Cancer and Metastasis Reviews

, Volume 31, Issue 3–4, pp 653–662

MicroRNA control of epithelial–mesenchymal transition and metastasis

Article

Abstract

The great majority of cancer deaths are due to metastasis, which remains a poorly understood pathological process. The formation of a metastasis reflects a succession of complex steps leading to the macroscopic outgrowth of disseminated tumor cells at the secondary site. In the past 5 years, certain microRNAs (miRNAs) have been shown to regulate either a single step or multiple steps of metastasis, doing so by downregulating the expression of their target genes. In this review, we discuss recent studies on the functions and molecular mechanisms of miRNAs in regulating epithelial–mesenchymal transition (EMT) and cancer metastasis.

Keywords

MicroRNA (miRNA) Cancer Metastasis Epithelial–mesenchymal transition (EMT) Mesenchymal–epithelial transition (MET) 

References

  1. 1.
    Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.PubMedGoogle Scholar
  2. 2.
    Cai, Y., Yu, X., Hu, S., & Yu, J. (2009). A brief review on the mechanisms of miRNA regulation. Genomics, Proteomics & Bioinformatics, 7(4), 147–154.Google Scholar
  3. 3.
    Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.PubMedGoogle Scholar
  4. 4.
    Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.PubMedGoogle Scholar
  5. 5.
    Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146(3), 353–358.PubMedGoogle Scholar
  6. 6.
    Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465(7301), 1033–1038.PubMedGoogle Scholar
  7. 7.
    Karreth, F. A., Tay, Y., Perna, D., Ala, U., Tan, S. M., Rust, A. G., et al. (2011). In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 147(2), 382–395.PubMedGoogle Scholar
  8. 8.
    Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S. M., Ala, U., et al. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147(2), 344–357.PubMedGoogle Scholar
  9. 9.
    Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6(11), 857–866.PubMedGoogle Scholar
  10. 10.
    Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews. Cancer, 6(4), 259–269.PubMedGoogle Scholar
  11. 11.
    Hurst, D. R., Edmonds, M. D., & Welch, D. R. (2009). Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Research, 69(19), 7495–7498.PubMedGoogle Scholar
  12. 12.
    Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial–mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.PubMedGoogle Scholar
  13. 13.
    Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2(6), 442–454.PubMedGoogle Scholar
  14. 14.
    Yang, J., & Weinberg, R. A. (2008). Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14(6), 818–829.PubMedGoogle Scholar
  15. 15.
    Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedGoogle Scholar
  16. 16.
    Gupta, P. B., Chaffer, C. L., & Weinberg, R. A. (2009). Cancer stem cells: mirage or reality? Nature Medicine, 15(9), 1010–1012.PubMedGoogle Scholar
  17. 17.
    Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83.PubMedGoogle Scholar
  18. 18.
    Hajra, K. M., Chen, D. Y., & Fearon, E. R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Research, 62(6), 1613–1618.PubMedGoogle Scholar
  19. 19.
    Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.PubMedGoogle Scholar
  20. 20.
    Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24(14), 2375–2385.PubMedGoogle Scholar
  21. 21.
    Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7(6), 1267–1278.PubMedGoogle Scholar
  22. 22.
    Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMedGoogle Scholar
  23. 23.
    Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development, 22(7), 894–907.Google Scholar
  24. 24.
    Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138(3), 592–603.PubMedGoogle Scholar
  25. 25.
    Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., et al. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial–mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698.PubMedGoogle Scholar
  26. 26.
    Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.PubMedGoogle Scholar
  27. 27.
    Dykxhoorn, D. M., Wu, Y., Xie, H., Yu, F., Lal, A., Petrocca, F., et al. (2009). miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One, 4(9), e7181.PubMedGoogle Scholar
  28. 28.
    Korpal, M., Ell, B. J., Buffa, F. M., Ibrahim, T., Blanco, M. A., Celia-Terrassa, T., et al. (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17(9), 1101–1108.PubMedGoogle Scholar
  29. 29.
    Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMedGoogle Scholar
  30. 30.
    Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell, 141(7), 1195–1207.PubMedGoogle Scholar
  31. 31.
    Di Leva, G., Gasparini, P., Piovan, C., Ngankeu, A., Garofalo, M., Taccioli, C., et al. (2010). MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. Journal of the National Cancer Institute, 102(10), 706–721.PubMedGoogle Scholar
  32. 32.
    Cochrane, D. R., Cittelly, D. M., Howe, E. N., Spoelstra, N. S., McKinsey, E. L., LaPara, K., et al. (2011). MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Hormones and Cancer, 1(6), 306–319.Google Scholar
  33. 33.
    Stinson, S., Lackner, M. R., Adai, A. T., Yu, N., Kim, H. J., O’Brien, C., et al. (2011). miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Science Signaling, 4(186), pt5.PubMedGoogle Scholar
  34. 34.
    Kong, W., Yang, H., He, L., Zhao, J. J., Coppola, D., Dalton, W. S., et al. (2008). MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Molecular and Cellular Biology, 28(22), 6773–6784.PubMedGoogle Scholar
  35. 35.
    Kumarswamy, R., Mudduluru, G., Ceppi, P., Muppala, S., Kozlowski, M., Niklinski, J., et al. (2012). MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. International Journal of Cancer, 130(9), 2044–2053.Google Scholar
  36. 36.
    Wang, F. E., Zhang, C., Maminishkis, A., Dong, L., Zhi, C., Li, R., et al. (2010). MicroRNA-204/211 alters epithelial physiology. The FASEB Journal, 24(5), 1552–1571.Google Scholar
  37. 37.
    Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.PubMedGoogle Scholar
  38. 38.
    Carrio, M., Arderiu, G., Myers, C., & Boudreau, N. J. (2005). Homeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Research, 65(16), 7177–7185.PubMedGoogle Scholar
  39. 39.
    Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076.PubMedGoogle Scholar
  40. 40.
    Sasayama, T., Nishihara, M., Kondoh, T., Hosoda, K., & Kohmura, E. (2009). MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. International Journal of Cancer, 125(6), 1407–1413.Google Scholar
  41. 41.
    Sun, L., Yan, W., Wang, Y., Sun, G., Luo, H., Zhang, J., et al. (2011). MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Research, 1389, 9–18.PubMedGoogle Scholar
  42. 42.
    Tian, Y., Luo, A., Cai, Y., Su, Q., Ding, F., Chen, H., et al. (2010). MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. Journal of Biological Chemistry, 285(11), 7986–7994.PubMedGoogle Scholar
  43. 43.
    Gabriely, G., Yi, M., Narayan, R. S., Niers, J. M., Wurdinger, T., Imitola, J., et al. (2011). Human glioma growth is controlled by microRNA-10b. Cancer Research, 71(10), 3563–3572.PubMedGoogle Scholar
  44. 44.
    Pan, X., Wang, Z. X., & Wang, R. (2011). MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biology & Therapy, 10(12), 1224–1232.Google Scholar
  45. 45.
    Medina, P. P., Nolde, M., & Slack, F. J. (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 467(7311), 86–90.PubMedGoogle Scholar
  46. 46.
    Wu, W. Y., Xue, X. Y., Chen, Z. J., Han, S. L., Huang, Y. P., Zhang, L. F., et al. (2011). Potentially predictive microRNAs of gastric cancer with metastasis to lymph node. World Journal of Gastroenterology, 17(31), 3645–3651.PubMedGoogle Scholar
  47. 47.
    Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.PubMedGoogle Scholar
  48. 48.
    Yan, L. X., Huang, X. F., Shao, Q., Huang, M. Y., Deng, L., Wu, Q. L., et al. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 14(11), 2348–2360.PubMedGoogle Scholar
  49. 49.
    Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.PubMedGoogle Scholar
  50. 50.
    Huang, T. H., Wu, F., Loeb, G. B., Hsu, R., Heidersbach, A., Brincat, A., et al. (2009). Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. Journal of Biological Chemistry, 284(27), 18515–18524.PubMedGoogle Scholar
  51. 51.
    Li, T., Li, D., Sha, J., Sun, P., & Huang, Y. (2009). MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochemical and Biophysical Research Communications, 383(3), 280–285.PubMedGoogle Scholar
  52. 52.
    Wang, P., Zou, F., Zhang, X., Li, H., Dulak, A., Tomko, R. J., Jr., et al. (2009). microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Research, 69(20), 8157–8165.PubMedGoogle Scholar
  53. 53.
    Connolly, E. C., Van Doorslaer, K., Rogler, L. E., & Rogler, C. E. (2010). Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Molecular Cancer Research, 8(5), 691–700.PubMedGoogle Scholar
  54. 54.
    Cottonham, C. L., Kaneko, S., & Xu, L. (2010). miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. Journal of Biological Chemistry, 285(46), 35293–35302.PubMedGoogle Scholar
  55. 55.
    Lou, Y., Yang, X., Wang, F., Cui, Z., & Huang, Y. (2010). MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. International Journal of Molecular Medicine, 26(6), 819–827.PubMedGoogle Scholar
  56. 56.
    Voorhoeve, P. M., le Sage, C., Schrier, M., Gillis, A. J., Stoop, H., Nagel, R., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 124(6), 1169–1181.PubMedGoogle Scholar
  57. 57.
    Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210.PubMedGoogle Scholar
  58. 58.
    Preis, M., Gardner, T. B., Gordon, S. R., Pipas, J. M., Mackenzie, T. A., Klein, E. E., et al. (2011). MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clinical Cancer Research, 17(17), 5812–5821.PubMedGoogle Scholar
  59. 59.
    Nakata, K., Ohuchida, K., Mizumoto, K., Kayashima, T., Ikenaga, N., Sakai, H., et al. (2011). MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery, 150(5), 916–922.PubMedGoogle Scholar
  60. 60.
    Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell, 137(6), 1032–1046.PubMedGoogle Scholar
  61. 61.
    Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.PubMedGoogle Scholar
  62. 62.
    Song, G., Zhang, Y., & Wang, L. (2009). MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. Journal of Biological Chemistry, 284(46), 31921–31927.PubMedGoogle Scholar
  63. 63.
    Liu, B., Peng, X. C., Zheng, X. L., Wang, J., & Qin, Y. W. (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 66(2), 169–175.PubMedGoogle Scholar
  64. 64.
    Crawford, M., Brawner, E., Batte, K., Yu, L., Hunter, M. G., Otterson, G. A., et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochemical and Biophysical Research Communications, 373(4), 607–612.PubMedGoogle Scholar
  65. 65.
    Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2011). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481(7380), 190–194.PubMedGoogle Scholar
  66. 66.
    Valastyan, S., Chang, A., Benaich, N., Reinhardt, F., & Weinberg, R. A. (2010). Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Research, 70(12), 5147–5154.PubMedGoogle Scholar
  67. 67.
    Valastyan, S., Chang, A., Benaich, N., Reinhardt, F., & Weinberg, R. A. (2011). Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes & Development, 25(6), 646–659.Google Scholar
  68. 68.
    Valastyan, S., Benaich, N., Chang, A., Reinhardt, F., & Weinberg, R. A. (2009). Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes & Development, 23(22), 2592–2597.Google Scholar
  69. 69.
    Bussing, I., Slack, F. J., & Grosshans, H. (2008). let-7 microRNAs in development, stem cells and cancer. Trends in Molecular Medicine, 14(9), 400–409.PubMedGoogle Scholar
  70. 70.
    Boyerinas, B., Park, S. M., Hau, A., Murmann, A. E., & Peter, M. E. (2010). The role of let-7 in cell differentiation and cancer. Endocrine-Related Cancer, 17(1), F19–F36.PubMedGoogle Scholar
  71. 71.
    Mayr, C., Hemann, M. T., & Bartel, D. P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315(5818), 1576–1579.PubMedGoogle Scholar
  72. 72.
    Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.PubMedGoogle Scholar
  73. 73.
    Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.PubMedGoogle Scholar
  74. 74.
    Liu, H., Patel, M. R., Prescher, J. A., Patsialou, A., Qian, D., Lin, J., et al. (2010). Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18115–18120.PubMedGoogle Scholar
  75. 75.
    Malanchi, I., Santamaria-Martinez, A., Susanto, E., Peng, H., Lehr, H. A., Delaloye, J. F., et al. (2011). Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 481(7379), 85–89.PubMedGoogle Scholar
  76. 76.
    Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.PubMedGoogle Scholar
  77. 77.
    Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10513–10518.PubMedGoogle Scholar
  78. 78.
    Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18(10), 997–1006.PubMedGoogle Scholar
  79. 79.
    Ng, E. K., Chong, W. W., Jin, H., Lam, E. K., Shin, V. Y., Yu, J., et al. (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut, 58(10), 1375–1381.PubMedGoogle Scholar
  80. 80.
    Huang, Z., Huang, D., Ni, S., Peng, Z., Sheng, W., & Du, X. (2009). Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. International Journal of Cancer, 127(1), 118–126.Google Scholar
