Advertisement

Cancer and Metastasis Reviews

, Volume 30, Issue 3–4, pp 557–565 | Cite as

Autotaxin and LPA receptor signaling in cancer

  • Anna J. S. Houben
  • Wouter H. Moolenaar
Article

Abstract

Lysophosphatidic acid (LPA; monoacyl-glycerol-3-phosphate) is a lipid mediator that functions as a mitogen and motility factor for many cell types. LPA signals through six specific G protein-coupled receptors, named LPA1–6, which trigger both overlapping and distinct signaling pathways. LPA is produced from extracellular lysophosphatidylcholine by a secreted lysophospholipase D, named autotaxin (ATX), originally identified as an “autocrine motility factor” for tumor cells. ATX–LPA signaling is vital for embryonic development and promotes tumor formation, angiogenesis, and experimental metastasis in mice. Elevated expression of ATX and/or aberrant expression of LPA receptors are found in several human malignancies, while loss of LPA6 function has been implicated in bladder cancer. In this review, we summarize our present understanding of ATX and LPA receptor signaling in cancer.

Keywords

Autotaxin Cancer Lysophosphatidic acid G protein-coupled receptor 

Notes

Acknowledgments

Work related to this review is supported by grants from the Dutch Cancer Society and the Netherlands Organization of Pure Research. We thank Anastassis Perrakis for designing Fig. 1.

