009). Brca1 is required for embryonic development of the mouse cerebral cortex to normal size by preventing apoptosis of early neural progenitors. Development, 136, 1859–1868.PubMedCrossRefGoogle Scholar
  107. 107.
    Teoh, H., Quan, A., Creighton, A. K., Annie Bang, K. W., Singh, K. K., Shukla, P. C., Gupta, N., Pan, Y., Lovren, F., Leong-Poi, H., Al-Omran, M., & Verma, S. (2012). BRCA1 gene therapy reduces systemic inflammatory response and multiple organ failure and improves survival in experimental sepsis. Gene Therapy. doi:10.1038/gt.2011.214.
  108. 108.
    Yang, Y., Swaminathan, S., Martin, B. K., & Sharan, S. K. (2003). Aberrant splicing induced by missense mutations in BRCA1: clues from a humanized mouse model. Human Molecular Genetics, 12, 2121–2131.PubMedCrossRefGoogle Scholar
  109. 109.
    Drost, R., Bouwman, P., Rottenberg, S., Boon, U., Schut, E., Klarenbeek, S., Klijn, C., van der Heijden, I., van der Gulden, H., Wientjens, E., Pieterse, M., Catteau, A., Green, P., Solomon, E., Morris, J. R., & Jonkers, J. (2011). BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell, 20, 797–809.PubMedCrossRefGoogle Scholar
  110. 110.
    Kim, E. H., Deng, C., Sporn, M. B., Royce, D. B., Risingsong, R., Williams, C. R., & Liby, K. T. (2012). CDDO-methyl ester delays breast cancer development in BRCA1-mutated mice. Cancer Prevention Research (Philadelphia, Pa.), 5, 89–97.CrossRefGoogle Scholar
  111. 111.
    Kim, E. H., Deng, C. X., Sporn, M. B., & Liby, K. T. (2011). CDDO-imidazolide induces DNA damage, G2/M arrest and apoptosis in BRCA1-mutated breast cancer cells. Cancer Prevention Research (Philadelphia, Pa.), 4, 425–434.CrossRefGoogle Scholar
  112. 112.
    Tominaga, Y., Wang, A., Wang, R. H., Wang, X., Cao, L., & Deng, C. X. (2007). Genistein inhibits Brca1 mutant tumor growth through activation of DNA damage checkpoints, cell cycle arrest, and mitotic catastrophe. Cell Death and Differentiation, 14, 472–479.PubMedCrossRefGoogle Scholar
  113. 113.
    Wang, R. H., Zheng, Y., Kim, H. S., Xu, X., Cao, L., Luhasen, T., Lee, M. H., Xiao, C., Vassilopoulos, A., Chen, W., Gardner, K., Man, Y. G., Hung, M. C., Finkel, T., & Deng, C. X. (2008). Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Molecular Cell, 32, 11–20.PubMedCrossRefGoogle Scholar
  114. 114.
    Zander, S. A., Kersbergen, A., van der Burg, E., de Water, N., van Tellingen, O., Gunnarsdottir, S., Jaspers, J. E., Pajic, M., Nygren, A. O., Jonkers, J., Borst, P., & Rottenberg, S. (2010). Sensitivity and acquired resistance of BRCA1; p53-deficient mouse mammary tumors to the topoisomerase I inhibitor topotecan. Cancer Research, 70, 1700–1710.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2012

Authors and Affiliations

  1. 1.Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations