Cancer and Metastasis Reviews

, Volume 31, Issue 1–2, pp 285–293 | Cite as

Cancer stem cells and EMT in carcinoma

  • Adrian BiddleEmail author
  • Ian C. Mackenzie


The majority of deaths from carcinoma are caused by secondary growths that result from tumour invasion and metastasis. The importance of epithelial-to-mesenchymal transition (EMT) as a driver of invasion and metastasis is increasingly recognised, and recent evidence has highlighted a link between EMT and the cancer stem cells that initiate and maintain tumours and have also been implicated in invasion and metastasis. Here, we review cancer stem cells and their link with EMT, and explore the importance of this link in metastasis and therapeutic resistance of tumours. We also discuss new evidence from our laboratory demonstrating that cancer stem cells display a remarkable phenotypic plasticity that enables them to switch between an epithelial phenotype that drives tumour growth and an EMT phenotype that drives metastasis. As successful therapies must eradicate cancer stem cells in all their guises, the identification of sub-types of cancer stem cells that display therapeutic resistance and phenotypic plasticity has important implications for the future design of therapeutic strategies. The ability to assay the responses of different cancer stem cell phenotypes in vitro holds promise for the rapid development of a new generation of targeted therapies that fulfil this objective.


Cancer Stem CSC EMT MET 



This work was funded by the NC3Rs.


  1. 1.
    Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715. doi: 10.1016/j.cell.2008.03.027.PubMedCrossRefGoogle Scholar
  2. 2.
    Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., & Kirchner, T. (2005). Opinion: Migrating cancer stem cells—An integrated concept of malignant tumour progression. Nature Reviews. Cancer, 5(9), 744–749. doi: 10.1038/nrc1694.PubMedCrossRefGoogle Scholar
  3. 3.
    Biddle, A., Liang, X., Gammon, L., Fazil, B., Harper, L. J., Emich, H., et al. (2011). Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Research. doi: 10.1158/0008-5472.CAN-11-1059.
  4. 4.
    Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278. doi: 10.1158/0008-5472.CAN-06-2044.PubMedCrossRefGoogle Scholar
  5. 5.
    Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138(4), 645–659. doi: 10.1016/j.cell.2009.06.034.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang, Z., Li, Y., Ahmad, A., Azmi, A. S., Kong, D., Banerjee, S., et al. (2010). Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resistance Updates, 13(4–5), 109–118. doi: 10.1016/j.drup.2010.07.001.PubMedCrossRefGoogle Scholar
  7. 7.
    Clarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H., Jones, D. L., et al. (2006). Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344. doi: 10.1158/0008-5472.CAN-06-3126.PubMedCrossRefGoogle Scholar
  8. 8.
    Gu, G., Yuan, J., Wills, M., & Kasper, S. (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Research, 67(10), 4807–4815. doi: 10.1158/0008-5472.CAN-06-4608.PubMedCrossRefGoogle Scholar
  9. 9.
    Mackenzie, I. C. (2008). Cancer stem cells. Annals of Oncology, 19(Suppl 5), v40–v43. doi: 10.1093/annonc/mdn306.PubMedCrossRefGoogle Scholar
  10. 10.
    Mackenzie, I. C. (2006). Stem cell properties and epithelial malignancies. European Journal of Cancer, 42(9), 1204–1212. doi: 10.1016/j.ejca.2006.01.041.PubMedCrossRefGoogle Scholar
  11. 11.
    Morgan, J. E., & Partridge, T. A. (2003). Muscle satellite cells. The International Journal of Biochemistry & Cell Biology, 35(8), 1151–1156.CrossRefGoogle Scholar
  12. 12.
    Stingl, J. (2009). Detection and analysis of mammary gland stem cells. The Journal of Pathology, 217(2), 229–241. doi: 10.1002/path.2457.PubMedCrossRefGoogle Scholar
  13. 13.
    Battula, V. L., Evans, K. W., Hollier, B. G., Shi, Y., Marini, F. C., Ayyanan, A., et al. (2010). Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells, 28(8), 1435–1445. doi: 10.1002/stem.467.PubMedCrossRefGoogle Scholar
  14. 14.
    Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMedCrossRefGoogle Scholar
  15. 15.
    Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.PubMedGoogle Scholar
  16. 16.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988. doi: 10.1073/pnas.0530291100.PubMedCrossRefGoogle Scholar
  17. 17.
    Locke, M., Heywood, M., Fawell, S., & Mackenzie, I. C. (2005). Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Research, 65(19), 8944–8950. doi: 10.1158/0008-5472.CAN-05-0931.PubMedCrossRefGoogle Scholar
  18. 18.
    Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 973–978. doi: 10.1073/pnas.0610117104.PubMedCrossRefGoogle Scholar
  19. 19.
    Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030–1037. doi: 10.1158/0008-5472.CAN-06-2030.PubMedCrossRefGoogle Scholar
  20. 20.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., Li, H., Bhatia, B., Tang, S., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25(12), 1696–1708. doi: 10.1038/sj.onc.1209327.PubMedCrossRefGoogle Scholar
  21. 21.
    Clay, M. R., Tabor, M., Owen, J. H., Carey, T. E., Bradford, C. R., Wolf, G. T., et al. (2010). Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & Neck, 32(9), 1195–1201. doi: 10.1002/hed.21315.CrossRefGoogle Scholar
  22. 22.
    Ginestier, C., Hur, M. H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1(5), 555–567. doi: 10.1016/j.stem.2007.08.014.PubMedCrossRefGoogle Scholar
  23. 23.
    Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute, 100(9), 672–679. doi: 10.1093/jnci/djn123.PubMedCrossRefGoogle Scholar
  24. 24.
    Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760. doi: 10.1038/nature05236.PubMedCrossRefGoogle Scholar
  25. 25.
    Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 29(34), 4741–4751. doi: 10.1038/onc.2010.215.PubMedCrossRefGoogle Scholar
  26. 26.
    Charafe-Jauffret, E., Ginestier, C., Iovino, F., Tarpin, C., Diebel, M., Esterni, B., et al. (2010). Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clinical Cancer Research, 16(1), 45–55. doi: 10.1158/1078-0432.CCR-09-1630.PubMedCrossRefGoogle Scholar
  27. 27.
    Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323. doi: 10.1016/j.stem.2007.06.002.PubMedCrossRefGoogle Scholar
  28. 28.
    Hay, E. D. (2005). The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Developmental Dynamics, 233(3), 706–720. doi: 10.1002/dvdy.20345.PubMedCrossRefGoogle Scholar
  29. 29.
    Savagner, P., Kusewitt, D. F., Carver, E. A., Magnino, F., Choi, C., Gridley, T., et al. (2005). Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. Journal of Cellular Physiology, 202(3), 858–866. doi: 10.1002/jcp.20188.PubMedCrossRefGoogle Scholar
  30. 30.
    Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428. doi: 10.1172/JCI39104.PubMedCrossRefGoogle Scholar
  31. 31.
    Wu, Y., Deng, J., Rychahou, P. G., Qiu, S., Evers, B. M., & Zhou, B. P. (2009). Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell, 15(5), 416–428. doi: 10.1016/j.ccr.2009.03.016.PubMedCrossRefGoogle Scholar
  32. 32.
    Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology, 10(3), 295–305. doi: 10.1038/ncb1691.PubMedCrossRefGoogle Scholar
  33. 33.
    Gjerdrum, C., Tiron, C., Hoiby, T., Stefansson, I., Haugen, H., Sandal, T., et al. (2010). Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1124–1129. doi: 10.1073/pnas.0909333107.PubMedCrossRefGoogle Scholar
  34. 34.
    Skvortsova, I., Skvortsov, S., Raju, U., Stasyk, T., Riesterer, O., Schottdorf, E. M., et al. (2010). Epithelial-to-mesenchymal transition and c-myc expression are the determinants of cetuximab-induced enhancement of squamous cell carcinoma radioresponse. Radiotherapy and Oncology, 96(1), 108–115. doi: 10.1016/j.radonc.2010.04.017.PubMedCrossRefGoogle Scholar
  35. 35.
    Bandyopadhyay, A., Wang, L., Agyin, J., Tang, Y., Lin, S., Yeh, I. T., et al. (2010). Doxorubicin in combination with a small TGFbeta inhibitor: A potential novel therapy for metastatic breast cancer in mouse models. PLoS One, 5(4), e10365. doi: 10.1371/journal.pone.0010365.PubMedCrossRefGoogle Scholar
  36. 36.
    Fuchs, B. C., Fujii, T., Dorfman, J. D., Goodwin, J. M., Zhu, A. X., Lanuti, M., et al. (2008). Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Research, 68(7), 2391–2399. doi: 10.1158/0008-5472.CAN-07-2460.PubMedCrossRefGoogle Scholar
  37. 37.
    Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell, 15(3), 195–206. doi: 10.1016/j.ccr.2009.01.023.PubMedCrossRefGoogle Scholar
  38. 38.
    Shin, S. Y., Rath, O., Zebisch, A., Choo, S. M., Kolch, W., & Cho, K. H. (2010). Functional roles of multiple feedback loops in extracellular signal-regulated kinase and wnt signaling pathways that regulate epithelial-mesenchymal transition. Cancer Research, 70(17), 6715–6724. doi: 10.1158/0008-5472.CAN-10-1377.PubMedCrossRefGoogle Scholar
  39. 39.
    Smith, G. R., & Missailidis, S. (2004). Cancer, inflammation and the AT1 and AT2 receptors. Journal of Inflammation (London), 1(1), 3. doi: 10.1186/1476-9255-1-3.CrossRefGoogle Scholar
  40. 40.
    Chang, H. Y., Nuyten, D. S., Sneddon, J. B., Hastie, T., Tibshirani, R., Sorlie, T., et al. (2005). Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3738–3743. doi: 10.1073/pnas.0409462102.PubMedCrossRefGoogle Scholar
  41. 41.
    Thiery, J. P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.PubMedCrossRefGoogle Scholar
  42. 42.
    Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487–1495. doi: 10.1038/ncb1998.PubMedCrossRefGoogle Scholar
  43. 43.
    Barrandon, Y., & Green, H. (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proceedings of the National Academy of Sciences of the United States of America, 84(8), 2302–2306.PubMedCrossRefGoogle Scholar
  44. 44.
    Harper, L. J., Piper, K., Common, J., Fortune, F., & Mackenzie, I. C. (2007). Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. Journal of Oral Pathology & Medicine, 36(10), 594–603. doi: 10.1111/j.1600-0714.2007.00617.x.CrossRefGoogle Scholar
  45. 45.
    Li, H., Chen, X., Calhoun-Davis, T., Claypool, K., & Tang, D. G. (2008). PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Research, 68(6), 1820–1825. doi: 10.1158/0008-5472.CAN-07-5878.PubMedCrossRefGoogle Scholar
  46. 46.
    Keller, P. J., Lin, A. F., Arendt, L. M., Klebba, I., Jones, A. D., Rudnick, J. A., et al. (2010). Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Research, 12(5), R87. doi: 10.1186/bcr2755.PubMedCrossRefGoogle Scholar
  47. 47.
    Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589. doi: 10.1038/embor.2008.74.PubMedCrossRefGoogle Scholar
  48. 48.
    Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7950–7955. doi: 10.1073/pnas.1102454108.PubMedCrossRefGoogle Scholar
  49. 49.
    Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J. F., Harrington, K., et al. (2007). Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biology, 9(12), 1392–1400. doi: 10.1038/ncb1658.PubMedCrossRefGoogle Scholar
  50. 50.
    Giampieri, S., Manning, C., Hooper, S., Jones, L., Hill, C. S., & Sahai, E. (2009). Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biology, 11(11), 1287–1296. doi: 10.1038/ncb1973.PubMedCrossRefGoogle Scholar
  51. 51.
    Asiedu, M. K., Ingle, J. N., Behrens, M. D., Radisky, D. C., & Knutson, K. L. (2011). TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Research, 71(13), 4707–4719. doi: 10.1158/0008-5472.CAN-10-4554.PubMedCrossRefGoogle Scholar
  52. 52.
    Korpal, M., Ell, B. J., Buffa, F. M., Ibrahim, T., Blanco, M. A., Celia-Terrassa, T., et al. (2011). Direct targeting of Sec23a by miR-200 s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17(9), 1101–1108. doi: 10.1038/nm.2401.PubMedCrossRefGoogle Scholar
  53. 53.
    Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283(22), 14910–14914. doi: 10.1074/jbc.C800074200.PubMedCrossRefGoogle Scholar
  54. 54.
    Olumi, A. F., Grossfeld, G. D., Hayward, S. W., Carroll, P. R., Tlsty, T. D., & Cunha, G. R. (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Research, 59(19), 5002–5011.PubMedGoogle Scholar
  55. 55.
    Kojima, Y., Acar, A., Eaton, E. N., Mellody, K. T., Scheel, C., Ben-Porath, I., et al. (2010). Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 20009–20014. doi: 10.1073/pnas.1013805107.PubMedCrossRefGoogle Scholar
  56. 56.
    Lopez-Novoa, J. M., & Nieto, M. A. (2009). Inflammation and EMT: An alliance towards organ fibrosis and cancer progression. EMBO Molecular Medicine, 1(6–7), 303–314. doi: 10.1002/emmm.200900043.PubMedCrossRefGoogle Scholar
  57. 57.
    Creighton, C. J., Li, X., Landis, M., Dixon, J. M., Neumeister, V. M., Sjolund, A., et al. (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 13820–13825. doi: 10.1073/pnas.0905718106.PubMedCrossRefGoogle Scholar
  58. 58.
    Harper, L. J., Costea, D. E., Gammon, L., Fazil, B., Biddle, A., & Mackenzie, I. C. (2010). Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance. BMC Cancer, 10, 166. doi: 10.1186/1471-2407-10-166.PubMedCrossRefGoogle Scholar
  59. 59.
    Surowiak, P., Materna, V., Kaplenko, I., Spaczynski, M., Dolinska-Krajewska, B., Gebarowska, E., et al. (2006). ABCC2 (MRP2, cMOAT) can be localized in the nuclear membrane of ovarian carcinomas and correlates with resistance to cisplatin and clinical outcome. Clinical Cancer Research, 12(23), 7149–7158. doi: 10.1158/1078-0432.CCR-06-0564.PubMedCrossRefGoogle Scholar
  60. 60.
    Theile, D., Ketabi-Kiyanvash, N., Herold-Mende, C., Dyckhoff, G., Efferth, T., Bertholet, V., et al. (2011). Evaluation of drug transporters' significance for multidrug resistance in head and neck squamous cell carcinoma. Head & Neck, 33(7), 959–968. doi: 10.1002/hed.21559.CrossRefGoogle Scholar
  61. 61.
    Wang, X. Q., Ongkeko, W. M., Chen, L., Yang, Z. F., Lu, P., Chen, K. K., et al. (2010). Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology, 52(2), 528–539. doi: 10.1002/hep.23692.PubMedCrossRefGoogle Scholar
  62. 62.
    Tsai, L. L., Yu, C. C., Chang, Y. C., Yu, C. H., & Chou, M. Y. (2011). Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma. Journal of Oral Pathology & Medicine. doi: 10.1111/j.1600-0714.2011.01015.x.
  63. 63.
    Cheung, S. T., Cheung, P. F., Cheng, C. K., Wong, N. C., & Fan, S. T. (2011). Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology, 140(1), 344–355. doi: 10.1053/j.gastro.2010.07.049.PubMedCrossRefGoogle Scholar
  64. 64.
    Frank, N. Y., Margaryan, A., Huang, Y., Schatton, T., Waaga-Gasser, A. M., Gasser, M., et al. (2005). ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Research, 65(10), 4320–4333. doi: 10.1158/0008-5472.CAN-04-3327.PubMedCrossRefGoogle Scholar
  65. 65.
    Wei, J., Barr, J., Kong, L. Y., Wang, Y., Wu, A., Sharma, A. K., et al. (2010). Glioma-associated cancer-initiating cells induce immunosuppression. Clinical Cancer Research, 16(2), 461–473. doi: 10.1158/1078-0432.CCR-09-1983.PubMedCrossRefGoogle Scholar
  66. 66.
    Ramgolam, K., Lauriol, J., Lalou, C., Lauden, L., Michel, L., de la Grange, P., et al. (2011). Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function. PLoS One, 6(4), e18784. doi: 10.1371/journal.pone.0018784.PubMedCrossRefGoogle Scholar
  67. 67.
    Quintana, E., Shackleton, M., Sabel, M. S., Fullen, D. R., Johnson, T. M., & Morrison, S. J. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598. doi: 10.1038/nature07567.PubMedCrossRefGoogle Scholar
  68. 68.
    Pang, R., Law, W. L., Chu, A. C., Poon, J. T., Lam, C. S., Chow, A. K., et al. (2010). A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell, 6(6), 603–615. doi: 10.1016/j.stem.2010.04.001.PubMedCrossRefGoogle Scholar
  69. 69.
    Marsh, D., Suchak, K., Moutasim, K. A., Vallath, S., Hopper, C., Jerjes, W., et al. (2011). Stromal features are predictive of disease mortality in oral cancer patients. The Journal of Pathology, 223(4), 470–481. doi: 10.1002/path.2830.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
  2. 2.Centre for Cutaneous ResearchBlizard Institute of Cell and Molecular ScienceLondonUK

Personalised recommendations