References

  1. 1.
    Choi, J. W., Herr, D. R., Noguchi, K., Yung, Y. C., Lee, C. W., Mutoh, T., et al. (2010). LPA receptors: subtypes and biological actions. Annual Review of Pharmacology and Toxicology, 50, 157–186.PubMedCrossRefGoogle Scholar
  2. 2.
    Moolenaar, W. H., van Meeteren, L. A., & Giepmans, B. N. (2004). The ins and outs of lysophosphatidic acid signaling. Bioessays, 26, 870–881.PubMedCrossRefGoogle Scholar
  3. 3.
    Tokumura, A., Majima, E., Kariya, Y., Tominaga, K., Kogure, K., Yasuda, K., et al. (2002). Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. Journal of Biological Chemistry, 277, 39436–39442.PubMedCrossRefGoogle Scholar
  4. 4.
    Umezu-Goto, M., Kishi, Y., Taira, A., Hama, K., Dohmae, N., Takio, K., et al. (2002). Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. The Journal of Cell Biology, 158, 227–233.PubMedCrossRefGoogle Scholar
  5. 5.
    Stracke, M. L., Krutzsch, H. C., Unsworth, E. J., Arestad, A., Cioce, V., Schiffmann, E., et al. (1992). Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. Journal of Biological Chemistry, 267, 2524–2529.PubMedGoogle Scholar
  6. 6.
    Chun, J., Hla, T., Lynch, K. R., Spiegel, S., & Moolenaar, W. H. (2010). International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacological Reviews, 62, 579–587.PubMedCrossRefGoogle Scholar
  7. 7.
    Mills, G. B., & Moolenaar, W. H. (2003). The emerging role of LPA in cancer. Nature Reviews Cancer, 3, 582–591.PubMedCrossRefGoogle Scholar
  8. 8.
    van Corven, E. J., Hordijk, P. L., Medema, R. H., Bos, J. L., & Moolenaar, W. H. (1993). Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 90, 1257–1261.PubMedCrossRefGoogle Scholar
  9. 9.
    Kranenburg, O., & Moolenaar, W. H. (2001). Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene, 20, 1540–1546.PubMedCrossRefGoogle Scholar
  10. 10.
    Guillermet-Guibert, J., Bjorklof, K., Salpekar, A., Gonella, C., Ramadani, F., Bilancio, A., et al. (2008). The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proceedings of the National Academy of Sciences of the United States of America, 105, 8292–8297.PubMedCrossRefGoogle Scholar
  11. 11.
    Kranenburg, O., Poland, M., van Horck, F. P., Drechsel, D., Hall, A., & Moolenaar, W. H. (1999). Activation of RhoA by lysophosphatidic acid and Galpha12/13 subunits in neuronal cells: induction of neurite retraction. Molecular Biology of the Cell, 10, 1851–1857.PubMedGoogle Scholar
  12. 12.
    Stam, J. C., Michiels, F., van der Kammen, R. A., Moolenaar, W. H., & Collard, J. G. (1998). Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO Journal, 17, 4066–4074.PubMedCrossRefGoogle Scholar
  13. 13.
    van Leeuwen, F. N., Olivo, C., Grivell, S., Giepmans, B. N., Collard, J. G., & Moolenaar, W. H. (2003). Rac activation by lysophosphatidic acid LPA1 receptors through the guanine nucleotide exchange factor Tiam1. Journal of Biological Chemistry, 278, 400–406.PubMedCrossRefGoogle Scholar
  14. 14.
    van Corven, E. J., Groenink, A., Jalink, K., Eichholtz, T., & Moolenaar, W. H. (1989). Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell, 59, 45–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Jalink, K., van Corven, E. J., & Moolenaar, W. H. (1990). Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2(+)-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. Journal of Biological Chemistry, 265, 12232–12239.PubMedGoogle Scholar
  16. 16.
    Stortelers, C., Kerkhoven, R., & Moolenaar, W. H. (2008). Multiple actions of lysophosphatidic acid on fibroblasts revealed by transcriptional profiling. BMC Genomics, 9, 387.PubMedCrossRefGoogle Scholar
  17. 17.
