Cancer and Metastasis Reviews

, Volume 30, Issue 3–4, pp 363–385

Eicosanoid signalling pathways in the development and progression of colorectal cancer: novel approaches for prevention/intervention

  • Mary-Clare Cathcart
  • Joanne Lysaght
  • Graham P. Pidgeon
Article

Abstract

Arachidonic acid metabolism through cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P-450 epoxygenase (EPOX) pathways leads to the generation of biologically active eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acid, epoxyeicosatrienoic acid and hydroperoxyeicosatetraenoic acids. Eicosanoid expression levels vary during tumor development and progression of a range of malignancies, including colorectal cancer. The actions of these autocoids are also directly influenced by diet, as demonstrated by recent evidence for omega-3 fatty acids in colorectal cancer (CRC) prevention and/or treatment. Eicosanoids regulate CRC development and progression, while inhibition of these pathways has generally been shown to inhibit tumor growth/progression. A progressive sequence of colorectal cancer development has been identified, ranging from normal colon, to colitis, dysplasia, and carcinoma. While both COX and LOX inhibition are both promising candidates for colorectal cancer prevention and/or treatment, there is an urgent need to understand the mechanisms through which these signalling pathways mediate their effects on tumorigenesis. This will allow identification of safer, more effective strategies for colorectal cancer prevention and/or treatment. In particular, binding to/signalling through prostanoid receptors have recently been the subject of considerable interest in this area. In this review, we discuss the role of the eicosanoid signalling pathways in the development and progression of colorectal cancer. We discuss the effects of the eicosanoids on tumor cell proliferation, their roles in cell death induction, effects on angiogenesis, migration, invasion and their regulation of the immune response. Signal transduction pathways involved in these processes are also discussed. Finally, novel approaches targeting these arachidonic acid-derived eicosanoids (using pharmacological or natural agents) for chemoprevention and/or treatment of colorectal cancer are outlined.

Keywords

Colorectal cancer Arachidonic acid Cyclooxygenase Lipoxygenase Cytochrome P-450 

Abbreviations

AA

Arachidonic acid

COX

Cyclooxygenase

LOX

Lipoxygenase

EPOX

Cytochrome P-450 Epoxygenase

References

  1. 1.
    W.H.O. (2005). Global action against cancer. (pp. 1–24). World Health Organisation and International Union Against Cancer.Google Scholar
  2. 2.
    Cuendet, M., & Pezzuto, J. M. (2000). The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabolism and Drug Interactions, 17(1–4), 109–157.PubMedGoogle Scholar
  3. 3.
    Klurfeld, D. M., & Bull, A. W. (1997). Fatty acids and colon cancer in experimental models. [Review]. The American Journal of Clinical Nutrition, 66(6 Suppl), 1530S–1538S.PubMedGoogle Scholar
  4. 4.
    Greene, E. R., Huang, S., Serhan, C. N., & Panigrahy, D. (2011). Regulation of inflammation in cancer by eicosanoids. Prostaglandins & Other Lipid Mediators, Epub, doi: 10.1016/j.prostaglandins.2011.08.004.
  5. 5.
    Smith, W. L. (1989). The eicosanoids and their biochemical mechanisms of action. Biochemistry Journal, 259(2), 315–324.Google Scholar
  6. 6.
    Dannenberg, A. J., & Subbaramaiah, K. (2003). Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell, 4(6), 431–436.PubMedGoogle Scholar
  7. 7.
    Antonarakis, E. S., Heath, E. I., Walczak, J. R., Nelson, W. G., Fedor, H., De Marzo, A. M., et al. (2009). Phase II, randomized, placebo-controlled trial of neoadjuvant celecoxib in men with clinically localized prostate cancer: evaluation of drug-specific biomarkers. Journal of Clinical Oncology, 27(30), 4986–4993. doi:10.1200/JCO.2009.21.9410.PubMedGoogle Scholar
  8. 8.
    Dragovich, T., Burris, H., 3rd, Loehrer, P., Von Hoff, D. D., Chow, S., Stratton, S., et al. (2008). Gemcitabine plus celecoxib in patients with advanced or metastatic pancreatic adenocarcinoma: results of a phase II trial. American Journal of Clinical Oncology, 31(2), 157–162. doi:10.1097/COC.0b013e31815878c9.PubMedGoogle Scholar
  9. 9.
    Jakobsen, A., Mortensen, J. P., Bisgaard, C., Lindebjerg, J., Rafaelsen, S. R., & Bendtsen, V. O. (2008). A COX-2 inhibitor combined with chemoradiation of locally advanced rectal cancer: a phase II trial. International Journal of Colorectal Disease, 23(3), 251–255. doi:10.1007/s00384-007-0407-7.PubMedGoogle Scholar
  10. 10.
    Papadimitrakopoulou, V. A., William, W. N., Jr., Dannenberg, A. J., Lippman, S. M., Lee, J. J., Ondrey, F. G., et al. (2008). Pilot randomized phase II study of celecoxib in oral premalignant lesions. Clinical Cancer Research, 14(7), 2095–2101. doi:10.1158/1078-0432.CCR-07-4024.PubMedGoogle Scholar
  11. 11.
    Bombardier, C., Laine, L., Reicin, A., Shapiro, D., Burgos-Vargas, R., Davis, B., et al. (2000). Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. New England Journal of Medicine, 343(21), 1520–1528, 1522 p following 1528.Google Scholar
  12. 12.
    Bresalier, R. S., Sandler, R. S., Quan, H., Bolognese, J. A., Oxenius, B., Horgan, K., et al. (2005). Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. The New England Journal of Medicine, 352(11), 1092–1102.PubMedGoogle Scholar
  13. 13.
    Helin-Salmivaara, A., Virtanen, A., Vesalainen, R., Gronroos, J. M., Klaukka, T., Idanpaan-Heikkila, J. E., et al. (2006). NSAID use and the risk of hospitalization for first myocardial infarction in the general population: a nationwide case–control study from Finland. European Heart Journal, 27(14), 1657–1663. doi:10.1093/eurheartj/ehl053.PubMedGoogle Scholar
  14. 14.
    Kearney, P. M., Baigent, C., Godwin, J., Halls, H., Emberson, J. R., & Patrono, C. (2006). Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ, 332(7553), 1302–1308. doi:10.1136/bmj.332.7553.1302.PubMedGoogle Scholar
  15. 15.
    Solomon, S. D., McMurray, J. J., Pfeffer, M. A., Wittes, J., Fowler, R., Finn, P., et al. (2005). Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. The New England Journal of Medicine, 352(11), 1071–1080.PubMedGoogle Scholar
  16. 16.
    Yang, V. W., Shields, J. M., Hamilton, S. R., Spannhake, E. W., Hubbard, W. C., Hylind, L. M., et al. (1998). Size-dependent increase in prostanoid levels in adenomas of patients with familial adenomatous polyposis. Cancer Research, 58(8), 1750–1753.PubMedGoogle Scholar
  17. 17.
    Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O’Byrne, K., Nie, D., et al. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review]. Cancer and Metastasis Reviews, 26(3–4), 503–524, doi:10.1007/s10555-007-9098-3.
  18. 18.
    Panigrahy, D., Kaipainen, A., Greene, E. R., & Huang, S. (2010). Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer and Metastasis Reviews, 29(4), 723–735. doi:10.1007/s10555-010-9264-x.PubMedGoogle Scholar
  19. 19.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMedGoogle Scholar
  20. 20.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. [Research Support, N.I.H., Extramural Review]. Cell, 144(5), 646–674, doi:10.1016/j.cell.2011.02.013.
  21. 21.
    W.H.O. (2008). GLOBOCAN 2008 fast stats. (pp. 1–8). International Agency for Research on Cancer.Google Scholar
  22. 22.
    Arber, N., & Levin, B. (2005). Chemoprevention of colorectal cancer: ready for routine use? Recent Results in Cancer Research, 166, 213–230.PubMedGoogle Scholar
  23. 23.
    Doherty, G. A., & Murray, F. E. (2009). Cyclooxygenase as a target for chemoprevention in colorectal cancer: lost cause or a concept coming of age? Expert Opinion on Therapeutic Targets, 13(2), 209–218. doi:10.1517/14728220802653631.PubMedGoogle Scholar
  24. 24.
    Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917, doi:10.1002/ijc.25516.
  25. 25.
    Hawcroft, G., Loadman, P. M., Belluzzi, A., & Hull, M. A. (2010). Effect of eicosapentaenoic acid on E-type prostaglandin synthesis and EP4 receptor signaling in human colorectal cancer cells. Neoplasia, 12(8), 618–627.PubMedGoogle Scholar
  26. 26.
    Shureiqi, I., & Lippman, S. M. (2001). Lipoxygenase modulation to reverse carcinogenesis. Cancer Research, 61(17), 6307–6312.PubMedGoogle Scholar
  27. 27.
    Powell, S. M., Zilz, N., Beazer-Barclay, Y., Bryan, T. M., Hamilton, S. R., Thibodeau, S. N., et al. (1992). APC mutations occur early during colorectal tumorigenesis. Nature, 359(6392), 235–237.PubMedGoogle Scholar
  28. 28.
    Smith, A. J., Stern, H. S., Penner, M., Hay, K., Mitri, A., Bapat, B. V., et al. (1994). Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Research, 54(21), 5527–5530.PubMedGoogle Scholar
  29. 29.
    Catalano, A., & Procopio, A. (2005). New aspects on the role of lipoxygenases in cancer progression. Histology and Histopathology, 20(3), 969–975.PubMedGoogle Scholar
  30. 30.
    Wang, D., & Dubois, R. N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29(6), 781–788 doi: 10.1038/onc.2009.421.
  31. 31.
    Vogelstein, B., Fearon, E. R., Hamilton, S. R., Kern, S. E., Preisinger, A. C., Leppert, M., et al. (1988). Genetic alterations during colorectal-tumor development. The New England Journal of Medicine, 319(9), 525–532. doi:10.1056/NEJM198809013190901.PubMedGoogle Scholar
  32. 32.
    Leslie, A., Carey, F. A., Pratt, N. R., & Steele, R. J. (2002). The colorectal adenoma–carcinoma sequence. British Journal of Surgery, 89(7), 845–860. doi:10.1046/j.1365-2168.2002.02120.x.PubMedGoogle Scholar
  33. 33.
    Sheehan, K. M., O’Connell, F., O’Grady, A., Conroy, R. M., Leader, M. B., Byrne, M. F., et al. (2004). The relationship between cyclooxygenase-2 expression and characteristics of malignant transformation in human colorectal adenomas. European Journal of Gastroenterology and Hepatology, 16(6), 619–625.PubMedGoogle Scholar
  34. 34.
    de Leval, X., Dassesse, T., Dogne, J. M., Waltregny, D., Bellahcene, A., Benoit, V., et al. (2006). Evaluation of original dual thromboxane A2 modulators as antiangiogenic agents. Journal of Pharmacology and Experimental Therapeutics, 318(3), 1057–1067.PubMedGoogle Scholar
  35. 35.
    Zeldin, D. C. (2001). Epoxygenase pathways of arachidonic acid metabolism. [Review]. Journal of Biological Chemistry, 276(39), 36059–36062. doi:10.1074/jbc.R100030200.PubMedGoogle Scholar
  36. 36.
    Serhan, C. N. (2009). Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators. [Research Support, N.I.H., Extramural Review]. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 44–48, doi:10.1111/j.1538–7836.2009.03396.x.
  37. 37.
    Gao, H., Welch, W. J., DiBona, G. F., & Wilcox, C. S. (1997). Sympathetic nervous system and hypertension during prolonged TxA2/PGH2 receptor activation in rats. American Journal of Physiology, 273(2 Pt 2), H734–H739.PubMedGoogle Scholar
  38. 38.
    Needleman, P., Moncada, S., Bunting, S., Vane, J. R., Hamberg, M., & Samuelsson, B. (1976). Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature, 261(5561), 558–560.PubMedGoogle Scholar
  39. 39.
    Fu, J. Y., Masferrer, J. L., Seibert, K., Raz, A., & Needleman, P. (1990). The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. Journal of Biological Chemistry, 265(28), 16737–16740.PubMedGoogle Scholar
  40. 40.
    Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294(5548), 1871–1875.PubMedGoogle Scholar
  41. 41.
    Patrignani, P., Panara, M. R., Greco, A., Fusco, O., Natoli, C., Iacobelli, S., et al. (1994). Biochemical and pharmacological characterization of the cyclooxygenase activity of human blood prostaglandin endoperoxide synthases. Journal of Pharmacology and Experimental Therapeutics, 271(3), 1705–1712.PubMedGoogle Scholar
  42. 42.
    Hoffmann, C. (2000). COX-2 in brain and spinal cord implications for therapeutic use. Current Medicinal Chemistry, 7(11), 1113–1120.PubMedGoogle Scholar
  43. 43.
    Harris, R. C., McKanna, J. A., Akai, Y., Jacobson, H. R., Dubois, R. N., & Breyer, M. D. (1994). Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. The Journal of Clinical Investigation, 94(6), 2504–2510.PubMedGoogle Scholar
  44. 44.
    Forman, B. M., Chen, J., & Evans, R. M. (1997). Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proceedings of the National Academy of Sciences of the United States of America, 94(9), 4312–4317.PubMedGoogle Scholar
  45. 45.
    Kliewer, S. A., Sundseth, S. S., Jones, S. A., Brown, P. J., Wisely, G. B., Koble, C. S., et al. (1997). Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proceedings of the National Academy of Sciences of the United States of America, 94(9), 4318–4323.PubMedGoogle Scholar
  46. 46.
    Gupta, R. A., Tan, J., Krause, W. F., Geraci, M., Willson, T. M., & Dey, S. K. (2000). Prostacyclin mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 97, 13275–13280.PubMedGoogle Scholar
  47. 47.
    Wang, D., Wang, H., Shi, Q., Katkuri, S., Walhi, W., Desvergne, B., et al. (2004). Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell, 6(3), 285–295. doi:10.1016/j.ccr.2004.08.011.PubMedGoogle Scholar
  48. 48.
    Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193. doi:10.1038/nrc2809.PubMedGoogle Scholar
  49. 49.
    Ricciotti, E., & FitzGerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(5), 986–1000. doi:10.1161/ATVBAHA.110.207449.PubMedGoogle Scholar
  50. 50.
    Funk, C. D. (1993). Molecular biology in the eicosanoid field. [Research Support, U.S. Gov’t, P.H.S. Review]. Progress in Nucleic Acid Research & Molecular Biology, 45, 67–98.Google Scholar
  51. 51.
    Fabre, J. E., Goulet, J. L., Riche, E., Nguyen, M., Coggins, K., Offenbacher, S., et al. (2002). Transcellular biosynthesis contributes to the production of leukotrienes during inflammatory responses in vivo. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Journal of Clinical Investigation, 109(10), 1373–1380, doi:10.1172/JCI14869.
  52. 52.
    Wu, S., Moomaw, C. R., Tomer, K. B., Falck, J. R., & Zeldin, D. C. (1996). Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. [Research Support, U.S. Gov’t, P.H.S.]. Journal of Biological Chemistry, 271(7), 3460–3468.Google Scholar
  53. 53.
    Rigas, B., Goldman, I. S., & Levine, L. (1993). Altered eicosanoid levels in human colon cancer. The Journal of Laboratory and Clinical Medicine, 122(5), 518–523.PubMedGoogle Scholar
  54. 54.
    Mal, M., Koh, P. K., Cheah, P. Y., & Chan, E. C. (2011). Ultra-pressure liquid chromatography/tandem mass spectrometry targeted profiling of arachidonic acid and eicosanoids in human colorectal cancer. Rapid Communications in Mass Spectrometry, 25(6), 755–764. doi:10.1002/rcm.4926.PubMedGoogle Scholar
  55. 55.
    Backlund, M. G., Mann, J. R., Holla, V. R., Buchanan, F. G., Tai, H. H., Musiek, E. S., et al. (2005). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. Journal of Biological Chemistry, 280(5), 3217–3223. doi:10.1074/jbc.M411221200.PubMedGoogle Scholar
  56. 56.
    Hansen-Petrik, M. B., McEntee, M. F., Jull, B., Shi, H., Zemel, M. B., & Whelan, J. (2002). Prostaglandin E(2) protects intestinal tumors from nonsteroidal anti-inflammatory drug-induced regression in Apc(Min/+) mice. Cancer Research, 62(2), 403–408.PubMedGoogle Scholar
  57. 57.
    Kawamori, T., Uchiya, N., Sugimura, T., & Wakabayashi, K. (2003). Enhancement of colon carcinogenesis by prostaglandin E2 administration. Carcinogenesis, 24(5), 985–990.PubMedGoogle Scholar
  58. 58.
    Hernandez, Y., Sotolongo, J., Breglio, K., Conduah, D., Chen, A., Xu, R., et al. (2010). The role of prostaglandin E2 (PGE 2) in toll-like receptor 4 (TLR4)-mediated colitis-associated neoplasia. BMC Gastroenterology, 10, 82. doi:10.1186/1471-230X-10-82.PubMedGoogle Scholar
  59. 59.
    Nakanishi, M., Montrose, D. C., Clark, P., Nambiar, P. R., Belinsky, G. S., Claffey, K. P., et al. (2008). Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Research, 68(9), 3251–3259. doi:10.1158/0008-5472.CAN-07-6100.PubMedGoogle Scholar
  60. 60.
    Nakanishi, M., Menoret, A., Tanaka, T., Miyamoto, S., Montrose, D. C., Vella, A., et al. (2011). Selective PGE2 suppression impairs colon carcinogenesis and modifies local mucosal immunity. Cancer Prevention Research (Philadelphia, Pa.). doi:10.1158/1940-6207.CAPR-11-0188.
  61. 61.
    Elander, N., Ungerback, J., Olsson, H., Uematsu, S., Akira, S., & Soderkvist, P. (2008). Genetic deletion of mPGES-1 accelerates intestinal tumorigenesis in APC(Min/+) mice. Biochemical and Biophysical Research Communications, 372(1), 249–253. doi:10.1016/j.bbrc.2008.05.026.PubMedGoogle Scholar
  62. 62.
    Sasaki, Y., Kamei, D., Ishikawa, Y., Ishii, T., Uematsu, S., Akira, S., et al. (2011). Microsomal prostaglandin E synthase-1 is involved in multiple steps of colon carcinogenesis. Oncogene. doi:10.1038/onc.2011.472.
  63. 63.
    Mutoh, M., Watanabe, K., Kitamura, T., Shoji, Y., Takahashi, M., Kawamori, T., et al. (2002). Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Research, 62(1), 28–32.PubMedGoogle Scholar
  64. 64.
    Watanabe, K., Kawamori, T., Nakatsugi, S., Ohta, T., Ohuchida, S., Yamamoto, H., et al. (1999). Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Research, 59(20), 5093–5096.PubMedGoogle Scholar
  65. 65.
    Kawamori, T., Kitamura, T., Watanabe, K., Uchiya, N., Maruyama, T., Narumiya, S., et al. (2005). Prostaglandin E receptor subtype EP(1) deficiency inhibits colon cancer development. Carcinogenesis, 26(2), 353–357. doi:10.1093/carcin/bgh322.PubMedGoogle Scholar
  66. 66.
    Myung, S. J., Rerko, R. M., Yan, M., Platzer, P., Guda, K., Dotson, A., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 12098–12102. doi:10.1073/pnas.0603235103.PubMedGoogle Scholar
  67. 67.
    Gustafsson, A., Hansson, E., Kressner, U., Nordgren, S., Andersson, M., Lonnroth, C., et al. (2007). Prostanoid receptor expression in colorectal cancer related to tumor stage, differentiation and progression. Acta Oncologica, 46(8), 1107–1112. doi:10.1080/02841860701403061.PubMedGoogle Scholar
  68. 68.
    Bing, R. J., Miyataka, M., Rich, K. A., Hanson, N., Wang, X., Slosser, H. D., et al. (2001). Nitric oxide, prostanoids, cyclooxygenase, and angiogenesis in colon and breast cancer. Clinical Cancer Research, 7(11), 3385–3392.PubMedGoogle Scholar
