Advertisement

Cancer and Metastasis Reviews

, Volume 31, Issue 1–2, pp 277–283 | Cite as

EMT in carcinoma progression and dissemination: Facts, unanswered questions, and clinical considerations

  • Jeremy BastidEmail author
NON-THEMATIC REVIEW

Abstract

Over the past decade, much effort has been made to understand how cancers metastasize. In deciphering the metastatic process, a vast amount of work has focused on the role of the epithelial to mesenchymal transition (EMT), which, in experimental models, confers tumor cells with invasive and metastatic abilities, resistance to therapies, as well as cancer stem cell phenotype—properties that have a major impact on cancer prognosis. Searching “EMT and cancer” in PubMed retrieves thousands of original research articles, yet, we haven’t answered the most basic question in the field: has EMT any relevance in human tumors?

Keywords

Epithelial to mesenchymal transition Metastasis Tumor progression 

Notes

Acknowledgments

I would like to acknowledge scientific discussions and helpful comments from Dr. C. Thomas, as well as critical reading of the manuscript by A. Doreau-Bastid and Dr. G. Alberici.

References

  1. 1.
    Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.PubMedCrossRefGoogle Scholar
  2. 2.
    Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMedCrossRefGoogle Scholar
  3. 3.
    Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews. Cancer, 9(4), 265–273.PubMedCrossRefGoogle Scholar
  4. 4.
    Xue, C., Plieth, D., Venkov, C., Xu, C., & Neilson, E. G. (2003). The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Research, 63(12), 3386–3394.PubMedGoogle Scholar
  5. 5.
    Trimboli, A. J., Fukino, K., de Bruin, A., Wei, G., Shen, L., Tanner, S. M., et al. (2008). Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Research, 68(3), 937–945.PubMedCrossRefGoogle Scholar
  6. 6.
    Spaderna, S., Schmalhofer, O., Hlubek, F., Berx, G., Eger, A., Merkel, S., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131(3), 830–840.PubMedCrossRefGoogle Scholar
  7. 7.
    Prall, F. (2007). Tumour budding in colorectal carcinoma. Histopathology, 50(1), 151–162.PubMedCrossRefGoogle Scholar
  8. 8.
    Ueno, H., Mochizuki, H., Hashiguchi, Y., Shimazaki, H., Aida, S., Hase, K., et al. (2004). Risk factors for an adverse outcome in early invasive colorectal carcinoma. Gastroenterology, 127(2), 385–394.PubMedCrossRefGoogle Scholar
  9. 9.
    Zlobec, I., & Lugli, A. (2010). Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget, 1(7), 651–661.PubMedGoogle Scholar
  10. 10.
    Ansieau, S., Bastid, J., Doreau, A., Morel, A. P., Bouchet, B. P., Thomas, C., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14(1), 79–89.PubMedCrossRefGoogle Scholar
  11. 11.
    Prall, F., & Ostwald, C. (2007). High-degree tumor budding and podia-formation in sporadic colorectal carcinomas with K-ras gene mutations. Human Pathology, 38(11), 1696–1702.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, C., Huang, H., Huang, Z., Wang, A., Chen, X., Huang, L., et al. (2011). Tumor budding correlates with poor prognosis and epithelial-mesenchymal transition in tongue squamous cell carcinoma. Journal of Oral Pathology & Medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.Google Scholar
  13. 13.
    Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R., & Kasimir-Bauer, S. (2009). Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Research, 11(4).Google Scholar
  14. 14.
    Raimondi, C., Gradilone, A., Naso, G., Vincenzi, B., Petracca, A., Nicolazzo, C., et al. (2011). Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Research and Treatment. doi: 10.1007/s10549-011-1373-x.
  15. 15.
    Rees, J. R., Onwuegbusi, B. A., Save, V. E., Alderson, D., & Fitzgerald, R. C. (2006). In vivo and in vitro evidence for transforming growth factor-beta1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Research, 66(19), 9583–9590.PubMedCrossRefGoogle Scholar
  16. 16.
    Montserrat, N., Mozos, A., Llobet, D., Dolcet, X., Pons, C., de Herreros, A. G., et al. (2011). Epithelial to mesenchymal transition in early stage endometrioid endometrial carcinoma. Human Pathology. doi: 10.1016/j.humpath.2011.06.021.
  17. 17.
    van Deurzen, C. H., Lee, A. H., Gill, M. S., Menke-Pluijmers, M. B., Jager, A., Ellis, I. O., et al. (2011). Metaplastic breast carcinoma: tumour histogenesis or dedifferentiation? The Journal of Pathology. doi: 10.1002/path.2872.
  18. 18.
    Halachmi, S., DeMarzo, A. M., Chow, N. H., Halachmi, N., Smith, A. E., Linn, J. F., et al. (2000). Genetic alterations in urinary bladder carcinosarcoma: evidence of a common clonal origin. European Urology, 37(3), 350–357.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhuang, Z., Lininger, R. A., Man, Y. G., Albuquerque, A., Merino, M. J., & Tavassoli, F. A. (1997). Identical clonality of both components of mammary carcinosarcoma with differential loss of heterozygosity. Modern Pathology, 10(4), 354–362.PubMedGoogle Scholar
  20. 20.
    Teixeira, M. R., Qvist, H., Bohler, P. J., Pandis, N., & Heim, S. (1998). Cytogenetic analysis shows that carcinosarcomas of the breast are of monoclonal origin. Genes, Chromosomes & Cancer, 22(2), 145–151.CrossRefGoogle Scholar
  21. 21.
    Fujii, H., Yoshida, M., Gong, Z. X., Matsumoto, T., Hamano, Y., Fukunaga, M., et al. (2000). Frequent genetic heterogeneity in the clonal evolution of gynecological carcinosarcoma and its influence on phenotypic diversity. Cancer Research, 60(1), 114–120.PubMedGoogle Scholar
  22. 22.
    Tarin, D., Thompson, E. W., & Newgreen, D. F. (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Research, 65(14), 5996–6000. discussion 6000-5991.PubMedCrossRefGoogle Scholar
  23. 23.
    Sivertsen, S., Hadar, R., Elloul, S., Vintman, L., Bedrossian, C., Reich, R., et al. (2006). Expression of Snail, Slug and Sip1 in malignant mesothelioma effusions is associated with matrix metalloproteinase, but not with cadherin expression. Lung Cancer, 54(3), 309–317.PubMedCrossRefGoogle Scholar
  24. 24.
    Blechschmidt, K., Sassen, S., Schmalfeldt, B., Schuster, T., Hofler, H., & Becker, K. F. (2008). The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients. British Journal of Cancer, 98(2), 489–495.PubMedCrossRefGoogle Scholar
  25. 25.
    Cates, J. M., Byrd, R. H., Fohn, L. E., Tatsas, A. D., Washington, M. K., & Black, C. C. (2009). Epithelial-mesenchymal transition markers in pancreatic ductal adenocarcinoma. Pancreas, 38(1), e1–6. doi: 10.1097/MPA.0b013e3181878b7f.PubMedCrossRefGoogle Scholar
  26. 26.
    Scheel, C., Eaton, E. N., Li, S. H., Chaffer, C. L., Reinhardt, F., Kah, K. J., et al. (2011). Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell, 145(6), 926–940.PubMedCrossRefGoogle Scholar
  27. 27.
    Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7(2), 131–142.PubMedCrossRefGoogle Scholar
  28. 28.
    Olmeda, D., Jorda, M., Peinado, H., Fabra, A., & Cano, A. (2007). Snail silencing effectively suppresses tumour growth and invasiveness. [Research Support, Non-U.S. Gov't]. Oncogene, 26(13), 1862–1874.PubMedCrossRefGoogle Scholar
  29. 29.
    Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278.PubMedCrossRefGoogle Scholar
  30. 30.
    Bonnomet, A., Syne, L., Brysse, A., Feyereisen, E., Thompson, E. W., Noel, A., et al. (2011). A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene. doi: 10.1038/onc.2011.540.
  31. 31.
    Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., et al. (2005). Tumour biology: Senescence in premalignant tumours. Nature, 436(7051), 642.PubMedCrossRefGoogle Scholar
  32. 32.
    Eng, C., Leone, G., Orloff, M. S., & Ostrowski, M. C. (2009). Genomic alterations in tumor stroma. Cancer Research, 69(17), 6759–6764.PubMedCrossRefGoogle Scholar
  33. 33.
    Gjorevski, N., Boghaert, E., & Nelson, C. M. (2011). Regulation of epithelial-mesenchymal transition by transmission of mechanical stress through epithelial tissues. Cancer Microenvironment: official journal of the International Cancer Microenvironment Society. doi: 10.1007/s12307-011-0076-5.
  34. 34.
    Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. [Research Support, Non-U.S. Gov't]. Nature Cell Biology, 10(3), 295–305. doi: 10.1038/ncb1691.PubMedCrossRefGoogle Scholar
  35. 35.
    Koo, V., El Mekabaty, A., Hamilton, P., Maxwell, P., Sharaf, O., Diamond, J., et al. (2010). Novel in vitro assays for the characterization of EMT in tumourigenesis. Cellular Oncology, 32(1–2).Google Scholar
  36. 36.
    Guaita, S., Puig, I., Franci, C., Garrido, M., Dominguez, D., Batlle, E., et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. Journal of Biological Chemistry, 277(42), 39209–39216.PubMedCrossRefGoogle Scholar
  37. 37.
    Gradilone, A., Raimondi, C., Nicolazzo, C., Petracca, A., Gandini, O., Vincenzi, B., et al. (2011). Circulating tumor cells lacking cytokeratin in breast cancer: The importance of being mesenchymal. Journal of Cellular and Molecular Medicine. doi: 10.1111/j.1582-4934.2011.01285.x.
  38. 38.
    Greenburg, G., & Hay, E. D. (1982). Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. The Journal of Cell Biology, 95(1), 333–339.PubMedCrossRefGoogle Scholar
  39. 39.
    Stoker, M., & Perryman, M. (1985). An epithelial scatter factor released by embryo fibroblasts. Journal of Cell Science, 77, 209–223.PubMedGoogle Scholar
  40. 40.
    Stoker, M., Gherardi, E., Perryman, M., & Gray, J. (1987). Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature, 327(6119), 239–242.PubMedCrossRefGoogle Scholar
  41. 41.
    Maestro, R., Dei Tos, A. P., Hamamori, Y., Krasnokutsky, S., Sartorelli, V., Kedes, L., et al. (1999). Twist is a potential oncogene that inhibits apoptosis. Genes & Development, 13(17), 2207–2217.CrossRefGoogle Scholar
  42. 42.
    Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2(2), 84–89.PubMedCrossRefGoogle Scholar
  44. 44.
    Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2(6), 442–454.PubMedCrossRefGoogle Scholar
  45. 45.
    Inoue, A., Seidel, M. G., Wu, W., Kamizono, S., Ferrando, A. A., Bronson, R. T., et al. (2002). Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell, 2(4), 279–288.PubMedCrossRefGoogle Scholar
  46. 46.
    Kajita, M., McClinic, K. N., & Wade, P. A. (2004). Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Molecular and Cellular Biology, 24(17), 7559–7566.PubMedCrossRefGoogle Scholar
  47. 47.
    Wu, W. S., Heinrichs, S., Xu, D., Garrison, S. P., Zambetti, G. P., Adams, J. M., et al. (2005). Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell, 123(4), 641–653.PubMedCrossRefGoogle Scholar
  48. 48.
    Knutson, K. L., Lu, H., Stone, B., Reiman, J. M., Behrens, M. D., Prosperi, C. M., et al. (2006). Immunoediting of cancers may lead to epithelial to mesenchymal transition. Journal of Immunology, 177(3), 1526–1533.Google Scholar
  49. 49.
    Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nature Reviews. Cancer, 7(6), 415–428.PubMedCrossRefGoogle Scholar
  50. 50.
    Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRefGoogle Scholar
  51. 51.
    Morel, A. P., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 3(8), e2888. doi: 10.1371/journal.pone.0002888.PubMedCrossRefGoogle Scholar
  52. 52.
    Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., et al. (2011). p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 13(3), 317–323.PubMedCrossRefGoogle Scholar
  53. 53.
    Santisteban, M., Reiman, J. M., Asiedu, M. K., Behrens, M. D., Nassar, A., Kalli, K. R., et al. (2009). Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Research, 69(7), 2887–2895.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.OREGA BIOTECH, L’espace EuropéenEcullyFrance

Personalised recommendations