    Harper, K., Arsenault, D., Boulay-Jean, S., Lauzier, A., Lucien, F., & Dubois, C. M. (2010). Autotaxin promotes cancer invasion via the lysophosphatidic acid receptor 4: participation of the cyclic AMP/EPAC/Rac1 signaling pathway in invadopodia formation. Cancer Research, 70, 4634–4643.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee, Z., Cheng, C. T., Zhang, H., Subler, M. A., Wu, J., Mukherjee, A., et al. (2008). Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Molecular Biology of the Cell, 19, 5435–5445.PubMedCrossRefGoogle Scholar
  19. 19.
    Stefan, C., Jansen, S., & Bollen, M. (2005). NPP-type ectophosphodiesterases: unity in diversity. Trends in Biochemical Sciences, 30, 542–550.PubMedCrossRefGoogle Scholar
  20. 20.
    van Meeteren, L. A., & Moolenaar, W. H. (2007). Regulation and biological activities of the autotaxin-LPA axis. Progress in Lipid Research, 46, 145–160.PubMedCrossRefGoogle Scholar
  21. 21.
    Kanda, H., Newton, R., Klein, R., Morita, Y., Gunn, M. D., & Rosen, S. D. (2008). Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs. Nature Immunology, 9, 415–423.PubMedCrossRefGoogle Scholar
  22. 22.
    Dusaulcy, R., Rancoule, C., Gres, S., Wanecq, E., Colom, A., Guigne, C., et al. (2011). Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid. Journal of Lipid Research, 52(6), 1247–1255.PubMedCrossRefGoogle Scholar
  23. 23.
    van Meeteren, L. A., Ruurs, P., Christodoulou, E., Goding, J. W., Takakusa, H., Kikuchi, K., et al. (2005). Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. Journal of Biological Chemistry, 280, 21155–21161.PubMedCrossRefGoogle Scholar
  24. 24.
    Nishimasu, H., Okudaira, S., Hama, K., Mihara, E., Dohmae, N., Inoue, A., et al. (2011). Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nature Structural and Molecular Biology, 18, 205–212.PubMedCrossRefGoogle Scholar
  25. 25.
    Hausmann, J., Kamtekar, S., Christodoulou, E., Day, J. E., Wu, T., Fulkerson, Z., et al. (2011). Structural basis of substrate discrimination and integrin binding by autotaxin. Nature Structural and Molecular Biology, 18, 198–204.PubMedCrossRefGoogle Scholar
  26. 26.
    Pamuklar, Z., Federico, L., Liu, S., Umezu-Goto, M., Dong, A., Panchatcharam, M., et al. (2009). Autotaxin/lysopholipase D and lysophosphatidic acid regulate murine hemostasis and thrombosis. Journal of Biological Chemistry, 284, 7385–7394.PubMedCrossRefGoogle Scholar
  27. 27.
    van Meeteren, L. A., Ruurs, P., Stortelers, C., Bouwman, P., van Rooijen, M. A., Pradere, J. P., et al. (2006). Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Molecular and Cellular Biology, 26, 5015–5022.PubMedCrossRefGoogle Scholar
  28. 28.
    Tanaka, M., Okudaira, S., Kishi, Y., Ohkawa, R., Iseki, S., Ota, M., et al. (2006). Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. Journal of Biological Chemistry, 281, 25822–25830.PubMedCrossRefGoogle Scholar
  29. 29.
    Fotopoulou, S., Oikonomou, N., Grigorieva, E., Nikitopoulou, I., Paparountas, T., Thanassopoulou, A., et al. (2010). ATX expression and LPA signalling are vital for the development of the nervous system. Dev Biol, 339, 451–464.PubMedCrossRefGoogle Scholar
  30. 30.
    Koike, S., Keino-Masu, K., & Masu, M. (2010). Deficiency of autotaxin/lysophospholipase D results in head cavity formation in mouse embryos through the LPA receptor-Rho-ROCK pathway. Biochemical and Biophysical Research Communications, 400, 66–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Matas-Rico, E., Garcia-Diaz, B., Llebrez-Zayas, P., Lopez-Barroso, D., Santin, L., Pedraza, C., et al. (2008). Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Molecular and Cellular Neuroscience, 39, 342–355.PubMedCrossRefGoogle Scholar
  32. 32.
    Gennero, I., Laurencin-Dalicieux, S., Conte-Auriol, F., Briand-Mesange, F., Laurencin, D., Rue, J., et al. (2011). Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass. Bone, 49(3), 395–403.PubMedCrossRefGoogle Scholar
  33. 33.