  81. 81.
    Camps, C., Buffa, F. M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., et al. (2008). hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clinical Cancer Research, 14(5), 1340–1348.PubMedGoogle Scholar
  82. 82.
    Volinia, S., Galasso, M., Sana, M. E., Wise, T. F., Palatini, J., Huebner, K., et al. (2012). Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 3024–3029.PubMedGoogle Scholar
  83. 83.
    Li, J., Huang, H., Sun, L., Yang, M., Pan, C., Chen, W., et al. (2009). MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clinical Cancer Research, 15(12), 3998–4008.PubMedGoogle Scholar
  84. 84.
    Zhi, F., Chen, X., Wang, S., Xia, X., Shi, Y., Guan, W., et al. (2010). The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. European Journal of Cancer, 46(9), 1640–1649.PubMedGoogle Scholar
  85. 85.
    Jiang, J., Zheng, X., Xu, X., Zhou, Q., Yan, H., Zhang, X., et al. (2011). Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin. PLoS One, 6(8), e23271.PubMedGoogle Scholar
  86. 86.
    Pramanik, D., Campbell, N. R., Karikari, C., Chivukula, R., Kent, O. A., Mendell, J. T., et al. (2011). Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Molecular Cancer Therapeutics, 10(8), 1470–1480.PubMedGoogle Scholar
  87. 87.
    Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., et al. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28(4), 341–347.PubMedGoogle Scholar
  88. 88.
    Makeyev, E. V., & Maniatis, T. (2008). Multilevel regulation of gene expression by microRNAs. Science, 319(5871), 1789–1790.PubMedGoogle Scholar
  89. 89.
    Mei, M., Ren, Y., Zhou, X., Yuan, X. B., Han, L., Wang, G. X., et al. (2010). Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technology in Cancer Research & Treatment, 9(1), 77–86.Google Scholar
  90. 90.
    Iorio, M. V., Casalini, P., Piovan, C., Di Leva, G., Merlo, A., Triulzi, T., et al. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Research, 69(6), 2195–2200.PubMedGoogle Scholar
  91. 91.
    Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sanchez-Cespedes, M., Blanco, D., et al. (2008). A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13556–13561.PubMedGoogle Scholar
  92. 92.
    Sun, L., Yao, Y., Liu, B., Lin, Z., Lin, L., Yang, M., et al. (2011). MiR-200b and miR-15b regulate chemotherapy-induced epithelial–mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene, 31(4), 432–445.PubMedGoogle Scholar
  93. 93.
    Zhang, Z., Liu, S., Shi, R., & Zhao, G. (2011). miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genetics, 204(9), 486–491.PubMedGoogle Scholar
  94. 94.
    Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.PubMedGoogle Scholar
  95. 95.
    Dong, P., Kaneuchi, M., Watari, H., Hamada, J., Sudo, S., Ju, J., et al. (2011). MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Molecular Cancer, 10, 99.PubMedGoogle Scholar
  96. 96.
    Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283(22), 14910–14914.PubMedGoogle Scholar
  97. 97.
    Kim, T., Veronese, A., Pichiorri, F., Lee, T. J., Jeon, Y. J., Volinia, S., et al. (2011). p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. The Journal of Experimental Medicine, 208(5), 875–883.PubMedGoogle Scholar
  98. 98.
    Vetter, G., Saumet, A., Moes, M., Vallar, L., Le Bechec, A., Laurini, C., et al. (2010). miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene, 29(31), 4436–4448.PubMedGoogle Scholar
  99. 99.
    Han, H. B., Gu, J., Zuo, H. J., Chen, Z. G., Zhao, W., Li, M., et al. (2012). Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. The Journal of Pathology, 226(3), 544–555.Google Scholar
  100. 100.
    Ji, J., Zhao, L., Budhu, A., Forgues, M., Jia, H. L., Qin, L. X., et al. (2010). Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. Journal of Hepatology, 52(5), 690–697.PubMedGoogle Scholar
  101. 101.
    Qian, P., Zuo, Z., Wu, Z., Meng, X., Li, G., Zhang, W., et al. (2011). Pivotal role of reduced let-7g expression in breast cancer invasion and metastasis. Cancer Research, 71(20), 6463–6474.PubMedGoogle Scholar
  102. 102.
    Yang, Q., Jie, Z., Cao, H., Greenlee, A. R., Yang, C., Zou, F., et al. (2011). Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis, 32(5), 713–722.PubMedGoogle Scholar
  103. 103.
    Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.PubMedGoogle Scholar
  104. 104.
    Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO Journal, 28(4), 347–358.PubMedGoogle Scholar
