Cancer and Metastasis Reviews

, Volume 32, Issue 1–2, pp 211–227 | Cite as

Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit?

NON-THEMATIC REVIEW

Abstract

Enhanced drug extrusion from cells due to the overexpression of the ATP-binding cassette (ABC) drug transporters inhibits the cytotoxic effects of structurally diverse and mechanistically unrelated anticancer agents and is a major cause of multidrug resistance (MDR) of human malignancies. Multiple compounds can suppress the activity of these efflux transporters and sensitize resistant tumor cells, but despite promising preclinical and early clinical data, they have yet to find a role in oncologic practice. Based on the knowledge of the structure, function, and distribution of MDR-related ABC transporters and the results of their preclinical and clinical evaluation, we discuss probable reasons why these inhibitors have not improved the outcome of therapy for cancer patients. We also outline new MDR-reversing strategies that directly target ABC transporters or circumvent relevant signaling pathways.

Keywords

ATP-binding cassette transporter Breast cancer resistance protein Cancer chemotherapy Clinical trials MDR modulators Multidrug resistance Multidrug resistance-associated protein 1 P-glycoprotein 

References

  1. 1.
    Gillet, J. P., & Gottesman, M. M. (2011). Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. Current Pharmaceutical Biotechnology, 12, 686–692.PubMedCrossRefGoogle Scholar
  2. 2.
    Ueda, K. (2011). ABC proteins protect the human body and maintain optimal health. Bioscience, Biotechnology, and Biochemistry, 75, 401–409.PubMedCrossRefGoogle Scholar
  3. 3.
    Juliano, R. L., & Ling, V. (1976). A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochimica et Biophysica Acta, 455, 152–162.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhou, S. F. (2008). Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 38, 802–832.PubMedCrossRefGoogle Scholar
  5. 5.
    Loo, T. W., Bartlett, M. C., & Clarke, D. M. (2003). Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains. Journal of Biological Chemistry, 278, 1575–1578.PubMedCrossRefGoogle Scholar
  6. 6.
    Aller, S. G., et al. (2009). Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 323, 1718–1722.PubMedCrossRefGoogle Scholar
  7. 7.
    Fromm, M. F. (2004). Importance of P-glycoprotein at blood–tissue barriers. Trends in Pharmacological Sciences, 25, 423–429.PubMedCrossRefGoogle Scholar
  8. 8.
    Schinkel, A. H. (1997). The physiological function of drug-transporting P-glycoproteins. Seminars in Cancer Biology, 8, 161–170.PubMedCrossRefGoogle Scholar
  9. 9.
    Sarkadi, B., Homolya, L., Szakacs, G., & Varadi, A. (2006). Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system. Physiological Reviews, 86, 1179–1236.PubMedCrossRefGoogle Scholar
  10. 10.
    Tainton, K. M., et al. (2004). Mutational analysis of P-glycoprotein: Suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death and Differentiation, 11, 1028–1037.PubMedCrossRefGoogle Scholar
  11. 11.
    Pendse, S. S., et al. (2006). P-glycoprotein functions as a differentiation switch in antigen presenting cell maturation. American Journal of Transplantation, 6, 2884–2893.PubMedCrossRefGoogle Scholar
  12. 12.
    Izawa, A., et al. (2010). A novel in vivo regulatory role of P-glycoprotein in alloimmunity. Biochemical and Biophysical Research Communications, 394, 646–652.PubMedCrossRefGoogle Scholar
  13. 13.
    Cole, S. P., et al. (1992). Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 258, 1650–1654.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, Z. S., & Tiwari, A. K. (2011). Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS Journal, 278, 3226–3245.PubMedCrossRefGoogle Scholar
  15. 15.
    Wijnholds, J., et al. (2000). Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood–cerebrospinal fluid barrier. The Journal of Clinical Investigation, 105, 279–285.PubMedCrossRefGoogle Scholar
  16. 16.
    van der Deen, M., et al. (2005). ATP-binding cassette (ABC) transporters in normal and pathological lung. Respiratory Research, 6, 59.PubMedCrossRefGoogle Scholar
  17. 17.
    Nagashige, M., et al. (2003). Basal membrane localization of MRP1 in human placental trophoblast. Placenta, 24, 951–958.PubMedCrossRefGoogle Scholar
  18. 18.
    Cole, S. P., & Deeley, R. G. (2006). Transport of glutathione and glutathione conjugates by MRP1. Trends in Pharmacological Sciences, 27, 438–446.PubMedCrossRefGoogle Scholar
  19. 19.
    Renes, J., de Vries, E. G., Nienhuis, E. F., Jansen, P. L., & Muller, M. (1999). ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. British Journal of Pharmacology, 126, 681–688.PubMedCrossRefGoogle Scholar
  20. 20.
    Mueller, C. F., et al. (2005). The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress. Circulation Research, 97, 637–644.PubMedCrossRefGoogle Scholar
  21. 21.
    Wijnholds, J., et al. (1997). Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nature Medicine, 3, 1275–1279.PubMedCrossRefGoogle Scholar
  22. 22.
    Allen, J. D., Brinkhuis, R. F., van Deemter, L., Wijnholds, J., & Schinkel, A. H. (2000). Extensive contribution of the multidrug transporters P-glycoprotein and Mrp1 to basal drug resistance. Cancer Research, 60, 5761–5766.PubMedGoogle Scholar
  23. 23.
    Keppler, D. (2011). Multidrug resistance proteins (MRPs, ABCCs): Importance for pathophysiology and drug therapy. Handbook of Experimental Pharmacology, 201, 299–323.PubMedCrossRefGoogle Scholar
  24. 24.
    Doyle, L. A., et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 15665–15670.PubMedCrossRefGoogle Scholar
  25. 25.
    Ni, Z., Bikadi, Z., Rosenberg, M. F., & Mao, Q. (2010). Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Current Drug Metabolism, 11, 603–617.PubMedCrossRefGoogle Scholar
  26. 26.
    van Herwaarden, A. E., et al. (2007). Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Molecular and Cellular Biology, 27, 1247–1253.PubMedCrossRefGoogle Scholar
  27. 27.
    Assaraf, Y. G. (2006). The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resistance Updates, 9, 227–246.PubMedCrossRefGoogle Scholar
  28. 28.
    Suzuki, M., Suzuki, H., Sugimoto, Y., & Sugiyama, Y. (2003). ABCG2 transports sulfated conjugates of steroids and xenobiotics. Journal of Biological Chemistry, 278, 22644–22649.PubMedCrossRefGoogle Scholar
  29. 29.
    Redmond, K. M., Wilson, T. R., Johnston, P. G., & Longley, D. B. (2008). Resistance mechanisms to cancer chemotherapy. Frontiers in Bioscience, 13, 5138–5154.PubMedCrossRefGoogle Scholar
  30. 30.
    Leith, C. P., et al. (1997). Acute myeloid leukemia in the elderly: Assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood, 89, 3323–3329.PubMedGoogle Scholar
  31. 31.
    van den Heuvel-Eibrink, M. M., et al. (1997). MDR 1 expression is an independent prognostic factor for response and survival in de novo acute myeloid leukaemia. British Journal of Haematology, 99, 76–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Burger, H., et al. (2003). RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: Correlation with chemotherapeutic response. Clinical Cancer Research, 9, 827–836.PubMedGoogle Scholar
  33. 33.
    Chan, H. S., Grogan, T. M., Haddad, G., DeBoer, G., & Ling, V. (1997). P-glycoprotein expression: Critical determinant in the response to osteosarcoma chemotherapy. Journal of the National Cancer Institute, 89, 1706–1715.PubMedCrossRefGoogle Scholar
  34. 34.
    Trock, B. J., Leonessa, F., & Clarke, R. (1997). Multidrug resistance in breast cancer: A meta-analysis of MDR1/gp170 expression and its possible functional significance. Journal of the National Cancer Institute, 89, 917–931.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhou, D. C., Zittoun, R., & Marie, J. P. (1995). Expression of multidrug resistance-associated protein (MRP) and multidrug resistance (MDR1) genes in acute myeloid leukemia. Leukemia, 9, 1661–1666.PubMedGoogle Scholar
  36. 36.
    Grogan, T. M., et al. (1993). P-glycoprotein expression in human plasma cell myeloma: Correlation with prior chemotherapy. Blood, 81, 490–495.PubMedGoogle Scholar
  37. 37.
    Chevillard, S., et al. (1996). Sequential assessment of multidrug resistance phenotype and measurement of S-phase fraction as predictive markers of breast cancer response to neoadjuvant chemotherapy. Cancer, 77, 292–300.PubMedCrossRefGoogle Scholar
  38. 38.
    Kimura, Y., et al. (2002). P-glycoprotein inhibition by the multidrug resistance-reversing agent MS-209 enhances bioavailability and antitumor efficacy of orally administered paclitaxel. Cancer Chemotherapy and Pharmacology, 49, 322–328.PubMedCrossRefGoogle Scholar
  39. 39.
    Hyafil, F., Vergely, C., Du Vignaud, P., & Grand-Perret, T. (1993). In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Research, 53, 4595–4602.PubMedGoogle Scholar
  40. 40.
    Dantzig, A. H., et al. (1996). Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Research, 56, 4171–4179.PubMedGoogle Scholar
  41. 41.
    Pajic, M., et al. (2009). Moderate increase in Mdr1a/1b expression causes in vivo resistance to doxorubicin in a mouse model for hereditary breast cancer. Cancer Research, 69, 6396–6404.PubMedCrossRefGoogle Scholar
  42. 42.
    Mistry, P., et al. (2001). In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Research, 61, 749–758.PubMedGoogle Scholar
  43. 43.
    Naito, M., Matsuba, Y., Sato, S., Hirata, H., & Tsuruo, T. (2002). MS-209, a quinoline-type reversal agent, potentiates antitumor efficacy of docetaxel in multidrug-resistant solid tumor xenograft models. Clinical Cancer Research, 8, 582–588.PubMedGoogle Scholar
  44. 44.
    McDevitt, C. A., & Callaghan, R. (2007). How can we best use structural information on P-glycoprotein to design inhibitors? Pharmacology and Therapeutics, 113, 429–441.PubMedCrossRefGoogle Scholar
  45. 45.
    Solary, E., et al. (2003). Quinine as a multidrug resistance inhibitor: A phase 3 multicentric randomized study in adult de novo acute myelogenous leukemia. Blood, 102, 1202–1210.PubMedCrossRefGoogle Scholar
  46. 46.
    Solary, E., et al. (1996). Combination of quinine as a potential reversing agent with mitoxantrone and cytarabine for the treatment of acute leukemias: A randomized multicenter study. Blood, 88, 1198–1205.PubMedGoogle Scholar
  47. 47.
    Ozols, R. F., et al. (1987). Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. Journal of Clinical Oncology, 5, 641–647.PubMedGoogle Scholar
  48. 48.
    Millward, M. J., et al. (1993). Oral verapamil with chemotherapy for advanced non-small cell lung cancer: A randomised study. British Journal of Cancer, 67, 1031–1035.PubMedCrossRefGoogle Scholar
  49. 49.
    Milroy, R. (1993). A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland Lung Cancer Research Group, and the Aberdeen Oncology Group. British Journal of Cancer, 68, 813–818.PubMedCrossRefGoogle Scholar
  50. 50.
    Chico, I., et al. (2001). Phase I study of infusional paclitaxel in combination with the P-glycoprotein antagonist PSC 833. Journal of Clinical Oncology, 19, 832–842.PubMedGoogle Scholar
  51. 51.
    Baer, M. R., et al. (2002). Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood, 100, 1224–1232.PubMedGoogle Scholar
  52. 52.
    Saeki, T., et al. (2007). Dofequidar fumarate (MS-209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer. Journal of Clinical Oncology, 25, 411–417.PubMedCrossRefGoogle Scholar
  53. 53.
    Germann, U. A., et al. (1997). Cellular and biochemical characterization of VX-710 as a chemosensitizer: Reversal of P-glycoprotein-mediated multidrug resistance in vitro. Anti-Cancer Drugs, 8, 125–140.PubMedCrossRefGoogle Scholar
  54. 54.
    Minderman, H., O’Loughlin, K. L., Pendyala, L., & Baer, M. R. (2004). VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clinical Cancer Research, 10, 1826–1834.PubMedCrossRefGoogle Scholar
  55. 55.
    Gandhi, L., et al. (2007). A phase II study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer. Cancer, 109, 924–932.PubMedCrossRefGoogle Scholar
  56. 56.
    Hubensack, M., et al. (2008). Effect of the ABCB1 modulators elacridar and tariquidar on the distribution of paclitaxel in nude mice. Journal of Cancer Research and Clinical Oncology, 134, 597–607.PubMedCrossRefGoogle Scholar
  57. 57.
    Jonker, J. W., et al. (2000). Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. Journal of the National Cancer Institute, 92, 1651–1656.PubMedCrossRefGoogle Scholar
  58. 58.
    Kruijtzer, C. M., et al. (2002). Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. Journal of Clinical Oncology, 20, 2943–2950.PubMedCrossRefGoogle Scholar
  59. 59.
    Kuppens, I. E., et al. (2007). A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clinical Cancer Research, 13, 3276–3285.PubMedCrossRefGoogle Scholar
  60. 60.
    Gerrard, G., et al. (2004). Clinical effects and P-glycoprotein inhibition in patients with acute myeloid leukemia treated with zosuquidar trihydrochloride, daunorubicin and cytarabine. Haematologica, 89, 782–790.PubMedGoogle Scholar
  61. 61.
    Morschhauser, F., et al. (2007). Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leukemia & Lymphoma, 48, 708–715.CrossRefGoogle Scholar
  62. 62.
    Cripe, L. D., et al. (2010). Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: A randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood, 116, 4077–4085.PubMedCrossRefGoogle Scholar
  63. 63.
    Pusztai, L., et al. (2005). Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer, 104, 682–691.PubMedCrossRefGoogle Scholar
  64. 64.
    Fox, E., & Bates, S. E. (2007). Tariquidar (XR9576): A P-glycoprotein drug efflux pump inhibitor. Expert Review of Anticancer Therapy, 7, 447–459.PubMedCrossRefGoogle Scholar
  65. 65.
    Ferguson, P. J., Brisson, A. R., Koropatnick, J., & Vincent, M. D. (2009). Enhancement of cytotoxicity of natural product drugs against multidrug resistant variant cell lines of human head and neck squamous cell carcinoma and breast carcinoma by tesmilifene. Cancer Letters, 274, 279–289.PubMedCrossRefGoogle Scholar
  66. 66.
    Vincent, M. (2006). Tesmilifene may enhance breast cancer chemotherapy by killing a clone of aggressive, multi-drug resistant cells through its action on the p-glycoprotein pump. Medical Hypotheses, 66, 715–731.PubMedCrossRefGoogle Scholar
  67. 67.
    Reyno, L., et al. (2004). Phase III study of N,N-diethyl-2-[4-(phenylmethyl) phenoxy]ethanamine (BMS-217380-01) combined with doxorubicin versus doxorubicin alone in metastatic/recurrent breast cancer: National Cancer Institute of Canada Clinical Trials Group Study MA.19. Journal of Clinical Oncology, 22, 269–276.PubMedCrossRefGoogle Scholar
  68. 68.
    Robey, R. W., et al. (2008). Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochemical Pharmacology, 75, 1302–1312.PubMedCrossRefGoogle Scholar
  69. 69.
    Oldham, R. K., Reid, W. K., Preisler, H. D., & Barnett, D. (1998). A phase I and pharmacokinetic study of CBT-1 as a multidrug resistance modulator in the treatment of patients with advanced cancer. Cancer Biotherapy & Radiopharmaceuticals, 13, 71–80.CrossRefGoogle Scholar
  70. 70.
    Kelly R.J., et al. (2012). A pharmacodynamic study of the P-glycoprotein antagonist CBT-1(R) in combination with paclitaxel in solid tumors. Oncologist, 17(4), 512.Google Scholar
  71. 71.
    Popoli, P., Pezzola, A., Benedetti, M., & Scotti de Carolis, A. (1992). Verapamil and flunarizine inhibit phencyclidine-induced effects: An EEG and behavioural study in rats. Neuropharmacology, 31, 1185–1191.PubMedCrossRefGoogle Scholar
  72. 72.
    Akimoto, H., et al. (1993). Effect of verapamil on doxorubicin cardiotoxicity: Altered muscle gene expression in cultured neonatal rat cardiomyocytes. Cancer Research, 53, 4658–4664.PubMedGoogle Scholar
  73. 73.
    Borel, J. F., et al. (1996). In vivo pharmacological effects of ciclosporin and some analogues. Advances in Pharmacology, 35, 115–246.PubMedCrossRefGoogle Scholar
  74. 74.
    Kim, R. B., et al. (1999). Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharmaceutical Research, 16, 408–414.PubMedCrossRefGoogle Scholar
  75. 75.
    Patel, J., & Mitra, A. K. (2001). Strategies to overcome simultaneous P-glycoprotein mediated efflux and CYP3A4 mediated metabolism of drugs. Pharmacogenomics, 2, 401–415.PubMedCrossRefGoogle Scholar
  76. 76.
    Eckford, P. D., & Sharom, F. J. (2009). ABC efflux pump-based resistance to chemotherapy drugs. Chemical Reviews, 109, 2989–3011.PubMedCrossRefGoogle Scholar
  77. 77.
    Roy, S., et al. (2007). MDR1/P-glycoprotein and MRP-1 mRNA and protein expression in non-small cell lung cancer. Anticancer Research, 27, 1325–1330.PubMedGoogle Scholar
  78. 78.
    Li, J., et al. (2009). Expression of MRP1, BCRP, LRP, and ERCC1 in advanced non-small-cell lung cancer: Correlation with response to chemotherapy and survival. Clinical Lung Cancer, 10, 414–421.PubMedCrossRefGoogle Scholar
  79. 79.
    Robey, R. W., et al. (2004). Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Research, 64, 1242–1246.PubMedCrossRefGoogle Scholar
  80. 80.
    Hoffmeyer, S., et al. (2000). Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 3473–3478.PubMedCrossRefGoogle Scholar
  81. 81.
    Ozawa, S., et al. (2004). Ethnic differences in genetic polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metabolism and Pharmacokinetics, 19, 83–95.PubMedCrossRefGoogle Scholar
  82. 82.
    Cascorbi, I. (2006). Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacology and Therapeutics, 112, 457–473.PubMedCrossRefGoogle Scholar
  83. 83.
    Kimchi-Sarfaty, C., et al. (2007). A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science, 315, 525–528.PubMedCrossRefGoogle Scholar
  84. 84.
    Crouthamel, M. H., Wu, D., Yang, Z., & Ho, R. J. (2010). A novel MDR1 GT1292-3TG (Cys431Leu) genetic variation and its effect on P-glycoprotein biologic functions. The AAPS Journal, 12, 548–555.PubMedCrossRefGoogle Scholar
  85. 85.
    Sakaeda, T. (2005). MDR1 genotype-related pharmacokinetics: Fact or fiction? Drug Metabolism and Pharmacokinetics, 20, 391–414.PubMedCrossRefGoogle Scholar
  86. 86.
    Cascorbi I. (2011). P-glycoprotein: Tissue distribution, substrates, and functional consequences of genetic variations. Handbook of Experimental Pharmacology, (201), 261–283.Google Scholar
  87. 87.
    Mathijssen, R. H., et al. (2003). Irinotecan pathway genotype analysis to predict pharmacokinetics. Clinical Cancer Research, 9, 3246–3253.PubMedGoogle Scholar
  88. 88.
    Kafka, A., et al. (2003). Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. International Journal of Oncology, 22, 1117–1121.PubMedGoogle Scholar
  89. 89.
    Green, H., Soderkvist, P., Rosenberg, P., Horvath, G., & Peterson, C. (2008). ABCB1 G1199A polymorphism and ovarian cancer response to paclitaxel. Journal of Pharmaceutical Sciences, 97, 2045–2048.PubMedCrossRefGoogle Scholar
  90. 90.
    Trédan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99, 1441–1454.PubMedCrossRefGoogle Scholar
  91. 91.
    Tunggal, J. K., Melo, T., Ballinger, J. R., & Tannock, I. F. (2000). The influence of expression of P-glycoprotein on the penetration of anticancer drugs through multicellular layers. International Journal of Cancer, 86, 101–107.CrossRefGoogle Scholar
  92. 92.
    Patel, K. J., & Tannock, I. F. (2009). The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors. BMC Cancer, 9, 356.PubMedCrossRefGoogle Scholar
  93. 93.
    Huxham, L. A., Kyle, A. H., Baker, J. H., Nykilchuk, L. K., & Minchinton, A. I. (2004). Microregional effects of gemcitabine in HCT-116 xenografts. Cancer Research, 64, 6537–6541.PubMedCrossRefGoogle Scholar
  94. 94.
    Tunggal, J. K., Ballinger, J. R., & Tannock, I. F. (1999). Influence of cell concentration in limiting the therapeutic benefit of P-glycoprotein reversal agents. International Journal of Cancer, 81, 741–747.CrossRefGoogle Scholar
  95. 95.
    Shi, T., Wrin, J., Reeder, J., Liu, D., & Ring, D. B. (1995). High-affinity monoclonal antibodies against P-glycoprotein. Clinical Immunology and Immunopathology, 76, 44–51.PubMedCrossRefGoogle Scholar
  96. 96.
    Nobili S., Landini I., Mazzei T., & Mini E. (2012). Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Medicinal Research Reviews, 32, 1220–1262.Google Scholar
  97. 97.
    McLachlin, J. R., et al. (1990). Expression of a human complementary DNA for the multidrug resistance gene in murine hematopoietic precursor cells with the use of retroviral gene transfer. Journal of the National Cancer Institute, 82, 1260–1263.PubMedCrossRefGoogle Scholar
  98. 98.
    Mickisch, G. H., Merlino, G. T., Galski, H., Gottesman, M. M., & Pastan, I. (1991). Transgenic mice that express the human multidrug-resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 88, 547–551.PubMedCrossRefGoogle Scholar
  99. 99.
    Hesdorffer, C., et al. (1998). Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. Journal of Clinical Oncology, 16, 165–172.PubMedGoogle Scholar
  100. 100.
    Iwahashi, T., et al. (1993). Specific targeting and killing activities of anti-P-glycoprotein monoclonal antibody MRK16 directed against intrinsically multidrug-resistant human colorectal carcinoma cell lines in the nude mouse model. Cancer Research, 53, 5475–5482.PubMedGoogle Scholar
  101. 101.
    Mechetner, E. B., & Roninson, I. B. (1992). Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 89, 5824–5828.PubMedCrossRefGoogle Scholar
  102. 102.
    Mickisch, G. H., Pai, L. H., Gottesman, M. M., & Pastan, I. (1992). Monoclonal antibody MRK16 reverses the multidrug resistance of multidrug-resistant transgenic mice. Cancer Research, 52, 4427–4432.PubMedGoogle Scholar
  103. 103.
    Rittmann-Grauer, L. S., Yong, M. A., Sanders, V., & Mackensen, D. G. (1992). Reversal of Vinca alkaloid resistance by anti-P-glycoprotein monoclonal antibody HYB-241 in a human tumor xenograft. Cancer Research, 52, 1810–1816.PubMedGoogle Scholar
  104. 104.
    Goda, K., et al. (2007). Complete inhibition of P-glycoprotein by simultaneous treatment with a distinct class of modulators and the UIC2 monoclonal antibody. Journal of Pharmacology and Experimental Therapeutics, 320, 81–88.PubMedCrossRefGoogle Scholar
  105. 105.
    Krasznai, Z. T., et al. (2010). Pgp inhibition by UIC2 antibody can be followed in vitro by using tumor-diagnostic radiotracers, 99mTc-MIBI and 18FDG. European Journal of Pharmaceutical Sciences, 41, 665–669.PubMedCrossRefGoogle Scholar
  106. 106.
    Watanabe, T., Naito, M., Kokubu, N., & Tsuruo, T. (1997). Regression of established tumors expressing P-glycoprotein by combinations of adriamycin, cyclosporin derivatives, and MRK-16 antibodies. Journal of the National Cancer Institute, 89, 512–518.PubMedCrossRefGoogle Scholar
  107. 107.
    Matsuo, H., et al. (2001). Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein. Journal of Controlled Release, 77, 77–86.PubMedCrossRefGoogle Scholar
  108. 108.
    Gatouillat, G., et al. (2007). Immunization with liposome-anchored pegylated peptides modulates doxorubicin sensitivity in P-glycoprotein-expressing P388 cells. Cancer Letters, 257, 165–171.PubMedCrossRefGoogle Scholar
  109. 109.
    Madoulet, C., Perrin, L., Tosi, P. F., & Albert, P. (2006). Anti-tumor immunotherapy against multidrug resistance. Annales Pharmaceutiques Françaises, 64, 87–96.PubMedCrossRefGoogle Scholar
  110. 110.
    Beck, W. T. (1995). Circumvention of multidrug resistance with anti-P-glycoprotein antibodies: Clinical potential or experimental artifact? Journal of the National Cancer Institute, 87, 73–75.PubMedCrossRefGoogle Scholar
  111. 111.
    Comerford, K. M., et al. (2002). Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Research, 62, 3387–3394.PubMedGoogle Scholar
  112. 112.
    Han, Z., et al. (2007). Phospho Akt mediates multidrug resistance of gastric cancer cells through regulation of P-gp, Bcl-2 and Bax. Journal of Experimental & Clinical Cancer Research, 26, 261–268.Google Scholar
  113. 113.
    Hu, X. F., Li, J., Yang, E., Vandervalk, S., & Xing, P. X. (2007). Anti-Cripto Mab inhibit tumour growth and overcome MDR in a human leukaemia MDR cell line by inhibition of Akt and activation of JNK/SAPK and bad death pathways. British Journal of Cancer, 96, 918–927.PubMedCrossRefGoogle Scholar
  114. 114.
    Liu, B., Qu, L., & Tao, H. (2010). Cyclo-oxygenase 2 up-regulates the effect of multidrug resistance. Cell Biology International, 34, 21–25.Google Scholar
  115. 115.
    Zhang, Y., Laterra, J., & Pomper, M. G. (2009). Hedgehog pathway inhibitor HhAntag691 is a potent inhibitor of ABCG2/BCRP and ABCB1/Pgp. Neoplasia, 11, 96–101.PubMedGoogle Scholar
  116. 116.
    Cui, D., Xu, Q., Wang, K., & Che, X. (2010). Gli1 is a potential target for alleviating multidrug resistance of gliomas. Journal of the Neurological Sciences, 288, 156–166.PubMedCrossRefGoogle Scholar
  117. 117.
    Chen, T. (2010). Overcoming drug resistance by regulating nuclear receptors. Advanced Drug Delivery Reviews, 62, 1257–1264.PubMedCrossRefGoogle Scholar
  118. 118.
    Chen, Y., Tang, Y., Wang, M. T., Zeng, S., & Nie, D. (2007). Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Research, 67, 10361–10367.PubMedCrossRefGoogle Scholar
  119. 119.
    Masuyama, H., Nakatsukasa, H., Takamoto, N., & Hiramatsu, Y. (2007). Down-regulation of pregnane X receptor contributes to cell growth inhibition and apoptosis by anticancer agents in endometrial cancer cells. Molecular Pharmacology, 72, 1045–1053.PubMedCrossRefGoogle Scholar
  120. 120.
    Stewart, A. J., et al. (1996). Reduction of expression of the multidrug resistance protein (MRP) in human tumor cells by antisense phosphorothioate oligonucleotides. Biochemical Pharmacology, 51, 461–469.PubMedCrossRefGoogle Scholar
  121. 121.
    Osada, H., et al. (2003). Reversal of drug resistance mediated by hammerhead ribozyme against multidrug resistance-associated protein 1 in a human glioma cell line. International Journal of Oncology, 22, 823–827.PubMedGoogle Scholar
  122. 122.
    Kowalski, P., Farley, K. M., Lage, H., & Schneider, E. (2004). Effective knock down of very high ABCG2 expression by a hammerhead ribozyme. Anticancer Research, 24, 2231–2235.PubMedGoogle Scholar
  123. 123.
    Gao, P., et al. (2007). Reversal of drug resistance in breast carcinoma cells by anti-mdr1 ribozyme regulated by the tumor-specific MUC-1 promoter. Cancer Letters, 256, 81–89.PubMedCrossRefGoogle Scholar
  124. 124.
    Nadali, F., et al. (2007). Multidrug resistance inhibition by antisense oligonucleotide against MDR1/mRNA in P-glycoprotein expressing leukemic cells. Hematology, 12, 393–401.PubMedCrossRefGoogle Scholar
  125. 125.
    Kowalski, P., Surowiak, P., & Lage, H. (2005). Reversal of different drug-resistant phenotypes by an autocatalytic multitarget multiribozyme directed against the transcripts of the ABC transporters MDR1/P-gp, MRP2, and BCRP. Molecular Therapy, 11, 508–522.PubMedCrossRefGoogle Scholar
  126. 126.
    Abbasi M., Lavasanifar A., & Uluda H. (2011). Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Medicinal Research Reviews. doi:10.1002/med.20244.
  127. 127.
    Stege, A., Priebsch, A., Nieth, C., & Lage, H. (2004). Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Therapy, 11, 699–706.PubMedCrossRefGoogle Scholar
  128. 128.
    Yague, E., Higgins, C. F., & Raguz, S. (2004). Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Therapy, 11, 1170–1174.PubMedCrossRefGoogle Scholar
  129. 129.
    Stein, U., et al. (2008). Complete in vivo reversal of the multidrug resistance phenotype by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Molecular Therapy, 16, 178–186.PubMedCrossRefGoogle Scholar
  130. 130.
    Pichler, A., Zelcer, N., Prior, J. L., Kuil, A. J., & Piwnica-Worms, D. (2005). In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein. Clinical Cancer Research, 11, 4487–4494.PubMedCrossRefGoogle Scholar
  131. 131.
    Xiao, H., et al. (2008). In vivo reversal of P-glycoprotein-mediated multidrug resistance by efficient delivery of stealth RNAi. Basic & Clinical Pharmacology & Toxicology, 103, 342–348.CrossRefGoogle Scholar
  132. 132.
    Patutina, O. A., et al. (2010). The siRNA targeted to mdr1b and mdr1a mRNAs in vivo sensitizes murine lymphosarcoma to chemotherapy. BMC Cancer, 10, 204.PubMedCrossRefGoogle Scholar
  133. 133.
    Sioud, M. (2011). Promises and challenges in developing RNAi as a research tool and therapy. Methods in Molecular Biology, 703, 173–187.PubMedCrossRefGoogle Scholar
  134. 134.
    Blanco, E., Hsiao, A., Mann, A. P., Landry, M. G., Meric-Bernstam, F., & Ferrari, M. (2011). Nanomedicine in cancer therapy: Innovative trends and prospects. Cancer Science, 102, 1247–1252.PubMedCrossRefGoogle Scholar
  135. 135.
    Patel, N. R., Rathi, A., Mongayt, D., & Torchilin, V. P. (2011). Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. International Journal of Pharmaceutics, 416, 296–299.PubMedCrossRefGoogle Scholar
  136. 136.
    Wang, F., et al. (2011). Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel-polymer micelles to overcome multi-drug resistance. Biomaterials, 32, 9444–9456.PubMedCrossRefGoogle Scholar
  137. 137.
    van Vlerken, L. E., Duan, Z., Little, S. R., Seiden, M. V., & Amiji, M. M. (2008). Biodistribution and pharmacokinetic analysis of paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Molecular Pharmaceutics, 5, 516–526.PubMedCrossRefGoogle Scholar
  138. 138.
    van Vlerken, L. E., Duan, Z., Little, S. R., Seiden, M. V., & Amiji, M. M. (2010). Augmentation of therapeutic efficacy in drug-resistant tumor models using ceramide coadministration in temporal-controlled polymer-blend nanoparticle delivery systems. The AAPS Journal, 12, 171–180.PubMedCrossRefGoogle Scholar
  139. 139.
    Meng, H., et al. (2010). Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 4, 4539–4550.PubMedCrossRefGoogle Scholar
  140. 140.
    Lhomme, C., et al. (2008). Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. Journal of Clinical Oncology, 26, 2674–2682.PubMedCrossRefGoogle Scholar
  141. 141.
    Friedenberg, W. R., et al. (2006). Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): A trial of the Eastern Cooperative Oncology Group. Cancer, 106, 830–838.PubMedCrossRefGoogle Scholar
  142. 142.
    Greenberg, P. L., et al. (2004). Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: A phase III trial (E2995). Journal of Clinical Oncology, 22, 1078–1086.PubMedCrossRefGoogle Scholar
  143. 143.
    Khdair, A., et al. (2010). Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. Journal of Controlled Release, 141, 137–144.PubMedCrossRefGoogle Scholar
  144. 144.
    Huang, I. P., et al. (2011). Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance. Molecular Cancer Therapeutics, 10, 761–769.PubMedCrossRefGoogle Scholar
  145. 145.
    Chen, B., et al. (2009). Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice. International Journal of Nanomedicine, 4, 73–78.PubMedCrossRefGoogle Scholar
  146. 146.
    Chen, B. A., et al. (2009). Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo. International Journal of Nanomedicine, 4, 201–208.PubMedCrossRefGoogle Scholar
  147. 147.
    Ganta, S., Devalapally, H., & Amiji, M. (2010). Curcumin enhances oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in nanoemulsion formulation. Journal of Pharmaceutical Sciences, 99, 4630–4641.PubMedCrossRefGoogle Scholar
  148. 148.
    Wang, X., et al. (2011). A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano, 5, 6184–6194.PubMedCrossRefGoogle Scholar
  149. 149.
    Wang, X., et al. (2009). HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano, 3, 3165–3174.PubMedCrossRefGoogle Scholar
  150. 150.
    Dong, X., et al. (2009). Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Research, 69, 3918–3926.PubMedCrossRefGoogle Scholar
  151. 151.
    Patil, Y., Sadhukha, T., Ma, L., & Panyam, J. (2009). Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. Journal of Controlled Release, 136, 21–29.PubMedCrossRefGoogle Scholar
  152. 152.
    Patil, Y. B., Swaminathan, S. K., Sadhukha, T., Ma, L., & Panyam, J. (2010). The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials, 31, 358–365.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Ontario Cancer Institute/Princess Margaret HospitalUniversity of TorontoTorontoCanada
  2. 2.Medical Oncology Department and AECC UnitAlbacete University HospitalAlbaceteSpain
  3. 3.Division of Medical Oncology and Hematology, Princess Margaret HospitalUniversity of TorontoTorontoCanada

Personalised recommendations