  69. 69.
    Frigola, J., Munoz, M., Clark, S. J., Moreno, V., Capella, G., & Peinado, M. A. (2005). Hypermethylation of the prostacyclin synthase (PTGIS) promoter is a frequent event in colorectal cancer and associated with aneuploidy. Oncogene, 24(49), 7320–7326. doi:10.1038/sj.onc.1208883.PubMedGoogle Scholar
  70. 70.
    Kabashima, K., Saji, T., Murata, T., Nagamachi, M., Matsuoka, T., Segi, E., et al. (2002). The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. The Journal of Clinical Investigation, 109(7), 883–893. doi:10.1172/JCI14459.PubMedGoogle Scholar
  71. 71.
    Galamb, O., Sipos, F., Spisak, S., Galamb, B., Krenacs, T., Valcz, G., et al. (2009). Potential biomarkers of colorectal adenoma–dysplasia–carcinoma progression: mRNA expression profiling and in situ protein detection on TMAs reveal 15 sequentially upregulated and 2 downregulated genes. Cellular Oncology, 31(1), 19–29.PubMedGoogle Scholar
  72. 72.
    Park, J. M., Kanaoka, Y., Eguchi, N., Aritake, K., Grujic, S., Materi, A. M., et al. (2007). Hematopoietic prostaglandin D synthase suppresses intestinal adenomas in ApcMin/+ mice. Cancer Research, 67(3), 881–889. doi:10.1158/0008-5472.CAN-05-3767.PubMedGoogle Scholar
  73. 73.
    Zamuner, S. R., Bak, A. W., Devchand, P. R., & Wallace, J. L. (2005). Predisposition to colorectal cancer in rats with resolved colitis: role of cyclooxygenase-2-derived prostaglandin d2. American Journal of Pathology, 167(5), 1293–1300.PubMedGoogle Scholar
  74. 74.
    Wang, D., & DuBois, R. N. (2008). Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Letters, 267(2), 197–203. doi:10.1016/j.canlet.2008.03.004.PubMedGoogle Scholar
  75. 75.
    Mann, J. R., Backlund, M. G., Buchanan, F. G., Daikoku, T., Holla, V. R., Rosenberg, D. W., et al. (2006). Repression of prostaglandin dehydrogenase by epidermal growth factor and snail increases prostaglandin E2 and promotes cancer progression. Cancer Research, 66(13), 6649–6656. doi:10.1158/0008-5472.CAN-06-1787.PubMedGoogle Scholar
  76. 76.
    Sakai, H., Suzuki, T., Takahashi, Y., Ukai, M., Tauchi, K., Fujii, T., et al. (2006). Upregulation of thromboxane synthase in human colorectal carcinoma and the cancer cell proliferation by thromboxane A2. FEBS Letters, 580(14), 3368–3374.PubMedGoogle Scholar
  77. 77.
    Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S., & DuBois, R. N. (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 107(4), 1183–1188.PubMedGoogle Scholar
  78. 78.
    Sciulli, M. G., Filabozzi, P., Tacconelli, S., Padovano, R., Ricciotti, E., Capone, M. L., et al. (2005). Platelet activation in patients with colorectal cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 72(2), 79–83. doi:10.1016/j.plefa.2004.10.006.PubMedGoogle Scholar
  79. 79.
    Wang, D., & Dubois, R. N. (2008). Peroxisome proliferator-activated receptors and progression of colorectal cancer. PPAR Research, 2008, 931074. doi:10.1155/2008/931074.PubMedGoogle Scholar
  80. 80.
    Zuo, X., Peng, Z., Moussalli, M. J., Morris, J. S., Broaddus, R. R., Fischer, S. M., et al. (2009). Targeted genetic disruption of peroxisome proliferator-activated receptor-delta and colonic tumorigenesis. Journal of the National Cancer Institute, 101(10), 762–767. doi:10.1093/jnci/djp078.PubMedGoogle Scholar
  81. 81.
    Wang, D., Wang, H., Guo, Y., Ning, W., Katkuri, S., Wahli, W., et al. (2006). Crosstalk between peroxisome proliferator-activated receptor delta and VEGF stimulates cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 103(50), 19069–19074. doi:10.1073/pnas.0607948103.PubMedGoogle Scholar
  82. 82.
    Gonzalez, A. L., Roberts, R. L., Massion, P. P., Olson, S. J., Shyr, Y., & Shappell, S. B. (2004). 15-Lipoxygenase-2 expression in benign and neoplastic lung: an immunohistochemical study and correlation with tumor grade and proliferation. Human Pathology, 35(7), 840–849.PubMedGoogle Scholar
  83. 83.
    Shureiqi, I., Wojno, K. J., Poore, J. A., Reddy, R. G., Moussalli, M. J., Spindler, S. A., et al. (1999). Decreased 13-S-hydroxyoctadecadienoic acid levels and 15-lipoxygenase-1 expression in human colon cancers. Carcinogenesis, 20(10), 1985–1995.PubMedGoogle Scholar
  84. 84.
    Subbarayan, V., Xu, X. C., Kim, J., Yang, P., Hoque, A., Sabichi, A. L., et al. (2005). Inverse relationship between 15-lipoxygenase-2 and PPAR-gamma gene expression in normal epithelia compared with tumor epithelia. Neoplasia, 7(3), 280–293. doi:10.1593/neo.04457.PubMedGoogle Scholar
  85. 85.
    Tang, D. G., Bhatia, B., Tang, S., & Schneider-Broussard, R. (2007). 15-Lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins & Other Lipid Mediators, 82(1–4), 135–146. doi:10.1016/j.prostaglandins.2006.05.022.Google Scholar
  86. 86.
    Chen, X., Wang, S., Wu, N., Sood, S., Wang, P., Jin, Z., et al. (2004). Overexpression of 5-lipoxygenase in rat and human esophageal adenocarcinoma and inhibitory effects of zileuton and celecoxib on carcinogenesis. Clinical Cancer Research, 10(19), 6703–6709. doi:10.1158/1078-0432.CCR-04-0838.PubMedGoogle Scholar
  87. 87.
    Gao, X., Grignon, D. J., Chbihi, T., Zacharek, A., Chen, Y. Q., Sakr, W., et al. (1995). Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology, 46(2), 227–237.PubMedGoogle Scholar
  88. 88.
    Gupta, S., Srivastava, M., Ahmad, N., Sakamoto, K., Bostwick, D. G., & Mukhtar, H. (2001). Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer, 91(4), 737–743. doi:10.1002/1097-0142(20010215)91:4<737.PubMedGoogle Scholar
  89. 89.
    Jiang, W. G., Douglas-Jones, A., & Mansel, R. E. (2003). Levels of expression of lipoxygenases and cyclooxygenase-2 in human breast cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 69(4), 275–281.PubMedGoogle Scholar
  90. 90.
    Ohd, J. F., Nielsen, C. K., Campbell, J., Landberg, G., Lofberg, H., & Sjolander, A. (2003). Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology, 124(1), 57–70. doi:10.1053/gast.2003.50011.PubMedGoogle Scholar
  91. 91.
    Shureiqi, I., Chen, D., Day, R. S., Zuo, X., Hochman, F. L., Ross, W. A., et al. (2010). Profiling lipoxygenase metabolism in specific steps of colorectal tumorigenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cancer Prevention Research (Philadelphia), 3(7), 829–838, doi:10.1158/1940-6207.CAPR-09-0110.
  92. 92.
    Wasilewicz, M. P., Kolodziej, B., Bojulko, T., Kaczmarczyk, M., Sulzyc-Bielicka, V., Bielicki, D., et al. (2010). Overexpression of 5-lipoxygenase in sporadic colonic adenomas and a possible new aspect of colon carcinogenesis. [Research Support, Non-U.S. Gov’t]. International Journal of Colorectal Disease, 25(9), 1079–1085, doi:10.1007/s00384–010-0980-z.
  93. 93.
    Melstrom, L. G., Bentrem, D. J., Salabat, M. R., Kennedy, T. J., Ding, X. Z., Strouch, M., et al. (2008). Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clinical Cancer Research, 14(20), 6525–6530. doi:10.1158/1078-0432.CCR-07-4631.PubMedGoogle Scholar
  94. 94.
    Spector, A. A., Fang, X., Snyder, G. D., & Weintraub, N. L. (2004). Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Progress in Lipid Research, 43(1), 55–90.Google Scholar
  95. 95.
    Jiang, J. G., Chen, C. L., Card, J. W., Yang, S., Chen, J. X., Fu, X. N., et al. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. [Research Support, Non-U.S. Gov’t]. Cancer Research, 65(11), 4707–4715, doi:10.1158/0008-5472.CAN-04-4173.
  96. 96.
    Jiang, J. G., Fu, X. N., Chen, C. L., & Wang, D. W. (2009). Expression of cytochrome P450 arachidonic acid epoxygenase 2J2 in human tumor tissues and cell lines. [Research Support, Non-U.S. Gov’t]. Ai Zheng, 28(2), 93-96.Google Scholar
  97. 97.
    Yoshida, T., Ohki, S., Kanazawa, M., Mizunuma, H., Kikuchi, Y., Satoh, H., et al. (1998). Inhibitory effects of prostaglandin D2 against the proliferation of human colon cancer cell lines and hepatic metastasis from colorectal cancer. Surgery Today, 28(7), 740–745.PubMedGoogle Scholar
  98. 98.