    Ye, X., Hama, K., Contos, J. J., Anliker, B., Inoue, A., Skinner, M. K., et al. (2005). LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature, 435, 104–108.PubMedCrossRefGoogle Scholar
  34. 34.
    Sumida, H., Noguchi, K., Kihara, Y., Abe, M., Yanagida, K., Hamano, F., et al. (2010). LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood, 116, 5060–5070.PubMedCrossRefGoogle Scholar
  35. 35.
    Contos, J. J., Ishii, I., Fukushima, N., Kingsbury, M. A., Ye, X., Kawamura, S., et al. (2002). Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Molecular and Cellular Biology, 22, 6921–6929.PubMedCrossRefGoogle Scholar
  36. 36.
    Kawagoe, H., Stracke, M. L., Nakamura, H., & Sano, K. (1997). Expression and transcriptional regulation of the PD-Ialpha/autotaxin gene in neuroblastoma. Cancer Research, 57, 2516–2521.PubMedGoogle Scholar
  37. 37.
    Zhang, G., Zhao, Z., Xu, S., Ni, L., & Wang, X. (1999). Expression of autotaxin mRNA in human hepatocellular carcinoma. Chinese Medical Journal, 112, 330–332.PubMedGoogle Scholar
  38. 38.
    Yang, S. Y., Lee, J., Park, C. G., Kim, S., Hong, S., Chung, H. C., et al. (2002). Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells. Clinical & Experimental Metastasis, 19, 603–608.CrossRefGoogle Scholar
  39. 39.
    Stassar, M. J., Devitt, G., Brosius, M., Rinnab, L., Prang, J., Schradin, T., et al. (2001). Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization. British Journal of Cancer, 85, 1372–1382.PubMedCrossRefGoogle Scholar
  40. 40.
    Hoelzinger, D. B., Mariani, L., Weis, J., Woyke, T., Berens, T. J., McDonough, W. S., et al. (2005). Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia, 7, 7–16.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang, Y., Mou, L., Liu, N., & Tsao, M. S. (1999). Autotaxin expression in non-small-cell lung cancer. American Journal of Respiratory Cell and Molecular Biology, 21, 216–222.PubMedGoogle Scholar
  42. 42.
    Baumforth, K. R., Flavell, J. R., Reynolds, G. M., Davies, G., Pettit, T. R., Wei, W., et al. (2005). Induction of autotaxin by the Epstein–Barr virus promotes the growth and survival of Hodgkin lymphoma cells. Blood, 106, 2138–2146.PubMedCrossRefGoogle Scholar
  43. 43.
    Masuda, A., Nakamura, K., Izutsu, K., Igarashi, K., Ohkawa, R., Jona, M., et al. (2008). Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma. British Journal of Haematology, 143, 60–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Kehlen, A., Englert, N., Seifert, A., Klonisch, T., Dralle, H., Langner, J., et al. (2004). Expression, regulation and function of autotaxin in thyroid carcinomas. International Journal of Cancer, 109, 833–838.CrossRefGoogle Scholar
  45. 45.
    Nam, S. W., Clair, T., Kim, Y. S., McMarlin, A., Schiffmann, E., Liotta, L. A., et al. (2001). Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Research, 61, 6938–6944.PubMedGoogle Scholar
  46. 46.
    Black, E. J., Clair, T., Delrow, J., Neiman, P., & Gillespie, D. A. (2004). Microarray analysis identifies autotaxin, a tumour cell motility and angiogenic factor with lysophospholipase D activity, as a specific target of cell transformation by v-Jun. Oncogene, 23, 2357–2366.PubMedCrossRefGoogle Scholar
  47. 47.
    Zirn, B., Samans, B., Wittmann, S., Pietsch, T., Leuschner, I., Graf, N., et al. (2006). Target genes of the WNT/beta-catenin pathway in Wilms tumors. Genes, Chromosomes & Cancer, 45, 565–574.CrossRefGoogle Scholar
  48. 48.
    Tice, D. A., Szeto, W., Soloviev, I., Rubinfeld, B., Fong, S. E., Dugger, D. L., et al. (2002). Synergistic induction of tumor antigens by Wnt-1 signaling and retinoic acid revealed by gene expression profiling. Journal of Biological Chemistry, 277, 14329–14335.PubMedCrossRefGoogle Scholar
  49. 49.