  105. 105.
    Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68(10), 3566–3572.PubMedGoogle Scholar
  106. 106.
    Reddy, S. D., Ohshiro, K., Rayala, S. K., & Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68(20), 8195–8200.PubMedGoogle Scholar
  107. 107.
    Weiss, F. U., Marques, I. J., Woltering, J. M., Vlecken, D. H., Aghdassi, A., Partecke, L. I., et al. (2009). Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology, 137(6), 2136–2145. e2131-2137.PubMedGoogle Scholar
  108. 108.
    Li, G., Wu, Z., Peng, Y., Liu, X., Lu, J., Wang, L., et al. (2010). MicroRNA-10b induced by Epstein–Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Letters, 299(1), 29–36.PubMedGoogle Scholar
  109. 109.
    Takeshita, F., Patrawala, L., Osaki, M., Takahashi, R. U., Yamamoto, Y., Kosaka, N., et al. (2010). Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Molecular Therapy, 18(1), 181–187.PubMedGoogle Scholar
  110. 110.
    Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.PubMedGoogle Scholar
  111. 111.
    Liu, S., Goldstein, R. H., Scepansky, E. M., & Rosenblatt, M. (2009). Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Research, 69(22), 8742–8751.PubMedGoogle Scholar
  112. 112.
    Xu, D., Takeshita, F., Hino, Y., Fukunaga, S., Kudo, Y., Tamaki, A., et al. (2011). miR-22 represses cancer progression by inducing cellular senescence. The Journal of Cell Biology, 193(2), 409–424.PubMedGoogle Scholar
  113. 113.
    Coulouarn, C., Factor, V. M., Andersen, J. B., Durkin, M. E., & Thorgeirsson, S. S. (2009). Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene, 28(40), 3526–3536.PubMedGoogle Scholar
  114. 114.
    Tsai, W. C., Hsu, P. W., Lai, T. C., Chau, G. Y., Lin, C. W., Chen, C. M., et al. (2009). MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology, 49(5), 1571–1582.PubMedGoogle Scholar
  115. 115.
    Li, Y., Vandenboom, T. G., 2nd, Wang, Z., Kong, D., Ali, S., Philip, P. A., et al. (2010). miR-146a suppresses invasion of pancreatic cancer cells. Cancer Research, 70(4), 1486–1495.PubMedGoogle Scholar
  116. 116.
    Lin, S. L., Chiang, A., Chang, D., & Ying, S. Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 14(3), 417–424.PubMedGoogle Scholar
  117. 117.
    Xia, H., Qi, Y., Ng, S. S., Chen, X., Li, D., Chen, S., et al. (2009). microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Research, 1269, 158–165.PubMedGoogle Scholar
  118. 118.
    Kogo, R., Mimori, K., Tanaka, F., Komune, S., & Mori, M. (2011). Clinical significance of miR-146a in gastric cancer cases. Clinical Cancer Research, 17(13), 4277–4284.PubMedGoogle Scholar
  119. 119.
    Bhaumik, D., Scott, G. K., Schokrpur, S., Patil, C. K., Campisi, J., & Benz, C. C. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 27(42), 5643–5647.PubMedGoogle Scholar
  120. 120.
    Edmonds, M. D., Hurst, D. R., Vaidya, K. S., Stafford, L. J., Chen, D., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. International Journal of Cancer, 125(8), 1778–1785.Google Scholar
  121. 121.
    Meng, Z., Fu, X., Chen, X., Zeng, S., Tian, Y., Jove, R., et al. (2010). miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology, 52(6), 2148–2157.PubMedGoogle Scholar
  122. 122.
    Kondo, N., Toyama, T., Sugiura, H., Fujii, Y., & Yamashita, H. (2008). miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Research, 68(13), 5004–5008.PubMedGoogle Scholar
  123. 123.
    Yan, D., Dong Xda, E., Chen, X., Wang, L., Lu, C., Wang, J., et al. (2009). MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. Journal of Biological Chemistry, 284(43), 29596–29604.PubMedGoogle Scholar
  124. 124.
    Penna, E., Orso, F., Cimino, D., Tenaglia, E., Lembo, A., Quaglino, E., et al. (2011). microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO Journal, 30(10), 1990–2007.PubMedGoogle Scholar
  125. 125.
    Xu, Y., Zhao, F., Wang, Z., Song, Y., Luo, Y., Zhang, X., et al. (2012). MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene, 31(11), 1398–1407.Google Scholar
  126. 126.
    Png, K. J., Yoshida, M., Zhang, X. H., Shu, W., Lee, H., Rimner, A., et al. (2011). MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes & Development, 25(3), 226–231.Google Scholar
  127. 127.
    Lee, D. Y., Deng, Z., Wang, C. H., & Yang, B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20350–20355.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Experimental Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations