Advertisement

Regulation of the metastatic cell phenotype by sialylated glycans

Abstract

Tumor cells exhibit striking changes in cell surface glycosylation as a consequence of dysregulated glycosyltransferases and glycosidases. In particular, an increase in the expression of certain sialylated glycans is a prominent feature of many transformed cells. Altered sialylation has long been associated with metastatic cell behaviors including invasion and enhanced cell survival; however, there is limited information regarding the molecular details of how distinct sialylated structures or sialylated carrier proteins regulate cell signaling to control responses such as adhesion/migration or resistance to specific apoptotic pathways. The goal of this review is to highlight selected examples of sialylated glycans for which there is some knowledge of molecular mechanisms linking aberrant sialylation to critical processes involved in metastasis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Lloyd, K. O., & Old, L. J. (1989). Human monoclonal antibodies to glycolipids and other carbohydrate antigens: dissection of the humoral immune response in cancer patients. Cancer Research, 49, 3445–3451.

  2. 2.

    Sell, S. (1990). Cancer-associated carbohydrates identified by monoclonal antibodies. Human Pathology, 21, 1003–1019.

  3. 3.

    Varki, A., Kannagi, R., & Toole, B. P. (2009). Glycosylation changes in cancer. In A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, & M. E. Etzler (Eds.), Essentials of Glycobiology (2nd ed., pp. 580–670). New York: Cold Spring Harbor Laboratory Press.

  4. 4.

    Hakomori, S. (1989). Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Advances in Cancer Research, 52, 257–331.

  5. 5.

    Zhou, D., Levery, S. B., Hsu, F. F., Wang, P. G., Teneberg, S., Almeida, I. C., Li, Y., Xu, H., Wang, L. X., Xia, C., Ibrahim, N. K., & Michael, K. (2011). Immunologic mapping of glycomes: implications for cancer diagnosis and therapy. Frontiers in Bioscience (Scholar Edition), 3, 1520–1532.

  6. 6.

    Reis, C. A., Osorio, H., Silva, L., Gomes, C., & David, L. (2010). Alterations in glycosylation as biomarkers for cancer detection. Journal of Clinical Pathology, 63, 322–329.

  7. 7.

    Drake, P. M., Cho, W., Li, B., Prakobphol, A., Johansen, E., Anderson, N. L., et al. (2010). Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clinical Chemistry, 56, 223–236.

  8. 8.

    Fuster, M. M., & Esko, J. D. (2005). The sweet and sour of cancer: glycans as novel therapeutic targets. Nature Reviews Cancer, 5, 526–542.

  9. 9.

    Petrescu, A. J., Milac, A. L., Petrescu, S. M., Dwek, R. A., & Wormald, M. R. (2004). Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology, 14, 103–114.

  10. 10.

    Sutton, B. J., & Phillips, D. C. (1983). The three-dimensional structure of the carbohydrate within the Fc fragment of immunoglobulin G. Biochemical Society Transactions, 11, 130–132.

  11. 11.

    Mer, G., Hietter, H., & Lefevre, J. F. (1996). Stabilization of proteins by glycosylation examined by NMR analysis of a fucosylated proteinase inhibitor. Nature Structural Biology, 3, 45–53.

  12. 12.

    van Zuylen, C. W., de Beer, T., Leeflang, B. R., Boelens, R., Kaptein, R., Kamerling, J. P., & Vliegenthart, J. F. (1998). Mobilities of the inner three core residues and the Man(alpha 1–6) branch of the glycan at Asn78 of the alpha-subunit of human chorionic gonadotropin are restricted by the protein. Biochemistry, 37, 1933–1940.

  13. 13.

    Lotan, R., & Raz, A. (1988). Lectins in cancer cells. Annals of the New York Academy of Sciences, 551, 385–396.

  14. 14.

    Drickamer, K., & Taylor, M. E. (1993). Biology of animal lectins. Annual Review of Cell Biology, 9, 237–264.

  15. 15.

    Perkel, J. (2011). “Glycoproteomics: The sweet smell of we’re-getting there” Science Magazine. Available at: http://www.sciencemag.org/site/products/lst_20110107.xhtml.

  16. 16.

    Dall’Olio, F., & Chiricolo, M. (2001). Sialyltransferases in cancer. Glycoconjugate Journal, 18, 841–850.

  17. 17.

    Varki, N. M., & Varki, A. (2007). Diversity in cell surface sialic acid presentations: implications for biology and disease. Laboratory Investigation, 87, 851–857.

  18. 18.

    Schauer, R. (2009). Sialic acids as regulators of molecular and cellular interactions. Current Opinion in Structural Biology, 19, 507–514.

  19. 19.

    Cazet, A., Julien, S., Bobowski, M., Burchell, J., & Delannoy, P. (2010). Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Research, 12, 204.

  20. 20.

    Cha, S. K., Ortega, B., Kurosu, H., Rosenblatt, K. P., Kuro, O. M., & Huang, C. L. (2008). Removal of sialic acid involving Klotho causes cell–surface retention of TRPV5 channel via binding to galectin-1. Proceedings of the National Academy of Sciences of the United States of America, 105, 9805–9810.

  21. 21.

    Isaev, D., Isaeva, E., Shatskih, T., Zhao, Q., Smits, N. C., Shworak, N. W., Khazipov, R., & Holmes, G. L. (2007). Role of extracellular sialic acid in regulation of neuronal and network excitability in the rat hippocampus. Journal of Neuroscience, 27, 11587–11594.

  22. 22.

    Rifat, S., Kang, T. J., Mann, D., Zhang, L., Puche, A. C., Stamatos, N. M., Goldblum, S. E., Brossmer, R., & Cross, A. S. (2008). Expression of sialyltransferase activity on intact human neutrophils. Journal of Leukocyte Biology, 84, 1075–1081.

  23. 23.

    Jones, M. B., Nasirikenari, M., Lugade, A. A., Thanavala, Y., & Lau, J. T. (2012). Anti-inflammatory IgG production requires a functional P1 promoter in the ST6Gal-1 sialyltransferase gene. Journal of Biological Chemistry, 287, 15365–15370.

  24. 24.

    Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M. A., Samyn-Petit, B., Julien, S., & Delannoy, P. (2001). The human sialyltransferase family. Biochimie, 83, 727–737.

  25. 25.

    Uemura, T., Shiozaki, K., Yamaguchi, K., Miyazaki, S., Satomi, S., Kato, K., Sakuraba, H., & Miyagi, T. (2009). Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin beta4. Oncogene, 28, 1218–1229.

  26. 26.

    Gangopadhyay, A., Perera, S. P., & Thomas, P. (1998). Differential expression of alpha2,6-sialyltransferase in colon tumors recognized by a monoclonal antibody. Hybridoma, 17, 117–123.

  27. 27.

    Gessner, P., Riedl, S., Quentmaier, A., & Kemmner, W. (1993). Enhanced activity of CMP-neuAc:Gal beta 1-4GlcNAc:alpha 2,6-sialyltransferase in metastasizing human colorectal tumor tissue and serum of tumor patients. Cancer Letters, 75, 143–149.

  28. 28.

    Dall’Olio, F., Malagolini, N., di Stefano, G., Minni, F., Marrano, D., & Serafini-Cessi, F. (1989). Increased CMP-NeuAc:Gal beta 1,4GlcNAc-R alpha 2,6 sialyltransferase activity in human colorectal cancer tissues. International Journal of Cancer, 44, 434–439.

  29. 29.

    Patel, R. Y., & Balaji, P. V. (2006). Identification of linkage-specific sequence motifs in sialyltransferases. Glycobiology, 16, 108–116.

  30. 30.

    Danguy, A., Camby, I., & Kiss, R. (2002). Galectins and cancer. Biochimica et Biophysica Acta, 1572, 285–293.

  31. 31.

    Nakahara, S., & Raz, A. (2008). Biological modulation by lectins and their ligands in tumor progression and metastasis. Anti-Cancer Agents in Medicinal Chemistry, 8, 22–36.

  32. 32.

    Liu, F. T., & Rabinovich, G. A. (2005). Galectins as modulators of tumour progression. Nature Reviews Cancer, 5, 29–41.

  33. 33.

    He, J., & Baum, L. G. (2006). Galectin interactions with extracellular matrix and effects on cellular function. Methods in Enzymology, 417, 247–256.

  34. 34.

    Ochieng, J., Furtak, V., & Lukyanov, P. (2004). Extracellular functions of galectin-3. Glycoconjugate Journal, 19, 527–535.

  35. 35.

    Elola, M. T., Wolfenstein-Todel, C., Troncoso, M. F., Vasta, G. R., & Rabinovich, G. A. (2007). Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cellular and Molecular Life Sciences, 64, 1679–1700.

  36. 36.

    Zhuo, Y., & Bellis, S. L. (2010). Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. Journal of Biological Chemistry, 286, 5935–5941.

  37. 37.

    Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W. E., Yagi, F., & Kasai, K. (2002). Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochimica et Biophysica Acta, 1572, 232–254.

  38. 38.

    Zhuo, Y., Chammas, R., & Bellis, S. L. (2008). Sialylation of beta1 integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. Journal of Biological Chemistry, 283, 22177–22185.

  39. 39.

    Crocker, P. R., Paulson, J. C., & Varki, A. (2007). Siglecs and their roles in the immune system. Nature Reviews Immunology, 7, 255–266.

  40. 40.

    Varki, A., & Angata, T. (2006). Siglecs—the major subfamily of I-type lectins. Glycobiology, 16, 1R–27R.

  41. 41.

    Jandus, C., Simon, H. U., & von Gunten, S. (2011). Targeting siglecs—a novel pharmacological strategy for immuno- and glycotherapy. Biochemical Pharmacology, 82, 323–332.

  42. 42.

    Woodard-Grice, A. V., McBrayer, A. C., Wakefield, J., Zhuo, Y., & Bellis, S. L. (2008). Proteolytic shedding of ST6Gal-I by BACE1 regulates the glycosylation and function of alpha4beta1 integrins. Journal of Biological Chemistry, 283, 26364–26373.

  43. 43.

    Pretzlaff, R. K., Xue, V. W., & Rowin, M. E. (2000). Sialidase treatment exposes the beta1-integrin active ligand binding site on HL60 cells and increases binding to fibronectin. Cell Adhesion and Communication, 7, 491–500.

  44. 44.

    Amano, M., Galvan, M., He, J., & Baum, L. G. (2003). The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. Journal of Biological Chemistry, 278, 7469–7475.

  45. 45.

    Liu, Y. C., Yen, H. Y., Chen, C. Y., Chen, C. H., Cheng, P. F., Juan, Y. H., Khoo, K. H., Yu, C. J., Yang, P. C., Hsu, T. L., & Wong, C. H. (2011). Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 11332–11337.

  46. 46.

    Kitazume, S., Imamaki, R., Ogawa, K., Komi, Y., Futakawa, S., Kojima, S., Hashimoto, Y., Marth, J. D., Paulson, J. C., & Taniguchi, N. (2010). Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. Journal of Biological Chemistry, 285, 6515–6521.

  47. 47.

    Swindall, A. F., & Bellis, S. L. (2011). Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. Journal of Biological Chemistry, 286, 22982–22990.

  48. 48.

    Gascoigne, N. R. (2002). T-cell differentiation: MHC class I’s sweet tooth lost on maturity. Current Biology, 12, R99–R101.

  49. 49.

    Daniels, M. A., Devine, L., Miller, J. D., Moser, J. M., Lukacher, A. E., Altman, J. D., Kavathas, P., Hogquist, K. A., & Jameson, S. C. (2001). CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity, 15, 1051–1061.

  50. 50.

    Moody, A. M., Chui, D., Reche, P. A., Priatel, J. J., Marth, J. D., & Reinherz, E. L. (2001). Developmentally regulated glycosylation of the CD8alphabeta coreceptor stalk modulates ligand binding. Cell, 107, 501–512.

  51. 51.

    Boscher, C., Dennis, J. W., & Nabi, I. R. (2011). Glycosylation, galectins and cellular signaling. Current Opinion in Cell Biology, 23, 383–392.

  52. 52.

    Grigorian, A., Torossian, S., & Demetriou, M. (2009). T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunological Reviews, 230, 232–246.

  53. 53.

    Garner, O. B., & Baum, L. G. (2008). Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochemical Society Transactions, 36, 1472–1477.

  54. 54.

    Lau, K. S., Partridge, E. A., Grigorian, A., Silvescu, C. I., Reinhold, V. N., Demetriou, M., & Dennis, J. W. (2007). Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell, 129, 123–134.

  55. 55.

    Lin, S., Kemmner, W., Grigull, S., & Schlag, P. M. (2002). Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells. Experimental Cell Research, 276, 101–110.

  56. 56.

    Seales, E. C., Jurado, G. A., Brunson, B. A., Wakefield, J. K., Frost, A. R., & Bellis, S. L. (2005). Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Research, 65, 4645–4652.

  57. 57.

    Christie, D. R., Shaikh, F. M., Lucas, J. A., IV, Lucas, J. A., III, & Bellis, S. L. (2008). ST6Gal-1 expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. Journal of Ovarian Research, 1, 3.

  58. 58.

    Zhu, Y., Srivatana, U., Ullah, A., Gagneja, H., Berenson, C. S., & Lance, P. (2001). Suppression of a sialyltransferase by antisense DNA reduces invasiveness of human colon cancer cells in vitro. Biochimica et Biophysica Acta, 1536, 148–160.

  59. 59.

    Morgenthaler, J., Kemmner, W., & Brossmer, R. (1990). Sialic acid dependent cell adhesion to collagen IV correlates with in vivo tumorigenicity of the human colon carcinoma sublines HCT116, HCT116a and HCT116b. Biochemical and Biophysical Research Communications, 171, 860–866.

  60. 60.

    Reddy, B. V., & Kalraiya, R. D. (2006). Sialilated beta1,6 branched N-oligosaccharides modulate adhesion, chemotaxis and motility of melanoma cells: Effect on invasion and spontaneous metastasis properties. Biochimica et Biophysica Acta, 1760, 1393–1402.

  61. 61.

    Collard, J. G., Schijven, J. F., Bikker, A., La Riviere, G., Bolscher, J. G., & Roos, E. (1986). Cell surface sialic acid and the invasive and metastatic potential of T-cell hybridomas. Cancer Research, 46, 3521–3527.

  62. 62.

    Harvey, B. E., Toth, C. A., Wagner, H. E., Steele, G. D., Jr., & Thomas, P. (1992). Sialyltransferase activity and hepatic tumor growth in a nude mouse model of colorectal cancer metastases. Cancer Research, 52, 1775–1779.

  63. 63.

    Bresalier, R. S., Rockwell, R. W., Dahiya, R., Duh, Q. Y., & Kim, Y. S. (1990). Cell surface sialoprotein alterations in metastatic murine colon cancer cell lines selected in an animal model for colon cancer metastasis. Cancer Research, 50, 1299–1307.

  64. 64.

    Chiang, C. H., Wang, C. H., Chang, H. C., More, S. V., Li, W. S., & Hung, W. C. (2010). A novel sialyltransferase inhibitor AL10 suppresses invasion and metastasis of lung cancer cells by inhibiting integrin-mediated signaling. Journal of Cellular Physiology, 223, 492–499.

  65. 65.

    Chen, J. Y., Tang, Y. A., Huang, S. M., Juan, H. F., Wu, L. W., Sun, Y. C., Wang, S. C., Wu, K. W., Balraj, G., Chang, T. T., Li, W. S., Cheng, H. C., & Wang, Y. C. (2011). A novel sialyltransferase inhibitor suppresses FAK/paxillin signaling and cancer angiogenesis and metastasis pathways. Cancer Research, 71, 473–483.

  66. 66.

    Drinnan, N. B., Halliday, J., & Ramsdale, T. (2003). Inhibitors of sialyltransferases: potential roles in tumor growth and metastasis. Mini Reviews in Medicinal Chemistry, 3, 501–517.

  67. 67.

    Carcel-Trullols, J., Stanley, J. S., Saha, R., Shaaf, S., Bendre, M. S., Monzavi-Karbassi, B., Suva, L. J., & Kieber-Emmons, T. (2006). Characterization of the glycosylation profile of the human breast cancer cell line, MDA-231, and a bone colonizing variant. International Journal of Oncology, 28, 1173–1183.

  68. 68.

    Bos, P. D., Zhang, X. H., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., Minn, A. J., van de Vijver, M. J., Gerald, W. L., Foekens, J. A., & Massague, J. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 459, 1005–1009.

  69. 69.

    Bellis, S. L. (2004). Variant glycosylation: an underappreciated regulatory mechanism for beta1 integrins. Biochimica et Biophysica Acta, 1663, 52–60.

  70. 70.

    Gu, J., & Taniguchi, N. (2004). Regulation of integrin functions by N-glycans. Glycoconjugate Journal, 21, 9–15.

  71. 71.

    Isaji, T., Kariya, Y., Xu, Q., Fukuda, T., Taniguchi, N., & Gu, J. (2010). Functional roles of the bisecting GlcNAc in integrin-mediated cell adhesion. Methods in Enzymology, 480, 445–459.

  72. 72.

    Janik, M. E., Litynska, A., & Vereecken, P. (2010). Cell migration—the role of integrin glycosylation. Biochimica et Biophysica Acta, 1800, 545–555.

  73. 73.

    Guo, H. B., Lee, I., Bryan, B. T., & Pierce, M. (2005). Deletion of mouse embryo fibroblast N-acetylglucosaminyltransferase V stimulates alpha5beta1 integrin expression mediated by the protein kinase C signaling pathway. Journal of Biological Chemistry, 280, 8332–8342.

  74. 74.

    Seales, E. C., Jurado, G. A., Singhal, A., & Bellis, S. L. (2003). Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin. Oncogene, 22, 7137–7145.

  75. 75.

    Shaikh, F. M., Seales, E. C., Clem, W. C., Hennessy, K. M., Zhuo, Y., & Bellis, S. L. (2008). Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms. Experimental Cell Research, 314, 2941–2950.

  76. 76.

    Lee, M., Park, J. J., & Lee, Y. S. (2010). Adhesion of ST6Gal I-mediated human colon cancer cells to fibronectin contributes to cell survival by integrin beta1-mediated paxillin and AKT activation. Oncology Reports, 23, 757–761.

  77. 77.

    Dalziel, M., Dall’Olio, F., Mungul, A., Piller, V., & Piller, F. (2004). Ras oncogene induces beta-galactoside alpha2,6-sialyltransferase (ST6Gal I) via a RalGEF-mediated signal to its housekeeping promoter. European Journal of Biochemistry, 271, 3623–3634.

  78. 78.

    Easton, E. W., Bolscher, J. G., & van den Eijnden, D. H. (1991). Enzymatic amplification involving glycosyltransferases forms the basis for the increased size of asparagine-linked glycans at the surface of NIH 3T3 cells expressing the N-Ras proto-oncogene. Journal of Biological Chemistry, 266, 21674–21680.

  79. 79.

    Le Marer, N., Laudet, V., Svensson, E. C., Cazlaris, H., Van Hille, B., Lagrou, C., Stehelin, D., Montreuil, J., Verbert, A., & Delannoy, P. (1992). The c-Ha-Ras oncogene induces increased expression of beta-galactoside alpha-2, 6-sialyltransferase in rat fibroblast (FR3T3) cells. Glycobiology, 2, 49–56.

  80. 80.

    Seales, E. C., Shaikh, F. M., Woodard-Grice, A. V., Aggarwal, P., McBrayer, A. C., Hennessy, K. M., & Bellis, S. L. (2005). A protein kinase C/Ras/ERK signaling pathway activates myeloid fibronectin receptors by altering beta1 integrin sialylation. Journal of Biological Chemistry, 280, 37610–37615.

  81. 81.

    Semel, A. C., Seales, E. C., Singhal, A., Eklund, E. A., Colley, K. J., & Bellis, S. L. (2002). Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors. Journal of Biological Chemistry, 277, 32830–32836.

  82. 82.

    Pochec, E., Litynska, A., Amoresano, A., & Casbarra, A. (2003). Glycosylation profile of integrin alpha 3 beta 1 changes with melanoma progression. Biochimica et Biophysica Acta, 1643, 113–123.

  83. 83.

    Isaji, T., Sato, Y., Fukuda, T., & Gu, J. (2009). N-glycosylation of the I-like domain of beta1 integrin is essential for beta1 integrin expression and biological function: identification of the minimal N-glycosylation requirement for alpha5beta1. Journal of Biological Chemistry, 284, 12207–12216.

  84. 84.

    Akiyama, S. K., Yamada, S. S., & Yamada, K. M. (1989). Analysis of the role of glycosylation of the human fibronectin receptor. Journal of Biological Chemistry, 264, 18011–18018.

  85. 85.

    Zheng, M., Fang, H., & Hakomori, S. (1994). Functional role of N-glycosylation in alpha 5 beta 1 integrin receptor. De-N-glycosylation induces dissociation or altered association of alpha 5 and beta 1 subunits and concomitant loss of fibronectin binding activity. Journal of Biological Chemistry, 269, 12325–12331.

  86. 86.

    Liu, Y., Pan, D., Bellis, S. L., & Song, Y. (2008). Effect of altered glycosylation on the structure of the I-like domain of beta1 integrin: a molecular dynamics study. Proteins, 73, 989–1000.

  87. 87.

    Hedlund, M., Ng, E., Varki, A., & Varki, N. M. (2008). Alpha 2-6-linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Research, 68, 388–394.

  88. 88.

    Ramaswamy, S., Ross, K. N., Lander, E. S., & Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nature Genetics, 33, 49–54.

  89. 89.

    Barkan, D., El Touny, L. H., Michalowski, A. M., Smith, J. A., Chu, I., Davis, A. S., Webster, J. D., Hoover, S., Simpson, R. M., Gauldie, J., & Green, J. E. (2010). Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Research, 70, 5706–5716.

  90. 90.

    Provenzano, P. P., Eliceiri, K. W., Campbell, J. M., Inman, D. R., White, J. G., & Keely, P. J. (2006). Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine, 4, 38.

  91. 91.

    Sidani, M., Wyckoff, J., Xue, C., Segall, J. E., & Condeelis, J. (2006). Probing the microenvironment of mammary tumors using multiphoton microscopy. Journal of Mammary Gland Biology and Neoplasia, 11, 151–163.

  92. 92.

    Yoshimura, K., Meckel, K. F., Laird, L. S., Chia, C. Y., Park, J. J., Olino, K. L., Tsunedomi, R., Harada, T., Iizuka, N., Hazama, S., Kato, Y., Keller, J. W., Thompson, J. M., Chang, F., Romer, L. H., Jain, A., Iacobuzio-Donahue, C., Oka, M., Pardoll, D. M., & Schulick, R. D. (2009). Integrin alpha2 mediates selective metastasis to the liver. Cancer Research, 69, 7320–7328.

  93. 93.

    Liang, F., Seyrantepe, V., Landry, K., Ahmad, R., Ahmad, A., Stamatos, N. M., & Pshezhetsky, A. V. (2006). Monocyte differentiation up-regulates the expression of the lysosomal sialidase, Neu1, and triggers its targeting to the plasma membrane via major histocompatibility complex class II-positive compartments. Journal of Biological Chemistry, 281, 27526–27538.

  94. 94.

    Hinek, A., Pshezhetsky, A. V., von Itzstein, M., & Starcher, B. (2006). Lysosomal sialidase (neuraminidase-1) is targeted to the cell surface in a multiprotein complex that facilitates elastic fiber assembly. Journal of Biological Chemistry, 281, 3698–3710.

  95. 95.

    Sawada, M., Moriya, S., Saito, S., Shineha, R., Satomi, S., Yamori, T., Tsuruo, T., Kannagi, R., & Miyagi, T. (2002). Reduced sialidase expression in highly metastatic variants of mouse colon adenocarcinoma 26 and retardation of their metastatic ability by sialidase overexpression. International Journal of Cancer, 97, 180–185.

  96. 96.

    Miyagi, T., Sato, K., Hata, K., & Taniguchi, S. (1994). Metastatic potential of transformed rat 3Y1 cell lines is inversely correlated with lysosomal-type sialidase activity. FEBS Letters, 349, 255–259.

  97. 97.

    Springer, G. F. (1984). T and Tn, general carcinoma autoantigens. Science, 224, 1198–1206.

  98. 98.

    Miles, D. W., Happerfield, L. C., Smith, P., Gillibrand, R., Bobrow, L. G., Gregory, W. M., & Rubens, R. D. (1994). Expression of sialyl-Tn predicts the effect of adjuvant chemotherapy in node-positive breast cancer. British Journal of Cancer, 70, 1272–1275.

  99. 99.

    Davidson, B., Gotlieb, W. H., Ben-Baruch, G., Kopolovic, J., Goldberg, I., Nesland, J. M., Berner, A., Bjamer, A., & Bryne, M. (2000). Expression of carbohydrate antigens in advanced-stage ovarian carcinomas and their metastases—a clinicopathologic study. Gynecologic Oncology, 77, 35–43.

  100. 100.

    Brockhausen, I. (1999). Pathways of O-glycan biosynthesis in cancer cells. Biochimica et Biophysica Acta, 1473, 67–95.

  101. 101.

    Taylor-Papadimitriou, J., Burchell, J. M., Plunkett, T., Graham, R., Correa, I., Miles, D., & Smith, M. (2002). MUC1 and the immunobiology of cancer. Journal of Mammary Gland Biology and Neoplasia, 7, 209–221.

  102. 102.

    Ikeda, Y., Kuwano, H., Baba, K., Ikebe, M., Matushima, T., Adachi, Y., Mori, M., & Sugimachi, K. (1993). Expression of Sialyl-Tn antigens in normal squamous epithelium, dysplasia, and squamous cell carcinoma in the esophagus. Cancer Research, 53, 1706–1708.

  103. 103.

    Itzkowitz, S., Kjeldsen, T., Friera, A., Hakomori, S., Yang, U. S., & Kim, Y. S. (1991). Expression of Tn, sialosyl Tn, and T antigens in human pancreas. Gastroenterology, 100, 1691–1700.

  104. 104.

    Itzkowitz, S. H., Yuan, M., Montgomery, C. K., Kjeldsen, T., Takahashi, H. K., Bigbee, W. L., & Kim, Y. S. (1989). Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Research, 49, 197–204.

  105. 105.

    Schuessler, M. H., Pintado, S., Welt, S., Real, F. X., Xu, M., Melamed, M. R., Lloyd, K. O., & Oettgen, H. F. (1991). Blood group and blood-group-related antigens in normal pancreas and pancreas cancer: enhanced expression of precursor type 1, Tn and sialyl-Tn in pancreas cancer. International Journal of Cancer, 47, 180–187.

  106. 106.

    Inoue, M., Ogawa, H., Tanizawa, O., Kobayashi, Y., Tsujimoto, M., & Tsujimura, T. (1991). Immunodetection of sialyl-Tn antigen in normal, hyperplastic and cancerous tissues of the uterine endometrium. Virchows Archiv. A, Pathological Anatomy and Histopathology, 418, 157–162.

  107. 107.

    Inoue, M., Ton, S. M., Ogawa, H., & Tanizawa, O. (1991). Expression of Tn and sialyl-Tn antigens in tumor tissues of the ovary. American Journal of Clinical Pathology, 96, 711–716.

  108. 108.

    Werther, J. L., Rivera-MacMurray, S., Bruckner, H., Tatematsu, M., & Itzkowitz, S. H. (1994). Mucin-associated sialosyl-Tn antigen expression in gastric cancer correlates with an adverse outcome. British Journal of Cancer, 69, 613–616.

  109. 109.

    Kjeldsen, T., Clausen, H., Hirohashi, S., Ogawa, T., Iijima, H., & Hakomori, S. (1988). Preparation and characterization of monoclonal antibodies directed to the tumor-associated O-linked sialosyl-2-6 alpha-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Research, 48, 2214–2220.

  110. 110.

    Zhang, S., Zhang, H. S., Reuter, V. E., Slovin, S. F., Scher, H. I., & Livingston, P. O. (1998). Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers. Clinical Cancer Research, 4, 295–302.

  111. 111.

    Gilewski, T. A., Ragupathi, G., Dickler, M., Powell, S., Bhuta, S., Panageas, K., Koganty, R. R., Chin-Eng, J., Hudis, C., Norton, L., Houghton, A. N., & Livingston, P. O. (2007). Immunization of high-risk breast cancer patients with clustered sTn-KLH conjugate plus the immunologic adjuvant QS-21. Clinical Cancer Research, 13, 2977–2985.

  112. 112.

    Julien, S., Picco, G., Sewell, R., Vercoutter-Edouart, A. S., Tarp, M., Miles, D., Clausen, H., Taylor-Papadimitriou, J., & Burchell, J. M. (2009). Sialyl-Tn vaccine induces antibody-mediated tumour protection in a relevant murine model. British Journal of Cancer, 100, 1746–1754.

  113. 113.

    Ibrahim, N. K., & Murray, J. L. (2003). Clinical development of the STn-KLH vaccine (Theratope). Clinical Breast Cancer, 3(Suppl 4), S139–S143.

  114. 114.

    Kobayashi, H., Terao, T., & Kawashima, Y. (1991). Circulating serum STN antigen as a prognostic marker in epithelial ovarian cancer. Gan to Kagaku Ryoho, 18, 1651–1655.

  115. 115.

    Takahashi, I., Maehara, Y., Kusumoto, T., Kohnoe, S., Kakeji, Y., Baba, H., & Sugimachi, K. (1994). Combined evaluation of preoperative serum sialyl-Tn antigen and carcinoembryonic antigen levels is prognostic for gastric cancer patients. British Journal of Cancer, 69, 163–166.

  116. 116.

    Kinney, A. Y., Sahin, A., Vernon, S. W., Frankowski, R. F., Annegers, J. F., Hortobagyi, G. N., Buzdar, A. U., Frye, D. K., & Dhingra, K. (1997). The prognostic significance of sialyl-Tn antigen in women treated with breast carcinoma treated with adjuvant chemotherapy. Cancer, 80, 2240–2249.

  117. 117.

    Imai, J., Ghazizadeh, M., Naito, Z., & Asano, G. (2001). Immunohistochemical expression of T, Tn and sialyl-Tn antigens and clinical outcome in human breast carcinoma. Anticancer Research, 21, 1327–1334.

  118. 118.

    Leivonen, M., Nordling, S., Lundin, J., von Boguslawski, K., & Haglund, C. (2001). STn and prognosis in breast cancer. Oncology, 61, 299–305.

  119. 119.

    Itzkowitz, S. H., Bloom, E. J., Kokal, W. A., Modin, G., Hakomori, S., & Kim, Y. S. (1990). Sialosyl-Tn. A novel mucin antigen associated with prognosis in colorectal cancer patients. Cancer, 66, 1960–1966.

  120. 120.

    Ma, X. C., Terata, N., Kodama, M., Jancic, S., Hosokawa, Y., & Hattori, T. (1993). Expression of sialyl-Tn antigen is correlated with survival time of patients with gastric carcinomas. European Journal of Cancer, 29A, 1820–1823.

  121. 121.

    Therkildsen, M. H., Andersen, L. J., Christensen, M., Hansen, H. S., Schiodt, T., & Dabelsteen, E. (1998). Salivary gland carcinomas: prognostic significance of simple mucin-type carbohydrate antigens. Oral Oncology, 34, 44–51.

  122. 122.

    Lundin, M., Nordling, S., Roberts, P. J., Lundin, J., Carpelan-Holmstrom, M., von Boguslawsky, K., & Haglund, C. (1999). Sialyl Tn is a frequently expressed antigen in colorectal cancer: no correlation with patient prognosis. Oncology, 57, 70–76.

  123. 123.

    Miles, D., & Papazisis, K. (2003). Rationale for the clinical development of STn-KLH (Theratope) and anti-MUC-1 vaccines in breast cancer. Clinical Breast Cancer, 3(Suppl 4), S134–S138.

  124. 124.

    Sewell, R., Backstrom, M., Dalziel, M., Gschmeissner, S., Karlsson, H., Noll, T., Gatgens, J., Clausen, H., Hansson, G. C., Burchell, J., & Taylor-Papadimitriou, J. (2006). The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. Journal of Biological Chemistry, 281, 3586–3594.

  125. 125.

    Ju, T., Lanneau, G. S., Gautam, T., Wang, Y., Xia, B., Stowell, S. R., Willard, M. T., Wang, W., Xia, J. Y., Zuna, R. E., Laszik, Z., Benbrook, D. M., Hanigan, M. H., & Cummings, R. D. (2008). Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Research, 68, 1636–1646.

  126. 126.

    Kobayashi, H., Terao, T., & Kawashima, Y. (1991). Clinical evaluation of circulating serum sialyl Tn antigen levels in patients with epithelial ovarian cancer. Journal of Clinical Oncology, 9, 983–987.

  127. 127.

    Ozaki, H., Matsuzaki, H., Ando, H., Kaji, H., Nakanishi, H., Ikehara, Y., & Narimatsu, H. (2012). Enhancement of metastatic ability by ectopic expression of ST6GalNAcI on a gastric cancer cell line in a mouse model. Clinical & Experimental Metastasis, 29, 229–238.

  128. 128.

    Julien, S., Lagadec, C., Krzewinski-Recchi, M. A., Courtand, G., Le Bourhis, X., & Delannoy, P. (2005). Stable expression of sialyl-Tn antigen in T47-D cells induces a decrease of cell adhesion and an increase of cell migration. Breast Cancer Research and Treatment, 90, 77–84.

  129. 129.

    Julien, S., Adriaenssens, E., Ottenberg, K., Furlan, A., Courtand, G., Vercoutter-Edouart, A. S., Hanisch, F. G., Delannoy, P., & Le Bourhis, X. (2006). ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology, 16, 54–64.

  130. 130.

    Pinho, S., Marcos, N. T., Ferreira, B., Carvalho, A. S., Oliveira, M. J., Santos-Silva, F., Harduin-Lepers, A., & Reis, C. A. (2007). Biological significance of cancer-associated sialyl-Tn antigen: modulation of malignant phenotype in gastric carcinoma cells. Cancer Letters, 249, 157–170.

  131. 131.

    Julien, S., Krzewinski-Recchi, M. A., Harduin-Lepers, A., Gouyer, V., Huet, G., Le Bourhis, X., & Delannoy, P. (2001). Expression of sialyl-Tn antigen in breast cancer cells transfected with the human CMP-Neu5Ac: GalNAc alpha2,6-sialyltransferase (ST6GalNac I) cDNA. Glycoconjugate Journal, 18, 883–893.

  132. 132.

    Marcos, N. T., Bennett, E. P., Gomes, J., Magalhaes, A., Gomes, C., David, L., Dar, I., Jeanneau, C., DeFrees, S., Krustrup, D., Vogel, L. K., Kure, E. H., Burchell, J., Taylor-Papadimitriou, J., Clausen, H., Mandel, U., & Reis, C. A. (2011). ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues. Frontiers in Bioscience (Elite Edition), 3, 1443–1455.

  133. 133.

    Marcos, N. T., Pinho, S., Grandela, C., Cruz, A., Samyn-Petit, B., Harduin-Lepers, A., Almeida, R., Silva, F., Morais, V., Costa, J., Kihlberg, J., Clausen, H., & Reis, C. A. (2004). Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Research, 64, 7050–7057.

  134. 134.

    Kono, M., Tsuda, T., Ogata, S., Takashima, S., Liu, H., Hamamoto, T., Itzkowitz, S. H., Nishimura, S., & Tsuji, S. (2000). Redefined substrate specificity of ST6GalNAc II: a second candidate sialyl-Tn synthase. Biochemical and Biophysical Research Communications, 272, 94–97.

  135. 135.

    Schneider, F., Kemmner, W., Haensch, W., Franke, G., Gretschel, S., Karsten, U., & Schlag, P. M. (2001). Overexpression of sialyltransferase CMP-sialic acid:Galbeta1,3GalNAc-R alpha6-sialyltransferase is related to poor patient survival in human colorectal carcinomas. Cancer Research, 61, 4605–4611.

  136. 136.

    Ju, T., Otto, V. I., & Cummings, R. D. (2011). The Tn antigen-structural simplicity and biological complexity. Angewandte Chemie (International Ed. in English), 50, 1770–1791.

  137. 137.

    Wang, Y., Ju, T., Ding, X., Xia, B., Wang, W., Xia, L., He, M., & Cummings, R. D. (2010). Cosmc is an essential chaperone for correct protein O-glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 107, 9228–9233.

  138. 138.

    Hollingsworth, M. A., & Swanson, B. J. (2004). Mucins in cancer: protection and control of the cell surface. Nature Reviews Cancer, 4, 45–60.

  139. 139.

    Van Elssen, C. H., Clausen, H., Germeraad, W. T., Bennet, E. P., Menheere, P. P., Bos, G. M., & Vanderlocht, J. (2010). Flow cytometry-based assay to evaluate human serum MUC1-Tn antibodies. Journal of Immunological Methods, 365, 87–94.

  140. 140.

    Ligtenberg, M. J., Buijs, F., Vos, H. L., & Hilkens, J. (1992). Suppression of cellular aggregation by high levels of episialin. Cancer Research, 52, 2318–2324.

  141. 141.

    Wesseling, J., van der Valk, S. W., & Hilkens, J. (1996). A mechanism for inhibition of E-cadherin-mediated cell–cell adhesion by the membrane-associated mucin episialin/MUC1. Molecular Biology of the Cell, 7, 565–577.

  142. 142.

    Burdick, M. D., Harris, A., Reid, C. J., Iwamura, T., & Hollingsworth, M. A. (1997). Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. Journal of Biological Chemistry, 272, 24198–24202.

  143. 143.

    Gunthert, U., Hofmann, M., Rudy, W., Reber, S., Zoller, M., Haussmann, I., Matzku, S., Wenzel, A., Ponta, H., & Herrlich, P. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 65, 13–24.

  144. 144.

    Hofmann, M., Rudy, W., Zoller, M., Tolg, C., Ponta, H., Herrlich, P., & Gunthert, U. (1991). CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Research, 51, 5292–5297.

  145. 145.

    Wai, P. Y., & Kuo, P. C. (2004). The role of osteopontin in tumor metastasis. Journal of Surgical Research, 121, 228–241.

  146. 146.

    Clement, M., Rocher, J., Loirand, G., & Le Pendu, J. (2004). Expression of sialyl-Tn epitopes on beta1 integrin alters epithelial cell phenotype, proliferation and haptotaxis. Journal of Cell Science, 117, 5059–5069.

  147. 147.

    Ogata, S., Maimonis, P. J., & Itzkowitz, S. H. (1992). Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Research, 52, 4741–4746.

  148. 148.

    Brinkman-Van der Linden, E. C., & Varki, A. (2000). New aspects of siglec binding specificities, including the significance of fucosylation and of the sialyl-Tn epitope. Sialic acid-binding immunoglobulin superfamily lectins. Journal of Biological Chemistry, 275, 8625–8632.

  149. 149.

    Patel, N., Brinkman-Van der Linden, E. C., Altmann, S. W., Gish, K., Balasubramanian, S., Timans, J. C., Peterson, D., Bell, M. P., Bazan, J. F., Varki, A., & Kastelein, R. A. (1999). OB-BP1/Siglec-6. A leptin- and sialic acid-binding protein of the immunoglobulin superfamily. Journal of Biological Chemistry, 274, 22729–22738.

  150. 150.

    Barbera-Guillem, E., May, K. F., Jr., Nyhus, J. K., & Nelson, M. B. (1999). Promotion of tumor invasion by cooperation of granulocytes and macrophages activated by anti-tumor antibodies. Neoplasia, 1, 453–460.

  151. 151.

    Barbera-Guillem, E., Nyhus, J. K., Wolford, C. C., Friece, C. R., & Sampsel, J. W. (2002). Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Research, 62, 7042–7049.

  152. 152.

    Miles, D., Roche, H., Martin, M., Perren, T. J., Cameron, D. A., Glaspy, J., Dodwell, D., Parker, J., Mayordomo, J., Tres, A., Murray, J. L., & Ibrahim, N. K. (2011). Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. The Oncologist, 16, 1092–1100.

  153. 153.

    Geng, Y., Marshall, J. R., & King, M. R. (2011). Glycomechanics of the metastatic cascade: tumor cell-endothelial cell interactions in the circulation. Annals of Biomedical Engineering, 40, 790–805.

  154. 154.

    Laubli, H., & Borsig, L. (2010). Selectins promote tumor metastasis. Seminars in Cancer Biology, 20, 169–177.

  155. 155.

    Croce, M. V., Isla-Larrain, M., Rabassa, M. E., Demichelis, S., Colussi, A. G., Crespo, M., Lacunza, E., & Segal-Eiras, A. (2007). Lewis x is highly expressed in normal tissues: a comparative immunohistochemical study and literature revision. Pathology and Oncology Research, 13, 130–138.

  156. 156.

    Khabaz, M. N., McClure, J., McClure, S., & Stoddart, R. W. (2010). Glycophenotype of prostatic carcinomas. Folia Histochemica et Cytobiologica, 48, 637–645.

  157. 157.

    Renkonen, J., Paavonen, T., & Renkonen, R. (1997). Endothelial and epithelial expression of sialyl Lewis(x) and sialyl Lewis(a) in lesions of breast carcinoma. International Journal of Cancer, 74, 296–300.

  158. 158.

    Croce, M. V., Rabassa, M. E., Pereyra, A., & Segal-Eiras, A. (2008). Differential expression of MUC1 and carbohydrate antigens in primary and secondary head and neck squamous cell carcinoma. Head & Neck, 30, 647–657.

  159. 159.

    Takada, A., Ohmori, K., Yoneda, T., Tsuyuoka, K., Hasegawa, A., Kiso, M., & Kannagi, R. (1993). Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Research, 53, 354–361.

  160. 160.

    Matsuura, N., Narita, T., Mitsuoka, C., Kimura, N., Kannagi, R., Imai, T., Funahashi, H., & Takagi, H. (1997). Increased level of circulating adhesion molecules in the sera of breast cancer patients with distant metastases. Japanese Journal of Clinical Oncology, 27, 135–139.

  161. 161.

    Nakagoe, T., Fukushima, K., Itoyanagi, N., Ikuta, Y., Oka, T., Nagayasu, T., Ayabe, H., Hara, S., Ishikawa, H., & Minami, H. (2002). Expression of ABH/Lewis-related antigens as prognostic factors in patients with breast cancer. Journal of Cancer Research and Clinical Oncology, 128, 257–264.

  162. 162.

    Jeschke, U., Mylonas, I., Shabani, N., Kunert-Keil, C., Schindlbeck, C., Gerber, B., & Friese, K. (2005). Expression of sialyl lewis X, sialyl Lewis A, E-cadherin and cathepsin-D in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastasis. Anticancer Research, 25, 1615–1622.

  163. 163.

    Fukuoka, K., Narita, N., & Saijo, N. (1998). Increased expression of sialyl Lewis(x) antigen is associated with distant metastasis in lung cancer patients: immunohistochemical study on bronchofiberscopic biopsy specimens. Lung Cancer, 20, 109–116.

  164. 164.

    Tatsumi, M., Watanabe, A., Sawada, H., Yamada, Y., Shino, Y., & Nakano, H. (1998). Immunohistochemical expression of the sialyl Lewis x antigen on gastric cancer cells correlates with the presence of liver metastasis. Clinical & Experimental Metastasis, 16, 743–750.

  165. 165.

    Baldus, S. E., Zirbes, T. K., Monig, S. P., Engel, S., Monaca, E., Rafiqpoor, K., Hanisch, F. G., Hanski, C., Thiele, J., Pichlmaier, H., & Dienes, H. P. (1998). Histopathological subtypes and prognosis of gastric cancer are correlated with the expression of mucin-associated sialylated antigens: sialosyl-Lewis(a), sialosyl-Lewis(x) and sialosyl-Tn. Tumour Biology, 19, 445–453.

  166. 166.

    Nakamori, S., Kameyama, M., Imaoka, S., Furukawa, H., Ishikawa, O., Sasaki, Y., Izumi, Y., & Irimura, T. (1997). Involvement of carbohydrate antigen sialyl Lewis(x) in colorectal cancer metastasis. Diseases of the Colon & Rectum, 40, 420–431.

  167. 167.

    Nakamori, S., Nishihara, S., Ikehara, Y., Nagano, H., Dono, K., Sakon, M., Narimatsu, H., & Monden, M. (1999). Molecular mechanism involved in increased expression of sialyl Lewis antigens in ductal carcinoma of the pancreas. Journal of Experimental & Clinical Cancer Research, 18, 425–432.

  168. 168.

    Amado, M., Carneiro, F., Seixas, M., Clausen, H., & Sobrinho-Simoes, M. (1998). Dimeric sialyl-Le(x) expression in gastric carcinoma correlates with venous invasion and poor outcome. Gastroenterology, 114, 462–470.

  169. 169.

    Grabowski, P., Mann, B., Mansmann, U., Lovin, N., Foss, H. D., Berger, G., Scherubl, H., Riecken, E. O., Buhr, H. J., & Hanski, C. (2000). Expression of SIALYL-Le(x) antigen defined by MAb AM-3 is an independent prognostic marker in colorectal carcinoma patients. International Journal of Cancer, 88, 281–286.

  170. 170.

    Sozzani, P., Arisio, R., Porpiglia, M., & Benedetto, C. (2008). Is Sialyl Lewis x antigen expression a prognostic factor in patients with breast cancer? International Journal of Surgical Pathology, 16, 365–374.

  171. 171.

    Nakayama, T., Watanabe, M., Katsumata, T., Teramoto, T., & Kitajima, M. (1995). Expression of sialyl Lewis(a) as a new prognostic factor for patients with advanced colorectal carcinoma. Cancer, 75, 2051–2056.

  172. 172.

    Ugorski, M., & Laskowska, A. (2002). Sialyl Lewis(a): a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochimica Polonica, 49, 303–311.

  173. 173.

    Kannagi, R. (2007). Carbohydrate antigen sialyl Lewis a—its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Medical Journal, 30, 189–209.

  174. 174.

    Gebauer, G., & Muller-Ruchholtz, W. (1997). Tumor marker concentrations in normal and malignant tissues of colorectal cancer patients and their prognostic relevance. Anticancer Research, 17, 2731–2734.

  175. 175.

    Bechtel, B., Wand, A. J., Wroblewski, K., Koprowski, H., & Thurin, J. (1990). Conformational analysis of the tumor-associated carbohydrate antigen 19-9 and its Lea blood group antigen component as related to the specificity of monoclonal antibody CO19-9. Journal of Biological Chemistry, 265, 2028–2037.

  176. 176.

    Isozaki, H., Ohyama, T., & Mabuchi, H. (1998). Expression of cell adhesion molecule CD44 and sialyl Lewis A in gastric carcinoma and colorectal carcinoma in association with hepatic metastasis. International Journal of Oncology, 13, 935–942.

  177. 177.

    Jorgensen, T., Berner, A., Kaalhus, O., Tveter, K. J., Danielsen, H. E., & Bryne, M. (1995). Up-regulation of the oligosaccharide sialyl LewisX: a new prognostic parameter in metastatic prostate cancer. Cancer Research, 55, 1817–1819.

  178. 178.

    Kurebayashi, J., Nomura, T., Hirono, M., Okubo, S., Udagawa, K., Shiiki, S., Ikeda, M., Nakashima, K., Tanaka, K., & Sonoo, H. (2006). Combined measurement of serum sialyl Lewis X with serum CA15-3 in breast cancer patients. Japanese Journal of Clinical Oncology, 36, 150–153.

  179. 179.

    Fujita, T., Murayama, K., Hanamura, T., Okada, T., Ito, T., Harada, M., Komatsu, A., Koyama, H., Kanai, T., Maeno, K., Mochizuki, Y., Hama, Y., Ito, K., Amano, J., & Fujimori, M. (2011). CSLEX (sialyl Lewis X) is a useful tumor marker for monitoring of breast cancer patients. Japanese Journal of Clinical Oncology, 41, 394–399.

  180. 180.

    Tsuchida, A., Okajima, T., Furukawa, K., Ando, T., Ishida, H., Yoshida, A., Nakamura, Y., Kannagi, R., & Kiso, M. (2003). Synthesis of disialyl Lewis a (Le(a)) structure in colon cancer cell lines by a sialyltransferase, ST6GalNAc VI, responsible for the synthesis of alpha-series gangliosides. Journal of Biological Chemistry, 278, 22787–22794.

  181. 181.

    Kawamura, Y. I., Kawashima, R., Fukunaga, R., Hirai, K., Toyama-Sorimachi, N., Tokuhara, M., Shimizu, T., & Dohi, T. (2005). Introduction of Sd(a) carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Research, 65, 6220–6227.

  182. 182.

    Kannagi, R., Sakuma, K., Miyazaki, K., Lim, K. T., Yusa, A., Yin, J., & Izawa, M. (2009). Altered expression of glycan genes in cancers induced by epigenetic silencing and tumor hypoxia: clues in the ongoing search for new tumor markers. Cancer Science, 101, 586–593.

  183. 183.

    Julien, S., Ivetic, A., Grigoriadis, A., QiZe, D., Burford, B., Sproviero, D., Picco, G., Gillett, C., Papp, S. L., Schaffer, L., Tutt, A., Taylor-Papadimitriou, J., Pinder, S. E., & Burchell, J. M. (2011). Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Research, 71, 7683–7693.

  184. 184.

    Yamada, N., Chung, Y. S., Takatsuka, S., Arimoto, Y., Sawada, T., Dohi, T., & Sowa, M. (1997). Increased sialyl Lewis A expression and fucosyltransferase activity with acquisition of a high metastatic capacity in a colon cancer cell line. British Journal of Cancer, 76, 582–587.

  185. 185.

    Barthel, S. R., Wiese, G. K., Cho, J., Opperman, M. J., Hays, D. L., Siddiqui, J., Pienta, K. J., Furie, B., & Dimitroff, C. J. (2009). Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking. Proceedings of the National Academy of Sciences of the United States of America, 106, 19491–19496.

  186. 186.

    Matsuura, N., Narita, T., Hiraiwa, N., Hiraiwa, M., Murai, H., Iwase, T., Funahashi, H., Imai, T., Takagi, H., & Kannagi, R. (1998). Gene expression of fucosyl- and sialyl-transferases which synthesize sialyl Lewisx, the carbohydrate ligands for E-selectin, in human breast cancer. International Journal of Oncology, 12, 1157–1164.

  187. 187.

    Majuri, M. L., Niemela, R., Tiisala, S., Renkonen, O., & Renkonen, R. (1995). Expression and function of alpha 2,3-sialyl- and alpha 1,3/1,4-fucosyltransferases in colon adenocarcinoma cell lines: role in synthesis of E-selectin counter-receptors. International Journal of Cancer, 63, 551–559.

  188. 188.

    Matsushita, Y., Cleary, K. R., Ota, D. M., Hoff, S. D., & Irimura, T. (1990). Sialyl-dimeric Lewis-X antigen expressed on mucin-like glycoproteins in colorectal cancer metastases. Laboratory Investigation, 63, 780–791.

  189. 189.

    Hanski, C., Drechsler, K., Hanisch, F. G., Sheehan, J., Manske, M., Ogorek, D., Klussmann, E., Hanski, M. L., Blank, M., Xing, P. X., et al. (1993). Altered glycosylation of the MUC-1 protein core contributes to the colon carcinoma-associated increase of mucin-bound sialyl-Lewis(x) expression. Cancer Research, 53, 4082–4088.

  190. 190.

    Opolski, A., Laskowska, A., Madej, J., Wietrzyk, J., Klopocki, A., Radzikowski, C., & Ugorski, M. (1998). Metastatic potential of human CX-1 colon adenocarcinoma cells is dependent on the expression of sialosyl Le(a) antigen. Clinical & Experimental Metastasis, 16, 673–681.

  191. 191.

    Weston, B. W., Hiller, K. M., Mayben, J. P., Manousos, G. A., Bendt, K. M., Liu, R., & Cusack, J. C., Jr. (1999). Expression of human alpha(1,3)fucosyltransferase antisense sequences inhibits selectin-mediated adhesion and liver metastasis of colon carcinoma cells. Cancer Research, 59, 2127–2135.

  192. 192.

    Walz, G., Aruffo, A., Kolanus, W., Bevilacqua, M., & Seed, B. (1990). Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science, 250, 1132–1135.

  193. 193.

    Phillips, M. L., Nudelman, E., Gaeta, F. C., Perez, M., Singhal, A. K., Hakomori, S., & Paulson, J. C. (1990). ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science, 250, 1130–1132.

  194. 194.

    Ben-David, T., Sagi-Assif, O., Meshel, T., Lifshitz, V., Yron, I., & Witz, I. P. (2008). The involvement of the sLe—a selectin ligand in the extravasation of human colorectal carcinoma cells. Immunology Letters, 116, 218–224.

  195. 195.

    Takada, A., Ohmori, K., Takahashi, N., Tsuyuoka, K., Yago, A., Zenita, K., Hasegawa, A., & Kannagi, R. (1991). Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis A. Biochemical and Biophysical Research Communications, 179, 713–719.

  196. 196.

    Hsu, C. C., Lin, T. W., Chang, W. W., Wu, C. Y., Lo, W. H., Wang, P. H., & Tsai, Y. C. (2005). Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids. Gynecologic Oncology, 96, 415–422.

  197. 197.

    Shiozaki, K., Yamaguchi, K., Takahashi, K., Moriya, S., & Miyagi, T. (2011). Regulation of sialyl Lewis antigen expression in colon cancer cells by sialidase NEU4. Journal of Biological Chemistry, 286, 21052–21061.

  198. 198.

    O, I., Otvos, L., Kieber-Emmons, T., & Blaszczyk-Thurin, M. (2002). Role of SA-Le(a) and E-selectin in metastasis assessed with peptide antagonist. Peptides, 23, 999–1010.

  199. 199.

    Biancone, L., Araki, M., Araki, K., Vassalli, P., & Stamenkovic, I. (1996). Redirection of tumor metastasis by expression of E-selectin in vivo. The Journal of Experimental Medicine, 183, 581–587.

  200. 200.

    Kohler, S., Ullrich, S., Richter, U., & Schumacher, U. (2010). E-/P-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. British Journal of Cancer, 102, 602–609.

  201. 201.

    Ragupathi, G., Damani, P., Srivastava, G., Srivastava, O., Sucheck, S. J., Ichikawa, Y., & Livingston, P. O. (2009). Synthesis of sialyl Lewis(a) (sLe (a), CA19-9) and construction of an immunogenic sLe(a) vaccine. Cancer Immunology, Immunotherapy, 58, 1397–1405.

  202. 202.

    Ohyama, C., Tsuboi, S., & Fukuda, M. (1999). Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO Journal, 18, 1516–1525.

  203. 203.

    Fuster, M. M., Brown, J. R., Wang, L., & Esko, J. D. (2003). A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells. Cancer Research, 63, 2775–2781.

  204. 204.

    Brown, J. R., Fuster, M. M., Whisenant, T., & Esko, J. D. (2003). Expression patterns of alpha 2,3-sialyltransferases and alpha 1,3-fucosyltransferases determine the mode of sialyl Lewis X inhibition by disaccharide decoys. Journal of Biological Chemistry, 278, 23352–23359.

  205. 205.

    Brown, J. R., Fuster, M. M., Li, R., Varki, N., Glass, C. A., & Esko, J. D. (2006). A disaccharide-based inhibitor of glycosylation attenuates metastatic tumor cell dissemination. Clinical Cancer Research, 12, 2894–2901.

  206. 206.

    Sawada, R., Sun, S. M., Wu, X., Hong, F., Ragupathi, G., Livingston, P. O., & Scholz, W. W. (2011). Human monoclonal antibodies to sialyl-Lewis (CA19.9) with potent CDC, ADCC, and antitumor activity. Clinical Cancer Research, 17, 1024–1032.

  207. 207.

    Hsu, D. K., Yang, R. Y., & Liu, F. T. (2006). Galectins in apoptosis. Methods in Enzymology, 417, 256–273.

  208. 208.

    Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H. R., Hogan, V., Inohara, H., Kagawa, S., & Raz, A. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Research, 63, 8302–8311.

  209. 209.

    Sanchez-Ruderisch, H., Detjen, K. M., Welzel, M., Andre, S., Fischer, C., Gabius, H. J., & Rosewicz, S. (2011). Galectin-1 sensitizes carcinoma cells to anoikis via the fibronectin receptor alpha5beta1-integrin. Cell Death and Differentiation, 18, 806–816.

  210. 210.

    Lajoie, P., Partridge, E. A., Guay, G., Goetz, J. G., Pawling, J., Lagana, A., Joshi, B., Dennis, J. W., & Nabi, I. R. (2007). Plasma membrane domain organization regulates EGFR signaling in tumor cells. The Journal of Cell Biology, 179, 341–356.

  211. 211.

    Earl, L. A., Bi, S., & Baum, L. G. (2010). N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. Journal of Biological Chemistry, 285, 2232–2244.

  212. 212.

    Nangia-Makker, P., Nakahara, S., Hogan, V., & Raz, A. (2007). Galectin-3 in apoptosis, a novel therapeutic target. Journal of Bioenergetics and Biomembranes, 39, 79–84.

  213. 213.

    Lee, M., Lee, H. J., Bae, S., & Lee, Y. S. (2008). Protein sialylation by sialyltransferase involves radiation resistance. Molecular Cancer Research, 6, 1316–1325.

  214. 214.

    Liu, Z., Swindall, A. F., Kesterson, R. A., Schoeb, T. R., Bullard, D. C., & Bellis, S. L. (2011). ST6Gal-I regulates macrophage apoptosis via alpha2-6 sialylation of the TNFR1 death receptor. Journal of Biological Chemistry, 286, 39654–39662.

  215. 215.

    Moller, P., Koretz, K., Leithauser, F., Bruderlein, S., Henne, C., Quentmeier, A., & Krammer, P. H. (1994). Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. International Journal of Cancer, 57, 371–377.

  216. 216.

    Lebel, M., Bertrand, R., & Mes-Masson, A. M. (1996). Decreased Fas antigen receptor expression in testicular tumor cell lines derived from polyomavirus large T-antigen transgenic mice. Oncogene, 12, 1127–1135.

  217. 217.

    Strand, S., Hofmann, W. J., Hug, H., Muller, M., Otto, G., Strand, D., Mariani, S. M., Stremmel, W., Krammer, P. H., & Galle, P. R. (1996). Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—a mechanism of immune evasion? Nature Medicine, 2, 1361–1366.

  218. 218.

    Peter, M. E., Budd, R. C., Desbarats, J., Hedrick, S. M., Hueber, A. O., Newell, M. K., Owen, L. B., Pope, R. M., Tschopp, J., Wajant, H., Wallach, D., Wiltrout, R. H., Zornig, M., & Lynch, D. H. (2007). The CD95 receptor: apoptosis revisited. Cell, 129, 447–450.

  219. 219.

    Ametller, E., Garcia-Recio, S., Costamagna, D., Mayordomo, C., Fernandez-Nogueira, P., Carbo, N., Pastor-Arroyo, E. M., Gascon, P., & Almendro, V. (2010). Tumor promoting effects of CD95 signaling in chemoresistant cells. Molecular Cancer, 9, 161.

  220. 220.

    Lai, Y. J., Lin, V. T., Zheng, Y., Benveniste, E. N., & Lin, F. T. (2010). The adaptor protein TRIP6 antagonizes Fas-induced apoptosis but promotes its effect on cell migration. Molecular and Cellular Biology, 30, 5582–5596.

  221. 221.

    Nijkamp, M. W., Hoogwater, F. J., Steller, E. J., Westendorp, B. F., van der Meulen, T. A., Leenders, M. W., Borel Rinkes, I. H., & Kranenburg, O. (2010). CD95 is a key mediator of invasion and accelerated outgrowth of mouse colorectal liver metastases following radiofrequency ablation. Journal of Hepatology, 53, 1069–1077.

  222. 222.

    Yuan, K., Jing, G., Chen, J., Liu, H., Zhang, K., Li, Y., Wu, H., McDonald, J. M., & Chen, Y. (2011). Calmodulin mediates Fas-induced FADD-independent survival signaling in pancreatic cancer cells via activation of Src-extracellular signal-regulated kinase (ERK). Journal of Biological Chemistry, 286, 24776–24784.

  223. 223.

    Chen, L., Park, S. M., Tumanov, A. V., Hau, A., Sawada, K., Feig, C., Turner, J. R., Fu, Y. X., Romero, I. L., Lengyel, E., & Peter, M. E. (2009). CD95 promotes tumour growth. Nature, 465, 492–496.

  224. 224.

    Baldwin, R. L., Tran, H., & Karlan, B. Y. (1999). Primary ovarian cancer cultures are resistant to Fas-mediated apoptosis. Gynecologic Oncology, 74, 265–271.

  225. 225.

    Landowski, T. H., Gleason-Guzman, M. C., & Dalton, W. S. (1997). Selection for drug resistance results in resistance to Fas-mediated apoptosis. Blood, 89, 1854–1861.

  226. 226.

    Natoli, G., Ianni, A., Costanzo, A., De Petrillo, G., Ilari, I., Chirillo, P., Balsano, C., & Levrero, M. (1995). Resistance to Fas-mediated apoptosis in human hepatoma cells. Oncogene, 11, 1157–1164.

  227. 227.

    O’Connell, J., Bennett, M. W., O’Sullivan, G. C., Roche, D., Kelly, J., Collins, J. K., & Shanahan, F. (1998). Fas ligand expression in primary colon adenocarcinomas: evidence that the Fas counterattack is a prevalent mechanism of immune evasion in human colon cancer. The Journal of Pathology, 186, 240–246.

  228. 228.

    Keppler, O. T., Peter, M. E., Hinderlich, S., Moldenhauer, G., Stehling, P., Schmitz, I., Schwartz-Albiez, R., Reutter, W., & Pawlita, M. (1999). Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus. Glycobiology, 9, 557–569.

  229. 229.

    Peter, M. E., Hellbardt, S., Schwartz-Albiez, R., Westendorp, M. O., Walczak, H., Moldenhauer, G., Grell, M., & Krammer, P. H. (1995). Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death. Cell Death and Differentiation, 2, 163–171.

  230. 230.

    Suzuki, O., Nozawa, Y., & Abe, M. (2003). Sialic acids linked to glycoconjugates of Fas regulate the caspase-9-dependent and mitochondria-mediated pathway of Fas-induced apoptosis in Jurkat T cell lymphoma. International Journal of Oncology, 23, 769–774.

  231. 231.

    Lee, K. H., Feig, C., Tchikov, V., Schickel, R., Hallas, C., Schutze, S., Peter, M. E., & Chan, A. C. (2006). The role of receptor internalization in CD95 signaling. EMBO Journal, 25, 1009–1023.

  232. 232.

    Buhe, V., Loisel, S., Pers, J. O., Le Ster, K., Berthou, C., & Youinou, P. (2010). Updating the physiology, exploration and disease relevance of complement factor H. International Journal of Immunopathology and Pharmacology, 23, 397–404.

  233. 233.

    Meesmann, H. M., Fehr, E. M., Kierschke, S., Herrmann, M., Bilyy, R., Heyder, P., Blank, N., Krienke, S., Lorenz, H. M., & Schiller, M. (2010). Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. Journal of Cell Science, 123, 3347–3356.

Download references

Acknowledgments

The authors are grateful for support from NIH grant R01CA84248, American Heart Association grant 7710013, and a grant from the Department of Defense CDMRP program, OC100141. Mr. Schultz is an NSF Predoctoral Fellow, and Ms. Swindall is an American Heart Association Predoctoral Fellow. Mr. Schultz and Ms. Swindall are members of the Howard Hughes Med-into-Grad predoctoral program.

Author information

Correspondence to Susan L. Bellis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schultz, M.J., Swindall, A.F. & Bellis, S.L. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 31, 501–518 (2012). https://doi.org/10.1007/s10555-012-9359-7

Download citation

Keywords

  • Sialylation
  • Metastatic cell phenotype
  • Sialylated glycoproteins
  • Invasion