Cancer and Metastasis Reviews

, Volume 31, Issue 1–2, pp 99–108 | Cite as

In vivo animal models of spinal metastasis



The vertebral column is the commonest site for skeletal metastases, with breast, prostate and lung cancers being the most common primary sources. The spine has structural and neural-protective properties thus involvement by metastatic cancer often causes bony instability and fracture, intractable pain and neurological deficit. In vivo animal models which resemble the human condition are essential in order to improve understanding of the pathophysiology behind the spread of metastatic cancer to the spine and its subsequent local growth and invasion, to enable in-depth analysis of the interaction between host and tumour cells and the molecular processes behind local cancer invasion and barriers to invasion as well as to allow assessment of novel treatment modalities for spinal metastases. This review summarizes the current status of the animal models specifically used for the study of spinal metastasis, their relevance, advantages and limitations, and important considerations for the development of future in vivo animal models.


Spinal Metastasis Animal models Tumour Spine Cancer 



This work was supported by the National Health and Medical Research Council of Australia (Fellowship No. 558418)

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sabino, M. A., Luger, N. M., Mach, D. B., Rogers, S. D., Schwei, M. J., et al. (2003). Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system. International Journal of Cancer, 104(5), 550–558.CrossRefGoogle Scholar
  2. 2.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., et al. (2008). Cancer statistics, 2008. CA: a Cancer Journal for Clinicians, 58(2), 71–96.CrossRefGoogle Scholar
  3. 3.
    Quan, G. M., Vital, J. M., Aurouer, N., Obeid, I., Palussière, J., Diallo, A., Pointillart, V. (2011). SUrgery improves pain, function and quality of life in patients with spinal metastases: a prospective study on 118 patients. Eur Spine J, June 26 (Epub ahead of print)Google Scholar
  4. 4.
    Sterling, J. A., Edwards, J. R., Martin, T. J., & Mundy, G. R. (2011). Advances in the biology of bone metastasis: How the skeleton affects tumor behavior. Bone, 48(1), 6–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Liang, H., Ma, S. Y., Mohammad, K., Guise, T. A., Balian, G., et al. (2011). The reaction of bone to tumor growth from human breast cancer cells in a rat spine single metastasis model. Spine (Phila Pa 1976), 36(7), 497–504.CrossRefGoogle Scholar
  6. 6.
    Schuster, J., Zhang, J., & Longo, M. (2006). A novel human osteoblast-derived severe combined immunodeficiency mouse model of bone metastasis. Journal of Neurosurgery: Spine, 4(5), 388–391.PubMedCrossRefGoogle Scholar
  7. 7.
    Tatsui, C. E., Lang, F. F., Gumin, J., Suki, D., Shinojima, N., et al. (2009). An orthotopic murine model of human spinal metastasis: Histological and functional correlations. Journal of Neurosurgery: Spine, 10(6), 501–512.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee, Y. C., Saijo, N., Sasaki, Y., Takahashi, H., Sakurai, M., et al. (1985). Clonogenic patterns of human pulmonary adenocarcinoma cell lines (PC-9, PC-13 and PC-14) and how they influence the results of test for chemosensitivity to cisplatin in the human tumor clonogenic assay. Japanese Journal of Clinical Oncology, 15(4), 637–644.PubMedGoogle Scholar
  9. 9.
    Naundorf, H., Rewasowa, E. C., Fichtner, I., Buttner, B., Becker, M., et al. (1992). Characterization of two human mammary carcinomas, MT-1 and MT-3, suitable for in vivo testing of ether lipids and their derivatives. Breast Cancer Research and Treatment, 23(1–2), 87–95.PubMedCrossRefGoogle Scholar
  10. 10.
    Cailleau, R., Young, R., Olive, M., & Reeves, W. J., Jr. (1974). Breast tumor cell lines from pleural effusions. Journal of the National Cancer Institute, 53(3), 661–674.PubMedGoogle Scholar
  11. 11.
    Ushio, Y., Posner, R., Posner, J. B., & Shapiro, W. R. (1977). Experimental spinal cord compression by epidural neoplasm. Neurology, 27(5), 422–429.PubMedGoogle Scholar
  12. 12.
    Ushio, Y., Posner, R., Kim, J. H., Shapiro, W. R., & Posner, J. B. (1977). Treatment of experimental spinal cord compression caused by extradural neoplasms. Journal of Neurosurgery, 47(3), 380–390.PubMedCrossRefGoogle Scholar
  13. 13.
    Ikeda, H., Ushio, Y., Hayakawa, T., & Mogami, H. (1980). Edema and circulatory disturbance in the spinal cord compressed by epidural neoplasms in rabbits. Journal of Neurosurgery, 52(2), 203–209.PubMedCrossRefGoogle Scholar
  14. 14.
    Amundson, E., Pradilla, G., Brastianos, P., Bagley, C., Riley, L. H., 3rd, et al. (2005). A novel intravertebral tumor model in rabbits. Neurosurgery, 57(2), 341–346. discussion 341–346.PubMedCrossRefGoogle Scholar
  15. 15.
    Takahashi, M., Ogawa, J., Kinoshita, Y., Takakura, M., Mochizuki, K., et al. (2004). Experimental study of paraplegia caused by spinal tumors: an animal model of spinal tumors created by transplantation of VX2 carcinoma. The Spine Journal, 4(6), 675–680.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang, L., Yao, Q., Wang, J., Wei, G., Li, G., et al. (2008). MRI and hybrid PET/CT for monitoring tumour metastasis in a metastatic breast cancer model in rabbit. Nuclear Medicine Communications, 29(2), 137–143.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang, G. X., Li, K. A., Zhao, J. L., Zhang, F., Hu, Y. S., et al. (2008). MRI monitoring of cerebral spinal fluid metastasis in rabbit model. Zhonghua Yi Xue Za Zhi, 88(47), 3369–3373.PubMedGoogle Scholar
  18. 18.
    Bosma, M. J., & Carroll, A. M. (1991). The SCID mouse mutant: Definition, characterization, and potential uses. Annual Review of Immunology, 9, 323–350.PubMedCrossRefGoogle Scholar
  19. 19.
    Zwolak, P., Dudek, A. Z., Bodempudi, V. D., Nguyen, J., Hebbel, R. P., et al. (2008). Local irradiation in combination with bevacizumab enhances radiation control of bone destruction and cancer-induced pain in a model of bone metastases. International Journal of Cancer, 122(3), 681–688.CrossRefGoogle Scholar
  20. 20.
    Guo, H., Li, M., Chen, P., Blake, D. J., Kong, X., et al. (2011). 4-Methyl-3-nitro-benzoic acid, a migration inhibitor, prevents breast cancer metastasis in SCID mice. Cancer Letters, 305(1), 69–75.PubMedCrossRefGoogle Scholar
  21. 21.
    McCabe, N. P., Kerr, B. A., Madajka, M., Vasanji, A., & Byzova, T. V. (2011). Augmented osteolysis in SPARC-deficient mice with bone-residing prostate cancer. Neoplasia, 13(1), 31–39.PubMedGoogle Scholar
  22. 22.
    Lavigueur, A., Maltby, V., Mock, D., Rossant, J., Pawson, T., et al. (1989). High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Molecular and Cellular Biology, 9(9), 3982–3991.PubMedGoogle Scholar
  23. 23.
    Hayashi, K., Yamauchi, K., Yamamoto, N., Tsuchiya, H., Tomita, K., et al. (2009). A color-coded orthotopic nude-mouse treatment model of brain-metastatic paralyzing spinal cord cancer that induces angiogenesis and neurogenesis. Cell Proliferation, 42(1), 75–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Strube, A., Stepina, E., Mumberg, D., Scholz, A., Hauff, P., et al. (2010). Characterization of a new renal cell carcinoma bone metastasis mouse model. Clinical & Experimental Metastasis, 27(5), 319–330.CrossRefGoogle Scholar
  25. 25.
    Takahashi, M., Miyazaki, H., Furihata, M., Sakai, H., Konakahara, T., et al. (2009). Chemokine CCL2/MCP-1 negatively regulates metastasis in a highly bone marrow-metastatic mouse breast cancer model. Clinical & Experimental Metastasis, 26(7), 817–828.CrossRefGoogle Scholar
  26. 26.
    Lelekakis, M., Moseley, J. M., Martin, T. J., Hards, D., Williams, E., et al. (1999). A novel orthotopic model of breast cancer metastasis to bone. Clinical & Experimental Metastasis, 17(2), 163–170.CrossRefGoogle Scholar
  27. 27.
    Rosol, T. J., Tannehill-Gregg, S. H., LeRoy, B. E., Mandl, S., & Contag, C. H. (2003). Animal models of bone metastasis. Cancer, 97(3 suppl), 748–757.PubMedCrossRefGoogle Scholar
  28. 28.
    Arguello, F., Baggs, R. B., & Frantz, C. N. (1988). A murine model of experimental metastasis to bone and bone marrow. Cancer Research, 48(23), 6876–6881.PubMedGoogle Scholar
  29. 29.
    Arguello, F., Baggs, R. B., Duerst, R. E., Johnstone, L., McQueen, K., et al. (1990). Pathogenesis of vertebral metastasis and epidural spinal cord compression. Cancer, 65(1), 98–106.PubMedCrossRefGoogle Scholar
  30. 30.
    Akens, M. K., Yee, A. J., Wilson, B. C., Burch, S., Johnson, C. L., et al. (2007). Photodynamic therapy of vertebral metastases: Evaluating tumor-to-neural tissue uptake of BPD-MA and ALA-PpIX in a murine model of metastatic human breast carcinoma. Photochemistry and Photobiology, 83(5), 1034–1039.PubMedCrossRefGoogle Scholar
  31. 31.
    Burch, S. P., Bisland, S. K., Wilson, B. C., Whyne, C. M., & Yee, A. J. (2006). Multimodality imaging for vertebral metastasis in a rat osteolytic modal. Clinical Orthopaedics and Related Research, 454, 230–236.CrossRefGoogle Scholar
  32. 32.
    Yoneda, T. (2000). Cellular and molecular basis of preferential metastasis of breast cancer to bone. Journal of Orthopaedic Science, 5(1), 75–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Bauerle, T., Adwan, H., Kiessling, F., Hilbig, H., Armbruster, F. P., et al. (2005). Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. International Journal of Cancer, 115(2), 177–186.CrossRefGoogle Scholar
  34. 34.
    Rozel, S., Galban, C. J., Nicolay, K., Lee, K. C., Sud, S., et al. (2009). Synergy between anti-CCL2 and docetaxel as determined by DW-MRI in a metastatic bone cancer model. Journal of Cellular Biochemistry, 107(1), 58–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Blomme, E. A., Dougherty, K. M., Pienta, K. J., Capen, C. C., Rosol, T. J., et al. (1999). Skeletal metastasis of prostate adenocarcinoma in rats: Morphometric analysis and role of parathyroid hormone-related protein. Prostate, 39(3), 187–197.PubMedCrossRefGoogle Scholar
  36. 36.
    El-Abdaimi, K., Ste-Marie, L. G., Papavasiliou, V., Dion, N., Cardinal, P. E., et al. (2003). Pamidronate prevents the development of skeletal metastasis in nude mice transplanted with human breast cancer cells by reducing tumor burden within bone. International Journal of Oncology, 22(4), 883–890.PubMedGoogle Scholar
  37. 37.
    Michigami, T., Hiraga, T., Williams, P. J., Niewolna, M., Nishimura, R., et al. (2002). The effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organs. Breast Cancer Research and Treatment, 75(3), 249–258.PubMedCrossRefGoogle Scholar
  38. 38.
    Mundy, G. R. (2001). Preclinical models of bone metastasis. Seminars in Oncology, 28(4 suppl 11), 2–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakata, A., Tsujimura, T., Sugihara, A., Okamura, H., Iwasaki, T., et al. (1999). Inhibition by interleukin 18 of osteolytic bone metastasis by human breast cancer cells. Anticancer Research, 19(5B), 4131–4138.PubMedGoogle Scholar
  40. 40.
    Peyruchaud, O., Winding, B., Pecheur, I., Serre, C. M., Delmas, P., et al. (2001). Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: Application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. Journal of Bone and Mineral Research, 16(11), 2027–2034.PubMedCrossRefGoogle Scholar
  41. 41.
    Sasaki, A., Boyce, B. F., Story, B., Wright, K. R., Chapman, M., et al. (1995). Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Research, 55(16), 3551–3557.PubMedGoogle Scholar
  42. 42.
    Akens, M. K., Hardisty, M. R., Wilson, B. C., Schwock, J., Whyne, C. M., et al. (2010). Defining the therapeutic window of vertebral photodynamic therapy in a murine pre-clinical model of breast cancer metastasis using the photosensitizer BPD-MA (Verteporfin). Breast Cancer Research and Treatment, 119(2), 325–333.PubMedCrossRefGoogle Scholar
  43. 43.
    Burch, S., Bisland, S. K., Bogaards, A., Yee, A. J., Whyne, C. M., et al. (2005). Photodynamic therapy for the treatment of vertebral metastases in a rat model of human breast carcinoma. Journal of Orthopaedic Research, 23(5), 995–1003.PubMedCrossRefGoogle Scholar
  44. 44.
    Mantha, A., Legnani, F. G., Bagley, C. A., Gallia, G. L., Garonzik, I., et al. (2005). A novel rat model for the study of intraosseous metastatic spine cancer. Journal of Neurosurgery: Spine, 2(3), 303–307.PubMedCrossRefGoogle Scholar
  45. 45.
    Basso, D. M., Beattie, M. S., & Bresnahan, J. C. (1995). A sensitive and reliable locomotor rating scale for open field testing in rats. Journal of Neurotrauma, 12(1), 1–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Bagley, C. A., Bookland, M. J., Pindrik, J. A., Ozmen, T., Gokaslan, Z. L., et al. (2007). Local delivery of oncogel delays paresis in rat metastatic spinal tumor model. Journal of Neurosurgery: Spine, 7(2), 194–198.PubMedCrossRefGoogle Scholar
  47. 47.
    Bagley, C. A., Bookland, M. J., Pindrik, J. A., Ozmen, T., Gokaslan, Z. L., et al. (2007). Fractionated, single-port radiotherapy delays paresis in a metastatic spinal tumor model in rats. Journal of Neurosurgery: Spine, 7(3), 323–327.PubMedCrossRefGoogle Scholar
  48. 48.
    Gok, B., McGirt, M., Sciubba, D. M., Ayhan, S., Bydon, A., et al. (2008). Surgical resection plus adjuvant radiotherapy is superior to surgery or radiotherapy alone in the prevention of neurological decline in a rat metastatic spinal tumor model. Neurosurgery, 63(2), 346–351. discussion 351.PubMedCrossRefGoogle Scholar
  49. 49.
    Basso, D. M., Fisher, L. C., Anderson, A. J., Jakeman, L. B., McTigue, D. M., et al. (2006). Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. Journal of Neurotrauma, 23(5), 635–659.PubMedCrossRefGoogle Scholar
  50. 50.
    Harms, J. F., & Welch, D. R. (2003). MDA-MB-435 human breast carcinoma metastasis to bone. Clinical & Experimental Metastasis, 20(4), 327–334.CrossRefGoogle Scholar
  51. 51.
    Shan, L., Wang, S., Korotcov, A., Sridhar, R., & Wang, P. C. (2008). Bioluminescent animal models of human breast cancer for tumor biomass evaluation and metastasis detection. Ethnicity & Disease, 18(2 suppl 2), 65–69.Google Scholar
  52. 52.
    Wetterwald, A., van der Pluijm, G., Que, I., Sijmons, B., Buijs, J., et al. (2002). Optical imaging of cancer metastasis to bone marrow: A mouse model of minimal residual disease. American Journal of Pathology, 160(3), 1143–1153.PubMedCrossRefGoogle Scholar
  53. 53.
    Runge, V. M., Lee, C., Iten, A. L., & Williams, N. M. (1997). Contrast-enhanced magnetic resonance imaging in a spinal epidural tumor model. Investigative Radiology, 32(10), 589–595.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of MelbourneMelbourneAustralia
  2. 2.Department of Spinal SurgeryAustin HospitalHeidelberg, VictoriaAustralia

Personalised recommendations