    Dufner-Beattie, J., Lemons, R. S., & Thorburn, A. (2001). Retinoic acid-induced expression of autotaxin in N-myc-amplified neuroblastoma cells. Molecular Carcinogenesis, 30, 181–189.PubMedCrossRefGoogle Scholar
  50. 50.
    Zirn, B., Samans, B., Spangenberg, C., Graf, N., Eilers, M., & Gessler, M. (2005). All-trans retinoic acid treatment of Wilms tumor cells reverses expression of genes associated with high risk and relapse in vivo. Oncogene, 24, 5246–5251.PubMedCrossRefGoogle Scholar
  51. 51.
    Chen, M., & O’Connor, K. L. (2005). Integrin alpha6beta4 promotes expression of autotaxin/ENPP2 autocrine motility factor in breast carcinoma cells. Oncogene, 24, 5125–5130.PubMedCrossRefGoogle Scholar
  52. 52.
    Nam, S. W., Clair, T., Campo, C. K., Lee, H. Y., Liotta, L. A., & Stracke, M. L. (2000). Autotaxin (ATX), a potent tumor motogen, augments invasive and metastatic potential of ras-transformed cells. Oncogene, 19, 241–247.PubMedCrossRefGoogle Scholar
  53. 53.
    Boucharaba, A., Serre, C. M., Gres, S., Saulnier-Blache, J. S., Bordet, J. C., Guglielmi, J., et al. (2004). Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. The Journal of Clinical Investigation, 114, 1714–1725.PubMedGoogle Scholar
  54. 54.
    Boucharaba, A., Serre, C. M., Guglielmi, J., Bordet, J. C., Clezardin, P., & Peyruchaud, O. (2006). The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proceedings of the National Academy of Sciences of the United States of America, 103, 9643–9648.PubMedCrossRefGoogle Scholar
  55. 55.
    David, M., Wannecq, E., Descotes, F., Jansen, S., Deux, B., Ribeiro, J., et al. (2010). Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts. PLoS One, 5, e9741.PubMedCrossRefGoogle Scholar
  56. 56.
    Yu, S., Murph, M. M., Lu, Y., Liu, S., Hall, H. S., Liu, J., et al. (2008). Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. Journal of the National Cancer Institute, 100, 1630–1642.PubMedCrossRefGoogle Scholar
  57. 57.
    Taghavi, P., Verhoeven, E., Jacobs, J. J., Lambooij, J. P., Stortelers, C., Tanger, E., et al. (2008). In vitro genetic screen identifies a cooperative role for LPA signaling and c-Myc in cell transformation. Oncogene, 27, 6806–6816.PubMedCrossRefGoogle Scholar
  58. 58.
    Liu, S., Umezu-Goto, M., Murph, M., Lu, Y., Liu, W., Zhang, F., et al. (2009). Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell, 15, 539–550.PubMedCrossRefGoogle Scholar
  59. 59.
    Lin, S., Wang, D., Iyer, S., Ghaleb, A. M., Shim, H., Yang, V. W., et al. (2009). The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer. Gastroenterology, 136, 1711–1720.PubMedCrossRefGoogle Scholar
  60. 60.
    Lin, S., Lee, S. J., Shim, H., Chun, J., & Yun, C. C. (2010). The absence of LPA receptor 2 reduces the tumorigenesis by Apc Min mutation in the intestine. American Journal of Physiology. Gastrointestinal and Liver Physiology, 299, G1128–G1138.PubMedCrossRefGoogle Scholar
  61. 61.
    Nakai, Y., Ikeda, H., Nakamura, K., Kume, Y., Fujishiro, M., Sasahira, N., et al. (2011). Specific increase in serum autotaxin activity in patients with pancreatic cancer. Clinical Biochemistry, 44(8–9), 576–581.PubMedCrossRefGoogle Scholar
  62. 62.
    Lu, Y., Lemon, W., Liu, P. Y., Yi, Y., Morrison, C., Yang, P., et al. (2006). A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Medicine, 3, e467.PubMedCrossRefGoogle Scholar
  63. 63.
    Lee, S., Jeong, J., Majewski, T., Scherer, S. E., Kim, M. S., Tuziak, T., et al. (2007). Forerunner genes contiguous to RB1 contribute to the development of in situ neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 104, 13732–13737.PubMedCrossRefGoogle Scholar
  64. 64.
    Pasternack, S. M., von Kugelgen, I., Aboud, K. A., Lee, Y. A., Ruschendorf, F., Voss, K., et al. (2008). G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nature Genetics, 40, 329–334.PubMedCrossRefGoogle Scholar