    Chinery, R., Coffey, R. J., Graves-Deal, R., Kirkland, S. C., Sanchez, S. C., Zackert, W. E., et al. (1999). Prostaglandin J2 and 15-deoxy-delta12,14-prostaglandin J2 induce proliferation of cyclooxygenase-depleted colorectal cancer cells. Cancer Research, 59(11), 2739–2746.PubMedGoogle Scholar
  99. 99.
    Wang, D., Buchanan, F. G., Wang, H., Dey, S. K., & DuBois, R. N. (2005). Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Research, 65(5), 1822–1829. doi:10.1158/0008-5472.CAN-04-3671.PubMedGoogle Scholar
  100. 100.
    Pai, R., Soreghan, B., Szabo, I. L., Pavelka, M., Baatar, D., & Tarnawski, A. S. (2002). Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nature Medicine, 8(3), 289–293.PubMedGoogle Scholar
  101. 101.
    Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M., & Gutkind, J. S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 310(5753), 1504–1510. doi:10.1126/science.1116221.PubMedGoogle Scholar
  102. 102.
    Loffler, I., Grun, M., Bohmer, F. D., & Rubio, I. (2008). Role of cAMP in the promotion of colorectal cancer cell growth by prostaglandin E2. BMC Cancer, 8, 380. doi:10.1186/1471-2407-8-380.PubMedGoogle Scholar
  103. 103.
    Pozzi, A., Yan, X., Macias-Perez, I., Wei, S., Hata, A. N., Breyer, R. M., et al. (2004). Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation. Journal of Biological Chemistry, 279(28), 29797–29804. doi:10.1074/jbc.M313989200.PubMedGoogle Scholar
  104. 104.
    Cherukuri, D. P., Chen, X. B., Goulet, A. C., Young, R. N., Han, Y., Heimark, R. L., et al. (2007). The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells. Experimental Cell Research, 313(14), 2969–2979. doi:10.1016/j.yexcr.2007.06.004.PubMedGoogle Scholar
  105. 105.
    Park, S. W., Kim, H. S., Choi, M. S., Jeong, W. J., Heo, D. S., Kim, K. H., et al. (2011). The effects of the stromal cell-derived cyclooxygenase-2 metabolite prostaglandin E2 on the proliferation of colon cancer cells. Journal of Pharmacology and Experimental Therapeutics, 336(2), 516–523. doi:10.1124/jpet.110.173278.PubMedGoogle Scholar
  106. 106.
    Xia, D., Holla, V. R., Wang, D., Menter, D. G., & DuBois, R. N. (2010). HEF1 is a crucial mediator of the proliferative effects of prostaglandin E(2) on colon cancer cells. Cancer Research, 70(2), 824–831. doi:10.1158/0008-5472.CAN-09-2105.PubMedGoogle Scholar
  107. 107.
    Kaliberova, L. N., Kusmartsev, S. A., Krendelchtchikova, V., Stockard, C. R., Grizzle, W. E., Buchsbaum, D. J., et al. (2009). Experimental cancer therapy using restoration of NAD+-linked 15-hydroxyprostaglandin dehydrogenase expression. Molecular Cancer Therapeutics, 8(11), 3130–3139. doi:10.1158/1535-7163.MCT-09-0270.PubMedGoogle Scholar
  108. 108.
    Kim, S. H., Park, Y. Y., Kim, S. W., Lee, J. S., Wang, D., & Dubois, R. N. (2011). ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Research. doi:10.1158/0008-5472.CAN-11-1262.
  109. 109.
    Cassano, G., Gasparre, G., Susca, F., Lippe, C., & Guanti, G. (2000). Lack of effect by prostaglandin F2alpha on the proliferation of the HCT-8 and HT-29 human adenocarcinoma cell lines. Oncology Reports, 7(1), 183–186.PubMedGoogle Scholar
  110. 110.
    Brash, A. R. (1999). Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274(34), 23679–23682.PubMedGoogle Scholar
  111. 111.
    Norel, X., & Brink, C. (2004). The quest for new cysteinyl-leukotriene and lipoxin receptors: recent clues. Pharmacology and Therapeutics, 103(1), 81–94. doi:10.1016/j.pharmthera.2004.05.003.PubMedGoogle Scholar
  112. 112.
    Ihara, A., Wada, K., Yoneda, M., Fujisawa, N., Takahashi, H., & Nakajima, A. (2007). Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. Journal of Pharmacological Sciences, 103(1), 24–32.PubMedGoogle Scholar
  113. 113.
    Ye, Y. N., Liu, E. S., Shin, V. Y., Wu, W. K., & Cho, C. H. (2004). The modulating role of nuclear factor-kappaB in the action of alpha7-nicotinic acetylcholine receptor and cross-talk between 5-lipoxygenase and cyclooxygenase-2 in colon cancer growth induced by 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone. Journal of Pharmacology and Experimental Therapeutics, 311(1), 123–130. doi:10.1124/jpet.104.068031.PubMedGoogle Scholar
  114. 114.
    Michalik, L., Desvergne, B., & Wahli, W. (2004). Peroxisome-proliferator-activated receptors and cancers: complex stories. Nature Reviews. Cancer, 4(1), 61–70. doi:10.1038/nrc1254.PubMedGoogle Scholar
  115. 115.
    Yoshinaga, M., Buchanan, F. G., & DuBois, R. N. (2004). 15-LOX-1 inhibits p21 (Cip/WAF 1) expression by enhancing MEK-ERK 1/2 signaling in colon carcinoma cells. Prostaglandins & Other Lipid Mediators, 73(1–2), 111–122.Google Scholar
  116. 116.
    Chen, G. G., Lee, J. F., Wang, S. H., Chan, U. P., Ip, P. C., & Lau, W. Y. (2002). Apoptosis induced by activation of peroxisome-proliferator activated receptor-gamma is associated with Bcl-2 and NF-kappaB in human colon cancer. Life Sciences, 70(22), 2631–2646.PubMedGoogle Scholar
  117. 117.
    Koyama, M., Izutani, Y., Goda, A. E., Matsui, T. A., Horinaka, M., Tomosugi, M., et al. (2010). Histone deacetylase inhibitors and 15-deoxy-Delta12,14-prostaglandin J2 synergistically induce apoptosis. Clinical Cancer Research, 16(8), 2320–2332. doi:10.1158/1078-0432.CCR-09-2301.PubMedGoogle Scholar
  118. 118.
    Lin, M. S., Chen, W. C., Bai, X., & Wang, Y. D. (2007). Activation of peroxisome proliferator-activated receptor gamma inhibits cell growth via apoptosis and arrest of the cell cycle in human colorectal cancer. Journal of Digestive Diseases, 8(2), 82–88. doi:10.1111/j.1443-9573.2007.00290.x.PubMedGoogle Scholar
  119. 119.
    Moriai, M., Tsuji, N., Kobayashi, D., Kuribayashi, K., & Watanabe, N. (2009). Down-regulation of hTERT expression plays an important role in 15-deoxy-Delta12,14-prostaglandin J2-induced apoptosis in cancer cells. International Journal of Oncology, 34(5), 1363–1372.PubMedGoogle Scholar
  120. 120.
    Shimada, T., Kojima, K., Yoshiura, K., Hiraishi, H., & Terano, A. (2002). Characteristics of the peroxisome proliferator activated receptor gamma (PPARgamma) ligand induced apoptosis in colon cancer cells. Gut, 50(5), 658–664.PubMedGoogle Scholar
  121. 121.
    Shin, S. W., Seo, C. Y., Han, H., Han, J. Y., Jeong, J. S., Kwak, J. Y., et al. (2009). 15d-PGJ2 induces apoptosis by reactive oxygen species-mediated inactivation of Akt in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clinical Cancer Research, 15(17), 5414–5425. doi:10.1158/1078-0432.CCR-08-3101.PubMedGoogle Scholar
  122. 122.
    Su, R. Y., Chi, K. H., Huang, D. Y., Tai, M. H., & Lin, W. W. (2008). 15-deoxy-Delta12,14-prostaglandin J2 up-regulates death receptor 5 gene expression in HCT116 cells: involvement of reactive oxygen species and C/EBP homologous transcription factor gene transcription. Molecular Cancer Therapeutics, 7(10), 3429–3440. doi:10.1158/1535-7163.MCT-08-0498.PubMedGoogle Scholar
  123. 123.
    Wang, L., Chen, W., Xie, X., He, Y., & Bai, X. (2008). Celecoxib inhibits tumor growth and angiogenesis in an orthotopic implantation tumor model of human colon cancer. Experimental Oncology, 30(1), 42–51.PubMedGoogle Scholar
  124. 124.
    Leone, V., di Palma, A., Ricchi, P., Acquaviva, F., Giannouli, M., Di Prisco, A. M., et al. (2007). PGE2 inhibits apoptosis in human adenocarcinoma Caco-2 cell line through Ras-PI3K association and cAMP-dependent kinase A activation. American Journal of Physiology—Gastrointestinal and Liver Physiology, 293(4), G673–G681. doi:10.1152/ajpgi.00584.2006.PubMedGoogle Scholar
  125. 125.
    Kaur, J., & Sanyal, S. N. (2010). PI3-kinase/Wnt association mediates COX-2/PGE(2) pathway to inhibit apoptosis in early stages of colon carcinogenesis: chemoprevention by diclofenac. Tumour Biology, 31(6), 623–631. doi:10.1007/s13277-010-0078-9.PubMedGoogle Scholar
  126. 126.
    Sheng, H., Shao, J., Morrow, J. D., Beauchamp, R. D., & DuBois, R. N. (1998). Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Research, 58(2), 362–366.PubMedGoogle Scholar
  127. 127.
    Greenhough, A., Wallam, C. A., Hicks, D. J., Moorghen, M., Williams, A. C., & Paraskeva, C. (2010). The proapoptotic BH3-only protein Bim is downregulated in a subset of colorectal cancers and is repressed by antiapoptotic COX-2/PGE(2) signalling in colorectal adenoma cells. Oncogene, 29(23), 3398–3410. doi:10.1038/onc.2010.94.PubMedGoogle Scholar
  128. 128.
    Roberts, H. R., Smartt, H. J., Greenhough, A., Moore, A. E., Williams, A. C., & Paraskeva, C. (2011). Colon tumour cells increase PGE2 by regulating COX-2 and 15-PGDH to promote survival during the microenvironmental stress of glucose deprivation. Carcinogenesis. doi:10.1093/carcin/bgr210.
  129. 129.
    Wu, K. K., & Liou, J. Y. (2009). Cyclooxygenase inhibitors induce colon cancer cell apoptosis Via PPARdelta -> 14-3-3epsilon pathway. Methods in Molecular Biology, 512, 295–307. doi:10.1007/978-1-60327-530-9_16.PubMedGoogle Scholar
  130. 130.
    Cutler, N. S., Graves-Deal, R., LaFleur, B. J., Gao, Z., Boman, B. M., Whitehead, R. H., et al. (2003). Stromal production of prostacyclin confers an antiapoptotic effect to colonic epithelial cells. Cancer Research, 63(8), 1748–1751.PubMedGoogle Scholar
  131. 131.
    Chen, C. N., Sung, C. T., Lin, M. T., Lee, P. H., & Chang, K. J. (2001). Clinicopathologic association of cyclooxygenase 1 and cyclooxygenase 2 expression in gastric adenocarcinoma. Annals of Surgery, 233(2), 183–188.PubMedGoogle Scholar
  132. 132.
    Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.PubMedGoogle Scholar
  133. 133.
    Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews. Cancer, 3(6), 401–410. doi:10.1038/nrc1093.PubMedGoogle Scholar
  134. 134.
    Fukuda, R., Kelly, B., & Semenza, G. L. (2003). Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Research, 63(9), 2330–2334.PubMedGoogle Scholar
  135. 135.
    Seno, H., Oshima, M., Ishikawa, T. O., Oshima, H., Takaku, K., Chiba, T., et al. (2002). Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Research, 62(2), 506–511.PubMedGoogle Scholar
  136. 136.
    Sonoshita, M., Takaku, K., Sasaki, N., Sugimoto, Y., Ushikubi, F., Narumiya, S., et al. (2001). Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nature Medicine, 7(9), 1048–1051. doi:10.1038/nm0901-1048.PubMedGoogle Scholar
  137. 137.
    Amano, H., Hayashi, I., Endo, H., Kitasato, H., Yamashina, S., Maruyama, T., et al. (2003). Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. The Journal of Experimental Medicine, 197(2), 221–232.PubMedGoogle Scholar
  138. 138.
    Wang, D., Wang, H., Brown, J., Daikoku, T., Ning, W., Shi, Q., et al. (2006). CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. The Journal of Experimental Medicine, 203(4), 941–951. doi:10.1084/jem.20052124.PubMedGoogle Scholar
  139. 139.
    Pradono, P., Tazawa, R., Maemondo, M., Tanaka, M., Usui, K., Saijo, Y., et al. (2002). Gene transfer of thromboxane A(2) synthase and prostaglandin I(2) synthase antithetically altered tumor angiogenesis and tumor growth. Cancer Research, 62(1), 63–66.PubMedGoogle Scholar
  140. 140.
    Grau, R., Iniguez, M. A., & Fresno, M. (2004). Inhibition of activator protein 1 activation, vascular endothelial growth factor, and cyclooxygenase-2 expression by 15-deoxy-Delta12,14-prostaglandin J2 in colon carcinoma cells: evidence for a redox-sensitive peroxisome proliferator-activated receptor-gamma-independent mechanism. Cancer Research, 64(15), 5162–5171. doi:10.1158/0008-5472.CAN-04-0849.PubMedGoogle Scholar
  141. 141.
    Ye, Y. N., Wu, W. K., Shin, V. Y., & Cho, C. H. (2005). A mechanistic study of colon cancer growth promoted by cigarette smoke extract. European Journal of Pharmacology, 519(1–2), 52–57. doi:10.1016/j.ejphar.2005.07.009.PubMedGoogle Scholar
  142. 142.
    Jiang, J. G., Chen, R. J., Xiao, B., Yang, S., Wang, J. N., Wang, Y., et al. (2007). Regulation of endothelial nitric-oxide synthase activity through phosphorylation in response to epoxyeicosatrienoic acids. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Prostaglandins & Other Lipid Mediators, 82(1–4), 162–174, doi: 10.1016/j.prostaglandins.2006.08.005.
  143. 143.
    Bissell, M. J., Weaver, V. M., Lelievre, S. A., Wang, F., Petersen, O. W., & Schmeichel, K. L. (1999). Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Research, 59(7 Suppl), 1757s–1763s. discussion 1763s–1764s.Google Scholar
  144. 144.
    Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028–1032.PubMedGoogle Scholar
  145. 145.
    Clark, E. A., & Brugge, J. S. (1995). Integrins and signal transduction pathways: the road taken. Science, 268(5208), 233–239.PubMedGoogle Scholar
  146. 146.
    Howe, A., Aplin, A. E., Alahari, S. K., & Juliano, R. L. (1998). Integrin signaling and cell growth control. Current Opinion in Cell Biology, 10(2), 220–231.PubMedGoogle Scholar
  147. 147.
    Felsenfeld, D. P., Choquet, D., & Sheetz, M. P. (1996). Ligand binding regulates the directed movement of beta1 integrins on fibroblasts. Nature, 383(6599), 438–440. doi:10.1038/383438a0.PubMedGoogle Scholar
  148. 148.
    Sheetz, M. P., Felsenfeld, D. P., & Galbraith, C. G. (1998). Cell migration: regulation of force on extracellular-matrix–integrin complexes. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Trends in Cell Biology, 8(2), 51–54.Google Scholar
  149. 149.
    Cianchi, F., Cortesini, C., Bechi, P., Fantappie, O., Messerini, L., Vannacci, A., et al. (2001). Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer. Gastroenterology, 121(6), 1339–1347.PubMedGoogle Scholar
  150. 150.
    Fujino, H., Toyomura, K., Chen, X. B., Regan, J. W., & Murayama, T. (2011). Prostaglandin E regulates cellular migration via induction of vascular endothelial growth factor receptor-1 in HCA-7 human colon cancer cells. Biochemical Pharmacology, 81(3), 379–387. doi:10.1016/j.bcp.2010.11.001.PubMedGoogle Scholar
  151. 151.
    Yang, L., Huang, Y., Porta, R., Yanagisawa, K., Gonzalez, A., Segi, E., et al. (2006). Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Research, 66(19), 9665–9672. doi:10.1158/0008-5472.CAN-06-1271.PubMedGoogle Scholar
  152. 152.
    Buchanan, F. G., Wang, D., Bargiacchi, F., & DuBois, R. N. (2003). Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. Journal of Biological Chemistry, 278(37), 35451–35457. doi:10.1074/jbc.M302474200.PubMedGoogle Scholar
  153. 153.
    Buchanan, F. G., Gorden, D. L., Matta, P., Shi, Q., Matrisian, L. M., & DuBois, R. N. (2006). Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1492–1497. doi:10.1073/pnas.0510562103.PubMedGoogle Scholar
  154. 154.
    Pai, R., Nakamura, T., Moon, W. S., & Tarnawski, A. S. (2003). Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. The FASEB Journal, 17(12), 1640–1647. doi:10.1096/fj.02-1011com.PubMedGoogle Scholar
  155. 155.
    Honn, K. V., Cicone, B., & Skoff, A. (1981). Prostacyclin: a potent antimetastatic agent. Science, 212(4500), 1270–1272.PubMedGoogle Scholar
  156. 156.
    Yoshida, N., Yoshikawa, T., Nakagawa, S., Sakamoto, K., Nakamura, Y., Naito, Y., et al. (1999). Effect of shear stress and a stable prostaglandin I2 analogue on adhesive interactions of colon cancer cells and endothelial cells. Clinical and Experimental Immunology, 117(3), 430–434.PubMedGoogle Scholar
  157. 157.
    Daneker, G. W., Lund, S. A., Caughman, S. W., Staley, C. A., & Wood, W. C. (1996). Anti-metastatic prostacyclins inhibit the adhesion of colon carcinoma to endothelial cells by blocking E-selectin expression. Clinical & Experimental Metastasis, 14(3), 230–238.Google Scholar
  158. 158.
    Yokoyama, I., Hayashi, S., Kobayashi, T., Negita, M., Yasutomi, M., Uchida, K., et al. (1995). Prevention of experimental hepatic metastasis with thromboxane synthase inhibitor. Research in Experimental Medicine (Berlin), 195(4), 209–215.Google Scholar
  159. 159.
    Qualtrough, D., Kaidi, A., Chell, S., Jabbour, H. N., Williams, A. C., & Paraskeva, C. (2007). Prostaglandin F(2alpha) stimulates motility and invasion in colorectal tumor cells. International Journal of Cancer, 121(4), 734–740. doi:10.1002/ijc.22755.Google Scholar
  160. 160.
    Koontongkaew, S., Monthanapisut, P., & Saensuk, T. (2010). Inhibition of arachidonic acid metabolism decreases tumor cell invasion and matrix metalloproteinase expression. [Research Support, Non-U.S. Gov’t]. Prostaglandins & Other Lipid Mediators, 93(3–4), 100–108, doi:10.1016/j.prostaglandins.2010.07.002.
  161. 161.
    Feagins, L. A., Souza, R. F., & Spechler, S. J. (2009). Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nature Reviews. Gastroenterology & Hepatology, 6(5), 297–305. doi:10.1038/nrgastro.2009.44.Google Scholar
  162. 162.
    Din, F. V., Theodoratou, E., Farrington, S. M., Tenesa, A., Barnetson, R. A., Cetnarskyj, R., et al. (2010). Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut, 59(12), 1670–1679. doi:10.1136/gut.2009.203000.PubMedGoogle Scholar
  163. 163.
    Terzic, J., Grivennikov, S., Karin, E., & Karin, M. (2010). Inflammation and colon cancer. Gastroenterology, 138(6), 2101–2114 e2105, doi: 10.1053/j.gastro.2010.01.058 Google Scholar
  164. 164.
    Bertagnolli, M. M., Eagle, C. J., Zauber, A. G., Redston, M., Solomon, S. D., Kim, K., et al. (2006). Celecoxib for the prevention of sporadic colorectal adenomas. The New England Journal of Medicine, 355(9), 873–884. doi:10.1056/NEJMoa061355.PubMedGoogle Scholar
  165. 165.
    Baratelli, F., Lin, Y., Zhu, L., Yang, S. C., Heuze-Vourc’h, N., Zeng, G., et al. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. Journal of Immunology, 175(3), 1483–1490.Google Scholar
  166. 166.
    Yaqub, S., Henjum, K., Mahic, M., Jahnsen, F. L., Aandahl, E. M., Bjornbeth, B. A., et al. (2008). Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunology, Immunotherapy, 57(6), 813–821. doi:10.1007/s00262-007-0417-x.PubMedGoogle Scholar
  167. 167.
    Wang, Q., Takei, Y., Kobayashi, O., Osada, T., & Watanabe, S. (2009). Cyclooxygenase 2 modulates killing of cytotoxic T lymphocytes by colon cancer cells. Journal of Clinical Biochemistry & Nutrition, 45(2), 163–170. doi:10.3164/jcbn.09-21.Google Scholar
  168. 168.
    Sheibanie, A. F., Yen, J. H., Khayrullina, T., Emig, F., Zhang, M., Tuma, R., et al. (2007). The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23-> IL-17 axis. Journal of Immunology, 178(12), 8138–8147.Google Scholar
  169. 169.
    Tanaka, S., Tatsuguchi, A., Futagami, S., Gudis, K., Wada, K., Seo, T., et al. (2006). Monocyte chemoattractant protein 1 and macrophage cyclooxygenase 2 expression in colonic adenoma. Gut, 55(1), 54–61. doi:10.1136/gut.2004.059824.PubMedGoogle Scholar
  170. 170.
    Qian, X., Zhang, J., & Liu, J. (2010). Tumor-secreted PGE2 inhibits CCL5 production in activated macrophages through cAMP/PKA signaling pathway. Journal of Biological Chemistry, 286(3), 2111–2120. doi:10.1074/jbc.M110.154971.PubMedGoogle Scholar
  171. 171.
    Cheon, E. C., Khazaie, K., Khan, M. W., Strouch, M. J., Krantz, S. B., Phillips, J., et al. (2011). Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCDelta468 mice. Cancer Research, 71(5), 1627–1636. doi:10.1158/0008-5472.CAN-10-1923.PubMedGoogle Scholar
  172. 172.
    Ostrand-Rosenberg, S. (2010). Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunology, Immunotherapy, 59(10), 1593–1600. doi:10.1007/s00262-010-0855-8.PubMedGoogle Scholar
  173. 173.
    Yudina, Y., Parhamifar, L., Bengtsson, A. M., Juhas, M., & Sjolander, A. (2008). Regulation of the eicosanoid pathway by tumour necrosis factor alpha and leukotriene D4 in intestinal epithelial cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 79(6), 223–231. doi:10.1016/j.plefa.2008.09.024.PubMedGoogle Scholar
  174. 174.
    Janakiram, N. B., & Rao, C. V. (2009). Role of lipoxins and resolvins as anti-inflammatory and proresolving mediators in colon cancer. Current Molecular Medicine, 9(5), 565–579.PubMedGoogle Scholar
  175. 175.
    Lawrence, T., Willoughby, D. A., & Gilroy, D. W. (2002). Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nature Reviews Immunology, 2(10), 787–795. doi:10.1038/nri915.PubMedGoogle Scholar
  176. 176.
    Mangino, M. J., Brounts, L., Harms, B., & Heise, C. (2006). Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins & Other Lipid Mediators, 79(1–2), 84–92. doi:10.1016/j.prostaglandins.2005.10.004.Google Scholar
  177. 177.
    Zhang, B., Jia, H., Liu, J., Yang, Z., Jiang, T., Tang, K., et al. (2011). Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4. Journal of Immunology, 185(12), 7199–7206. doi:10.4049/jimmunol.1001876.Google Scholar
  178. 178.
    Ishizuka, T., Cheng, J., Singh, H., Vitto, M. D., Manthati, V. L., Falck, J. R., et al. (2008). 20-Hydroxyeicosatetraenoic acid stimulates nuclear factor-kappaB activation and the production of inflammatory cytokines in human endothelial cells. Journal of Pharmacology and Experimental Therapeutics, 324(1), 103–110. doi:10.1124/jpet.107.130336.PubMedGoogle Scholar
  179. 179.
    Theken, K. N., Deng, Y., Kannon, M. A., Miller, T. M., Poloyac, S. M., & Lee, C. R. (2010). Activation of the acute inflammatory response alters cytochrome P450 expression and eicosanoid metabolism. Drug Metabolism and Disposition, 39(1), 22–29. doi:10.1124/dmd.110.035287.PubMedGoogle Scholar
  180. 180.
    Norwood, S., Liao, J., Hammock, B. D., & Yang, G. Y. (2010). Epoxyeicosatrienoic acids and soluble epoxide hydrolase: potential therapeutic targets for inflammation and its induced carcinogenesis. American Journal of Translational Research, 2(4), 447–457.PubMedGoogle Scholar
  181. 181.
    Davis, B. B., Liu, J. Y., Tancredi, D. J., Wang, L., Simon, S. I., Hammock, B. D., et al. (2011). The anti-inflammatory effects of soluble epoxide hydrolase inhibitors are independent of leukocyte recruitment. Biochemical and Biophysical Research Communications, 410(3), 494–500. doi:10.1016/j.bbrc.2011.06.008.PubMedGoogle Scholar
  182. 182.
    Radmark, O., & Samuelsson, B. (2010). Microsomal prostaglandin E synthase-1 and 5-lipoxygenase: potential drug targets in cancer. Journal of Internal Medicine, 268(1), 5–14. doi:10.1111/j.1365-2796.2010.02246.x.PubMedGoogle Scholar
  183. 183.
    Schroder, O., Yudina, Y., Sabirsh, A., Zahn, N., Haeggstrom, J. Z., & Stein, J. (2006). 15-deoxy-Delta12,14-prostaglandin J2 inhibits the expression of microsomal prostaglandin E synthase type 2 in colon cancer cells. Journal of Lipid Research, 47(5), 1071–1080. doi:10.1194/jlr.M600008-JLR200.PubMedGoogle Scholar
  184. 184.
    Arisato, T., Hashiguchi, T., Sarker, K. P., Arimura, K., Asano, M., Matsuo, K., et al. (2003). Highly accumulated platelet vascular endothelial growth factor in coagulant thrombotic region. Journal of Thrombosis and Haemostasis, 1(12), 2589–2593.PubMedGoogle Scholar
  185. 185.
    Daniel, T. O., Liu, H., Morrow, J. D., Crews, B. C., & Marnett, L. J. (1999). Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Research, 59(18), 4574–4577.PubMedGoogle Scholar
  186. 186.
    Rhee, J. S., Black, M., Schubert, U., Fischer, S., Morgenstern, E., Hammes, H. P., et al. (2004). The functional role of blood platelet components in angiogenesis. Thrombosis and Haemostasis, 92(2), 394–402. doi:10.1267/THRO04080394.PubMedGoogle Scholar
  187. 187.
    Bick, R. L. (2006). Cancer-associated thrombosis: focus on extended therapy with dalteparin. Journal of Supportive Oncology, 4(3), 115–120.PubMedGoogle Scholar
  188. 188.
    Honn, K. V., & Sloane, B. F. (1983). Prostacyclin, thromboxanes, and hematogenous metastasis. Advances in Prostaglandin, Thromboxane, and Leukotriene Research, 12, 313–318.PubMedGoogle Scholar
  189. 189.
    Pinedo, H. M., Verheul, H. M., D’Amato, R. J., & Folkman, J. (1998). Involvement of platelets in tumour angiogenesis? Lancet, 352(9142), 1775–1777.PubMedGoogle Scholar
  190. 190.
    Boccaccio, C., Sabatino, G., Medico, E., Girolami, F., Follenzi, A., Reato, G., et al. (2005). The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature, 434(7031), 396–400. doi:10.1038/nature03357.PubMedGoogle Scholar
  191. 191.
    Rickles, F. R. (2006). Mechanisms of cancer-induced thrombosis in cancer. Pathophysiology of Haemostasis and Thrombosis, 35(1–2), 103–110.PubMedGoogle Scholar
  192. 192.
    de Leval, X., Benoit, V., Delarge, J., Julemont, F., Masereel, B., Pirotte, B., et al. (2003). Pharmacological evaluation of the novel thromboxane modulator BM-567 (II/II). Effects of BM-567 on osteogenic sarcoma-cell-induced platelet aggregation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68(1), 55–59.PubMedGoogle Scholar
  193. 193.
    Ye, Y. N., Wu, W. K., Shin, V. Y., Bruce, I. C., Wong, B. C., & Cho, C. H. (2005). Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis, 26(4), 827–834. doi:10.1093/carcin/bgi012.PubMedGoogle Scholar
  194. 194.
    Hennig, R., Ding, X. Z., Tong, W. G., Witt, R. C., Jovanovic, B. D., & Adrian, T. E. (2004). Effect of LY293111 in combination with gemcitabine in colonic cancer. Cancer Letters, 210(1), 41–46. doi:10.1016/j.canlet.2004.02.023.PubMedGoogle Scholar
  195. 195.
    Galfi, P., Neogrady, Z., Amberger, A., Margreiter, R., & Csordas, A. (2005). Sensitization of colon cancer cell lines to butyrate-mediated proliferation inhibition by combined application of indomethacin and nordihydroguaiaretic acid. Cancer Detection and Prevention, 29(3), 276–285. doi:10.1016/j.cdp.2004.12.001.PubMedGoogle Scholar
  196. 196.
    Anderson, K. M., Seed, T., Vos, M., Mulshine, J., Meng, J., Alrefai, W., et al. (1998). 5-Lipoxygenase inhibitors reduce PC-3 cell proliferation and initiate nonnecrotic cell death. Prostate, 37(3), 161–173. doi:10.1002/(SICI)1097-0045(19981101)37:3<161.PubMedGoogle Scholar
  197. 197.
    Avis, I., Martinez, A., Tauler, J., Zudaire, E., Mayburd, A., Abu-Ghazaleh, R., et al. (2005). Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition. Cancer Research, 65(10), 4181–4190. doi:10.1158/0008-5472.CAN-04-3441.PubMedGoogle Scholar
  198. 198.
    Cianchi, F., Cortesini, C., Magnelli, L., Fanti, E., Papucci, L., Schiavone, N., et al. (2006). Inhibition of 5-lipoxygenase by MK886 augments the antitumor activity of celecoxib in human colon cancer cells. Molecular Cancer Therapeutics, 5(11), 2716–2726. doi:10.1158/1535-7163.MCT-06-0318.PubMedGoogle Scholar
  199. 199.
    Caygill, C. P., Charlett, A., & Hill, M. J. (1996). Fat, fish, fish oil and cancer. British Journal of Cancer, 74(1), 159–164.PubMedGoogle Scholar
  200. 200.
    Petrik, M. B., McEntee, M. F., Chiu, C. H., & Whelan, J. (2000). Antagonism of arachidonic acid is linked to the antitumorigenic effect of dietary eicosapentaenoic acid in Apc(Min/+) mice. Journal of Nutrition, 130(5), 1153–1158.PubMedGoogle Scholar
  201. 201.
    Calviello, G., Di Nicuolo, F., Gragnoli, S., Piccioni, E., Serini, S., Maggiano, N., et al. (2004). n−3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis, 25(12), 2303–2310. doi:10.1093/carcin/bgh265.PubMedGoogle Scholar
  202. 202.
    Vanamala, J., Glagolenko, A., Yang, P., Carroll, R. J., Murphy, M. E., Newman, R. A., et al. (2008). Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPARdelta/PGE2 and elevation of PGE3. Carcinogenesis, 29(4), 790–796. doi:10.1093/carcin/bgm256.PubMedGoogle Scholar
  203. 203.
    Bose, M., Hao, X., Ju, J., Husain, A., Park, S., Lambert, J. D., et al. (2007). Inhibition of tumorigenesis in ApcMin/+ mice by a combination of (−)-epigallocatechin-3-gallate and fish oil. Journal of Agricultural and Food Chemistry, 55(19), 7695–7700. doi:10.1021/jf071004r.PubMedGoogle Scholar
  204. 204.
    Mund, R. C., Pizato, N., Bonatto, S., Nunes, E. A., Vicenzi, T., Tanhoffer, R., et al. (2007). Decreased tumor growth in Walker 256 tumor-bearing rats chronically supplemented with fish oil involves COX-2 and PGE2 reduction associated with apoptosis and increased peroxidation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 76(2), 113–120. doi:10.1016/j.plefa.2006.11.008.PubMedGoogle Scholar
  205. 205.
    Bartoli, R., Fernandez-Banares, F., Navarro, E., Castella, E., Mane, J., Alvarez, M., et al. (2000). Effect of olive oil on early and late events of colon carcinogenesis in rats: modulation of arachidonic acid metabolism and local prostaglandin E(2) synthesis. Gut, 46(2), 191–199.PubMedGoogle Scholar
  206. 206.
    Terzuoli, E., Donnini, S., Giachetti, A., Iniguez, M. A., Fresno, M., Melillo, G., et al. (2010). Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis. Clinical Cancer Research, 16(16), 4207–4216. doi:10.1158/1078-0432.CCR-10-0156.PubMedGoogle Scholar
  207. 207.
    Ju, J., Hao, X., Lee, M. J., Lambert, J. D., Lu, G., Xiao, H., et al. (2009). A gamma-tocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice. Cancer Prevention Research (Philadelphia, Pa.), 2(2), 143–152. doi:10.1158/1940-6207.CAPR-08-0099.Google Scholar
  208. 208.
    Koeberle, A., Northoff, H., & Werz, O. (2009). Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Molecular Cancer Therapeutics, 8(8), 2348–2355. doi:10.1158/1535-7163.MCT-09-0290.PubMedGoogle Scholar
  209. 209.
    Hong, J., Bose, M., Ju, J., Ryu, J. H., Chen, X., Sang, S., et al. (2004). Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis, 25(9), 1671–1679. doi:10.1093/carcin/bgh165.PubMedGoogle Scholar
  210. 210.
    Rao, C. V., Rivenson, A., Simi, B., & Reddy, B. S. (1995). Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Research, 55(2), 259–266.PubMedGoogle Scholar
  211. 211.
    Lev-Ari, S., Strier, L., Kazanov, D., Madar-Shapiro, L., Dvory-Sobol, H., Pinchuk, I., et al. (2005). Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clinical Cancer Research, 11(18), 6738–6744. doi:10.1158/1078-0432.CCR-05-0171.PubMedGoogle Scholar
  212. 212.
    Carroll, R. E., Benya, R. V., Turgeon, D. K., Vareed, S., Neuman, M., Rodriguez, L., et al. (2011). Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prevention Research (Philadelphia, Pa.), 4(3), 354–364. doi:10.1158/1940-6207.CAPR-10-0098.Google Scholar
  213. 213.
    Hazai, E., Bikadi, Z., Zsila, F., & Lockwood, S. F. (2006). Molecular modeling of the non-covalent binding of the dietary tomato carotenoids lycopene and lycophyll, and selected oxidative metabolites with 5-lipoxygenase. Bioorganic & Medicinal Chemistry, 14(20), 6859–6867. doi:10.1016/j.bmc.2006.06.045.Google Scholar
  214. 214.
    Bednar, W., Holzmann, K., & Marian, B. (2007). Assessing 12(S)-lipoxygenase inhibitory activity using colorectal cancer cells overexpressing the enzyme. Food and Chemical Toxicology, 45(3), 508–514. doi:10.1016/j.fct.2006.08.013.PubMedGoogle Scholar
  215. 215.
    Kuntz, S., Wenzel, U., & Daniel, H. (1999). Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. European Journal of Nutrition, 38(3), 133–142.PubMedGoogle Scholar
  216. 216.
    Pidgeon, G. P., Kandouz, M., Meram, A., & Honn, K. V. (2002). Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Research, 62(9), 2721–2727.PubMedGoogle Scholar
  217. 217.
    Tong, W. G., Ding, X. Z., & Adrian, T. E. (2002). The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochemical and Biophysical Research Communications, 296(4), 942–948.PubMedGoogle Scholar
  218. 218.
    Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S., & Takada, Y. (2004). Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Research, 24(5A), 2783–2840.PubMedGoogle Scholar
  219. 219.
    Ju, J., Liu, Y., Hong, J., Huang, M. T., Conney, A. H., & Yang, C. S. (2003). Effects of green tea and high-fat diet on arachidonic acid metabolism and aberrant crypt foci formation in an azoxymethane-induced colon carcinogenesis mouse model. Nutrition and Cancer, 46(2), 172–178. doi:10.1207/S15327914NC4602_10.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mary-Clare Cathcart
    • 1
  • Joanne Lysaght
    • 1
  • Graham P. Pidgeon
    • 1
  1. 1.Department of Surgery, Institute of Molecular Medicine, Trinity Health Sciences Centre, St. James’s HospitalTrinity College DublinDublin 8Ireland

Personalised recommendations