  65. 65.
    Yanagida, K., Masago, K., Nakanishi, H., Kihara, Y., Hamano, F., Tajima, Y., et al. (2009). Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6. Journal of Biological Chemistry, 284(26), 17731–17741.PubMedCrossRefGoogle Scholar
  66. 66.
    Kaplan, M. H., Smith, D. I., & Sundick, R. S. (1993). Identification of a G protein coupled receptor induced in activated T cells. Journal of Immunology, 151, 628–636.Google Scholar
  67. 67.
    Majewski, T., Lee, S., Jeong, J., Yoon, D. S., Kram, A., Kim, M. S., et al. (2008). Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy. Laboratory Investigation, 88, 694–721.PubMedCrossRefGoogle Scholar
  68. 68.
    Song, H., Ramus, S. J., Shadforth, D., Quaye, L., Kjaer, S. K., Dicioccio, R. A., et al. (2006). Common variants in RB1 gene and risk of invasive ovarian cancer. Cancer Research, 66, 10220–10226.PubMedCrossRefGoogle Scholar
  69. 69.
    Kazantseva, A., Goltsov, A., Zinchenko, R., Grigorenko, A. P., Abrukova, A. V., Moliaka, Y. K., et al. (2006). Human hair growth deficiency is linked to a genetic defect in the phospholipase gene LIPH. Science, 314, 982–985.PubMedCrossRefGoogle Scholar
  70. 70.
    Crawford, J. M. (2008). The origins of bladder cancer. Laboratory Investigation, 88, 686–693.PubMedCrossRefGoogle Scholar
  71. 71.
    Baker, D. L., Fujiwara, Y., Pigg, K. R., Tsukahara, R., Kobayashi, S., Murofushi, H., et al. (2006). Carba analogs of cyclic phosphatidic acid are selective inhibitors of autotaxin and cancer cell invasion and metastasis. Journal of Biological Chemistry, 281, 22786–22793.PubMedCrossRefGoogle Scholar
  72. 72.
    Durgam, G. G., Virag, T., Walker, M. D., Tsukahara, R., Yasuda, S., Liliom, K., et al. (2005). Synthesis, structure-activity relationships, and biological evaluation of fatty alcohol phosphates as lysophosphatidic acid receptor ligands, activators of PPARgamma, and inhibitors of autotaxin. Journal of Medicinal Chemistry, 48, 4919–4930.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang, H., Xu, X., Gajewiak, J., Tsukahara, R., Fujiwara, Y., Liu, J., et al. (2009). Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression in vivo. Cancer Research, 69, 5441–5449.PubMedCrossRefGoogle Scholar
  74. 74.
    van Meeteren, L. A., Brinkmann, V., Saulnier-Blache, J. S., Lynch, K. R., & Moolenaar, W. H. (2008). Anticancer activity of FTY720: phosphorylated FTY720 inhibits autotaxin, a metastasis-enhancing and angiogenic lysophospholipase D. Cancer Letters, 266, 203–208.PubMedCrossRefGoogle Scholar
  75. 75.
    Gupte, R., Patil, R., Liu, J., Wang, Y., Lee, S. C., Fujiwara, Y., et al. (2011). Benzyl and naphthalene methylphosphonic acid inhibitors of autotaxin with anti-invasive and anti-metastatic activity. ChemMedChem, 6, 922–935.PubMedCrossRefGoogle Scholar
  76. 76.
    Albers, H. M., Dong, A., van Meeteren, L. A., Egan, D. A., Sunkara, M., van Tilburg, E. W., et al. (2010). Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Proceedings of the National Academy of Sciences of the United States of America, 107, 7257–7262.PubMedCrossRefGoogle Scholar
  77. 77.
    Albers, H. M., van Meeteren, L. A., Egan, D. A., van Tilburg, E. W., Moolenaar, W. H., & Ovaa, H. (2010). Discovery and optimization of boronic acid based inhibitors of autotaxin. Journal of Medicinal Chemistry, 53, 4958–4967.PubMedCrossRefGoogle Scholar
  78. 78.
    Gierse, J., Thorarensen, A., Beltey, K., Bradshaw-Pierce, E., Cortes-Burgos, L., Hall, T., et al. (2010). A novel autotaxin inhibitor reduces lysophosphatidic acid levels in plasma and the site of inflammation. Journal of Pharmacology and Experimental Therapeutics, 334, 310–317.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of Cell BiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations