Cancer and Metastasis Reviews

, Volume 30, Issue 3–4, pp 387–395 | Cite as

Cyclooxygenase-2 and Gastric Cancer



Gastric cancer remains a leading cause of cancer-related deaths worldwide, although its incidence has been steadily declining during recent decades. Expression of cyclooxygenase-2 (COX-2) is elevated in gastric carcinomas and in their precursor lesions. COX-2 expression associates with reduced survival in gastric cancer patients, and it has also been shown to be an independent factor of poor prognosis. Several molecular mechanisms are involved in the regulation of COX-2 expression in gastric cancer cell lines, including signal transduction pathways activated by Helicobacter pylori. In gastric tumor models in vivo the role of COX-2 seems to be predominantly to facilitate tumor promotion and growth.


Cyclooxygenase-2 Gastric cancer Celecoxib Carcinogenesis Prostaglandin E2 


  1. 1.
    Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917.CrossRefGoogle Scholar
  2. 2.
    Crew, K. D., & Neugut, A. I. (2006). Epidemiology of gastric cancer. World Journal of Gastroenterology, 12(3), 354–362.PubMedGoogle Scholar
  3. 3.
    Shikata, K., Doi, Y., Yonemoto, K., Arima, H., Ninomiya, T., Kubo, M., et al. (2008). Population-based prospective study of the combined influence of cigarette smoking and Helicobacter pylori infection on gastric cancer incidence: The hisayama study. American Journal of Epidemiology, 168(12), 1409–1415.PubMedCrossRefGoogle Scholar
  4. 4.
    Vogiatzi, P., Vindigni, C., Roviello, F., Renieri, A., & Giordano, A. (2007). Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. Journal of Cellular Physiology, 211(2), 287–295.PubMedCrossRefGoogle Scholar
  5. 5.
    Yin, M., Hu, Z., Tan, D., Ajani, J. A., & Wei, Q. (2009). Molecular epidemiology of genetic susceptibility to gastric cancer: Focus on single nucleotide polymorphisms in gastric carcinogenesis. American Journal of Translational Research, 1(1), 44–54.PubMedGoogle Scholar
  6. 6.
    Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386.PubMedCrossRefGoogle Scholar
  7. 7.
    Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: Understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.PubMedCrossRefGoogle Scholar
  8. 8.
    Thun, M. J., Namboodiri, M. M., Calle, E. E., Flanders, W. D., & Heath, C. W., Jr. (1993). Aspirin use and risk of fatal cancer. Cancer Research, 53(6), 1322–1327.PubMedGoogle Scholar
  9. 9.
    Schreinemachers, D. M., & Everson, R. B. (1994). Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology, 5(2), 138–146.PubMedCrossRefGoogle Scholar
  10. 10.
    Zaridze, D., Borisova, E., Maximovitch, D., & Chkhikvadze, V. (1999). Aspirin protects against gastric cancer: Results of a case-control study from Moscow, Russia. International Journal of Cancer, 82(4), 473–476.CrossRefGoogle Scholar
  11. 11.
    Langman, M. J., Cheng, K. K., Gilman, E. A., & Lancashire, R. J. (2000). Effect of anti-inflammatory drugs on overall risk of common cancer: Case-control study in general practice research database. BMJ, 320(7250), 1642–1646.PubMedCrossRefGoogle Scholar
  12. 12.
    Akre, K., Ekstrom, A. M., Signorello, L. B., Hansson, L. E., & Nyren, O. (2001). Aspirin and risk for gastric cancer: A population-based case-control study in Sweden. British Journal of Cancer, 84(7), 965–968.PubMedCrossRefGoogle Scholar
  13. 13.
    Abnet, C. C., Freedman, N. D., Kamangar, F., Leitzmann, M. F., Hollenbeck, A. R., & Schatzkin, A. (2009). Non-steroidal anti-inflammatory drugs and risk of gastric and oesophageal adenocarcinomas: Results from a cohort study and a meta-analysis. British Journal of Cancer, 100(3), 551–557.PubMedCrossRefGoogle Scholar
  14. 14.
    Ristimäki, A., Honkanen, N., Jänkälä, H., Sipponen, P., & Härkönen, M. (1997). Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Research, 57(7), 1276–1280.PubMedGoogle Scholar
  15. 15.
    Saukkonen, K., Rintahaka, J., Sivula, A., Buskens, C. J., Van Rees, B. P., Rio, M. C., et al. (2003). Cyclooxygenase-2 and gastric carcinogenesis. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 111(10), 915–925.PubMedCrossRefGoogle Scholar
  16. 16.
    Lim, H. Y., Joo, H. J., Choi, J. H., Yi, J. W., Yang, M. S., Cho, D. Y., et al. (2000). Increased expression of cyclooxygenase-2 protein in human gastric carcinoma. Clinical Cancer Research, 6(2), 519–525.PubMedGoogle Scholar
  17. 17.
    Saukkonen, K., Nieminen, O., van Rees, B., Vilkki, S., Härkönen, M., Juhola, M., et al. (2001). Expression of cyclooxygenase-2 in dysplasia of the stomach and in intestinal-type gastric adenocarcinoma. Clinical Cancer Research, 7(7), 1923–1931.PubMedGoogle Scholar
  18. 18.
    van Rees, B. P., Saukkonen, K., Ristimaki, A., Polkowski, W., Tytgat, G. N., Drillenburg, P., et al. (2002). Cyclooxygenase-2 expression during carcinogenesis in the human stomach. The Journal of Pathology, 196(2), 171–179.PubMedCrossRefGoogle Scholar
  19. 19.
    Konturek, P. C., Konturek, S. J., & Brzozowski, T. (2009). Helicobacter pylori infection in gastric cancerogenesis. Journal of Physiology and Pharmacology, 60(3), 3–21.PubMedGoogle Scholar
  20. 20.
    Guo, X. L., Wang, L. E., Du, S. Y., Fan, C. L., Li, L., Wang, P., et al. (2003). Association of cyclooxygenase-2 expression with hp-cagA infection in gastric cancer. World Journal of Gastroenterology, 9(2), 246–249.PubMedGoogle Scholar
  21. 21.
    Iwamoto, J., Mizokami, Y., Takahashi, K., Matsuoka, T., & Matsuzaki, Y. (2008). The effects of cyclooxygenase2-prostaglandin E2 pathway on Helicobacter pylori-induced urokinase-type plasminogen activator system in the gastric cancer cells. Helicobacter, 13(3), 174–182.PubMedCrossRefGoogle Scholar
  22. 22.
    Sheehan, K. M., Sheahan, K., O’Donoghue, D. P., MacSweeney, F., Conroy, R. M., Fitzgerald, D. J., et al. (1999). The relationship between cyclooxygenase-2 expression and colorectal cancer. Journal of the American Medical Association, 282(13), 1254–1257.PubMedCrossRefGoogle Scholar
  23. 23.
    Buskens, C. J., Van Rees, B. P., Sivula, A., Reitsma, J. B., Haglund, C., Bosma, P. J., et al. (2002). Prognostic significance of elevated cyclooxygenase 2 expression in patients with adenocarcinoma of the esophagus. Gastroenterology, 122(7), 1800–1807.PubMedCrossRefGoogle Scholar
  24. 24.
    Ristimäki, A., Sivula, A., Lundin, J., Lundin, M., Salminen, T., Haglund, C., et al. (2002). Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Research, 62(3), 632–635.PubMedGoogle Scholar
  25. 25.
    Erkinheimo, T. L., Lassus, H., Sivula, A., Sengupta, S., Furneaux, H., Hla, T., et al. (2003). Cytoplasmic HuR expression correlates with poor outcome and with cyclooxygenase 2 expression in serous ovarian carcinoma. Cancer Research, 63(22), 7591–7594.PubMedGoogle Scholar
  26. 26.
    Juuti, A., Louhimo, J., Nordling, S., Ristimaki, A., & Haglund, C. (2006). Cyclooxygenase-2 expression correlates with poor prognosis in pancreatic cancer. Journal of Clinical Pathology, 59(4), 382–386.PubMedCrossRefGoogle Scholar
  27. 27.
    Mrena, J., Wiksten, J. P., Thiel, A., Kokkola, A., Pohjola, L., Lundin, J., et al. (2005). Cyclooxygenase-2 is an independent prognostic factor in gastric cancer and its expression is regulated by the messenger RNA stability factor HuR. Clinical Cancer Research, 11(20), 7362–7368.PubMedCrossRefGoogle Scholar
  28. 28.
    Murata, H., Kawano, S., Tsuji, S., Tsuji, M., Sawaoka, H., Kimura, Y., et al. (1999). Cyclooxygenase-2 overexpression enhances lymphatic invasion and metastasis in human gastric carcinoma. The American Journal of Gastroenterology, 94(2), 451–455.PubMedCrossRefGoogle Scholar
  29. 29.
    Yamamoto, H., Itoh, F., Fukushima, H., Hinoda, Y., & Imai, K. (1999). Overexpression of cyclooxygenase-2 protein is less frequent in gastric cancers with microsatellite instability. International Journal of Cancer, 84(4), 400–403.CrossRefGoogle Scholar
  30. 30.
    Chen, J. H., Liu, T. Y., Wu, C. W., & Chi, C. W. (2001). Nonsteroidal anti-inflammatory drugs for treatment of advanced gastric cancer: Cyclooxygenase-2 is involved in hepatocyte growth factor mediated tumor development and progression. Medical Hypotheses, 57(4), 503–505.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee, T. L., Leung, W. K., Lau, J. Y., Tong, J. H., Ng, E. K., Chan, F. K., et al. (2001). Inverse association between cyclooxygenase-2 overexpression and microsatellite instability in gastric cancer. Cancer Letters, 168(2), 133–140.PubMedCrossRefGoogle Scholar
  32. 32.
    Leung, W. K., To, K. F., Ng, Y. P., Lee, T. L., Lau, J. Y., Chan, F. K., et al. (2001). Association between cyclo-oxygenase-2 overexpression and missense p53 mutations in gastric cancer. British Journal of Cancer, 84(3), 335–339.PubMedCrossRefGoogle Scholar
  33. 33.
    Joo, Y. E., Oh, W. T., Rew, J. S., Park, C. S., Choi, S. K., & Kim, S. J. (2002). Cyclooxygenase-2 expression is associated with well-differentiated and intestinal-type pathways in gastric carcinogenesis. Digestion, 66(4), 222–229.PubMedCrossRefGoogle Scholar
  34. 34.
    Joo, Y. E., Rew, J. S., Seo, Y. H., Choi, S. K., Kim, Y. J., Park, C. S., et al. (2003). Cyclooxygenase-2 overexpression correlates with vascular endothelial growth factor expression and tumor angiogenesis in gastric cancer. Journal of Clinical Gastroenterology, 37(1), 28–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Li, H. X., Chang, X. M., Song, Z. J., & He, S. X. (2003). Correlation between expression of cyclooxygenase-2 and angiogenesis in human gastric adenocarcinoma. World Journal of Gastroenterology, 9(4), 674–677.PubMedGoogle Scholar
  36. 36.
    Shi, H., Xu, J. M., Hu, N. Z., & Xie, H. J. (2003). Prognostic significance of expression of cyclooxygenase-2 and vascular endothelial growth factor in human gastric carcinoma. World Journal of Gastroenterology, 9(7), 1421–1426.PubMedGoogle Scholar
  37. 37.
    Yu, H. G., Li, J. Y., Yang, Y. N., Luo, H. S., Yu, J. P., Meier, J. J., et al. (2003). Increased abundance of cyclooxygenase-2 correlates with vascular endothelial growth factor-A abundance and tumor angiogenesis in gastric cancer. Cancer Letters, 195(1), 43–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Okano, H., Shinohara, H., Miyamoto, A., Takaori, K., & Tanigawa, N. (2004). Concomitant overexpression of cyclooxygenase-2 in HER-2-positive on Smad4-reduced human gastric carcinomas is associated with a poor patient outcome. Clinical Cancer Research, 10(20), 6938–6945.PubMedCrossRefGoogle Scholar
  39. 39.
    Sung, J. J., Leung, W. K., Go, M. Y., To, K. F., Cheng, A. S., Ng, E. K., et al. (2000). Cyclooxygenase-2 expression in Helicobacter pylori-associated premalignant and malignant gastric lesions. The American Journal of Pathology, 157(3), 729–735.PubMedCrossRefGoogle Scholar
  40. 40.
    Rajnakova, A., Moochhala, S., Goh, P. M., & Ngoi, S. (2001). Expression of nitric oxide synthase, cyclooxygenase, and p53 in different stages of human gastric cancer. Cancer Letters, 172(2), 177–185.PubMedCrossRefGoogle Scholar
  41. 41.
    Tatsuguchi, A., Matsui, K., Shinji, Y., Gudis, K., Tsukui, T., Kishida, T., et al. (2004). Cyclooxygenase-2 expression correlates with angiogenesis and apoptosis in gastric cancer tissue. Human Pathology, 35(4), 488–495.PubMedCrossRefGoogle Scholar
  42. 42.
    Mrena, J., Wiksten, J. P., Kokkola, A., Nordling, S., Ristimaki, A., & Haglund, C. (2010). COX-2 is associated with proliferation and apoptosis markers and serves as an independent prognostic factor in gastric cancer. Tumour Biology, 31(1), 1–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Bresalier, R. S., Sandler, R. S., Quan, H., Bolognese, J. A., Oxenius, B., Horgan, K., et al. (2005). Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. The New England Journal of Medicine, 352(11), 1092–1102.PubMedCrossRefGoogle Scholar
  44. 44.
    Solomon, S. D., McMurray, J. J., Pfeffer, M. A., Wittes, J., Fowler, R., Finn, P., et al. (2005). Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. The New England Journal of Medicine, 352(11), 1071–1080.PubMedCrossRefGoogle Scholar
  45. 45.
    Nussmeier, N. A., Whelton, A. A., Brown, M. T., Langford, R. M., Hoeft, A., Parlow, J. L., et al. (2005). Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. The New England Journal of Medicine, 352(11), 1081–1091.PubMedCrossRefGoogle Scholar
  46. 46.
    Marnett, L. J. (2009). The COXIB experience: A look in the rearview mirror. Annual Review of Pharmacology and Toxicology, 49, 265–290.PubMedCrossRefGoogle Scholar
  47. 47.
    Feng, G. S., Ma, J. L., Wong, B. C., Zhang, L., Liu, W. D., Pan, K. F., et al. (2008). Celecoxib-related gastroduodenal ulcer and cardiovascular events in a randomized trial for gastric cancer prevention. World Journal of Gastroenterology, 14(28), 4535–4539.PubMedCrossRefGoogle Scholar
  48. 48.
    Tendo, M., Yashiro, M., Nakazawa, K., Yamada, N., Sawada, T., Ohira, M., et al. (2006). A synergic inhibitory-effect of combination with selective cyclooxygenase-2 inhibitor and S-1 on the peritoneal metastasis for scirrhous gastric cancer cells. Cancer Letters, 244(2), 247–251.PubMedCrossRefGoogle Scholar
  49. 49.
    Bertagnolli, M. M., Eagle, C. J., Zauber, A. G., Redston, M., Breazna, A., Kim, K., et al. (2009). Five-year efficacy and safety analysis of the adenoma prevention with celecoxib trial. Cancer Prevention Research, 2(4), 310–321.PubMedCrossRefGoogle Scholar
  50. 50.
    Yokozaki, H. (2000). Molecular characteristics of eight gastric cancer cell lines established in japan. Pathology International, 50(10), 767–777.PubMedCrossRefGoogle Scholar
  51. 51.
    Thiel, A., Heinonen, M., Rintahaka, J., Hallikainen, T., Hemmes, A., Dixon, D. A., et al. (2006). Expression of cyclooxygenase-2 is regulated by glycogen synthase kinase-3beta in gastric cancer cells. The Journal of Biological Chemistry, 281(8), 4564–4569.PubMedCrossRefGoogle Scholar
  52. 52.
    Yeh, T. S., Wu, C. W., Hsu, K. W., Liao, W. J., Yang, M. C., Li, A. F., et al. (2009). The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase-2. Cancer Research, 69(12), 5039–5048.PubMedCrossRefGoogle Scholar
  53. 53.
    Hla, T., & Neilson, K. (1992). Human cyclooxygenase-2 cDNA. Proceedings of the National Academy of Sciences of the United States of America, 89(16), 7384–7388.PubMedCrossRefGoogle Scholar
  54. 54.
    Lim, J. W., Kim, H., & Kim, K. H. (2001). Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Laboratory Investigation, 81(3), 349–360.PubMedCrossRefGoogle Scholar
  55. 55.
    Subramaniam, D., Ramalingam, S., May, R., Dieckgraefe, B. K., Berg, D. E., Pothoulakis, C., et al. (2008). Gastrin-mediated interleukin-8 and cyclooxygenase-2 gene expression: Differential transcriptional and posttranscriptional mechanisms. Gastroenterology, 134(4), 1070–1082.PubMedCrossRefGoogle Scholar
  56. 56.
    Brennan, C. M., & Steitz, J. A. (2001). HuR and mRNA stability. Cellular and Molecular Life Sciences: CMLS, 58(2), 266–277.PubMedCrossRefGoogle Scholar
  57. 57.
    Oshima, H., Oshima, M., Inaba, K., & Taketo, M. M. (2004). Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice. The EMBO Journal, 23(7), 1669–1678.PubMedCrossRefGoogle Scholar
  58. 58.
    Shen, H., Sun, W. H., Xue, Q. P., Wu, J., Cheng, Y. L., Ding, G. X., et al. (2006). Influences of helicobacter pylori on cyclooxygenase-2 expression and prostaglandinE2 synthesis in rat gastric epithelial cells in vitro. Journal of Gastroenterology and Hepatology, 21(4), 754–758.PubMedCrossRefGoogle Scholar
  59. 59.
    Juttner, S., Cramer, T., Wessler, S., Walduck, A., Gao, F., Schmitz, F., et al. (2003). Helicobacter pylori stimulates host cyclooxygenase-2 gene transcription: Critical importance of MEK/ERK-dependent activation of USF1/-2 and CREB transcription factors. Cellular Microbiology, 5(11), 821–834.PubMedCrossRefGoogle Scholar
  60. 60.
    Chang, Y. J., Wu, M. S., Lin, J. T., Sheu, B. S., Muta, T., Inoue, H., et al. (2004). Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-src-dependent nuclear factor-kappaB activation. Molecular Pharmacology, 66(6), 1465–1477.PubMedCrossRefGoogle Scholar
  61. 61.
    Chang, Y. J., Wu, M. S., Lin, J. T., & Chen, C. C. (2005). Helicobacter pylori-induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation. Journal of Immunology, 175(12), 8242–8252.Google Scholar
  62. 62.
    Li, Q., Liu, N., Shen, B., Zhou, L., Wang, Y., Wang, Y., et al. (2009). Helicobacter pylori enhances cyclooxygenase 2 expression via p38MAPK/ATF-2 signaling pathway in MKN45 cells. Cancer Letters, 278(1), 97–103.PubMedCrossRefGoogle Scholar
  63. 63.
    Wu, W. K., Lee, C. W., Cho, C. H., Fan, D., Wu, K., Yu, J., et al. (2010). MicroRNA dysregulation in gastric cancer: A new player enters the game. Oncogene, 29(43), 5761–5771.PubMedCrossRefGoogle Scholar
  64. 64.
    Strillacci, A., Griffoni, C., Sansone, P., Paterini, P., Piazzi, G., Lazzarini, G., et al. (2009). MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Experimental Cell Research, 315(8), 1439–1447.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang, H. J., Ruan, H. J., He, X. J., Ma, Y. Y., Jiang, X. T., Xia, Y. J., et al. (2010). MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. European Journal of Cancer, 46(12), 2295–2303.PubMedCrossRefGoogle Scholar
  66. 66.
    Hao, Y., Gu, X., Zhao, Y., Greene, S., Sha, W., Smoot, D., et al. (2011). Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev Res (Phila), 4(7), 1073–1083.Google Scholar
  67. 67.
    Yan, M., Rerko, R. M., Platzer, P., Dawson, D., Willis, J., Tong, M., et al. (2004). 15-hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a TGF-beta-induced suppressor of human gastrointestinal cancers. Proceedings of the National Academy of Sciences of the United States of America, 101(50), 17468–17473.PubMedCrossRefGoogle Scholar
  68. 68.
    Liu, Z., Wang, X., Lu, Y., Han, S., Zhang, F., Zhai, H., et al. (2008). Expression of 15-PGDH is down-regulated by COX-2 in gastric cancer. Carcinogenesis, 29, 1219–1227.PubMedCrossRefGoogle Scholar
  69. 69.
    Thiel, A., Ganesan, A., Mrena, J., Junnila, S., Nykanen, A., Hemmes, A., et al. (2009). 15-hydroxyprostaglandin dehydrogenase is down-regulated in gastric cancer. Clinical Cancer Research, 15(14), 4572–4580.PubMedCrossRefGoogle Scholar
  70. 70.
    Tatsuwaki, H., Tanigawa, T., Watanabe, T., Machida, H., Okazaki, H., Yamagami, H., et al. (2010). Reduction of 15-hydroxyprostaglandin dehydrogenase expression is an independent predictor of poor survival associated with enhanced cell proliferation in gastric adenocarcinoma. Cancer Science, 101(2), 550–558.PubMedCrossRefGoogle Scholar
  71. 71.
    Tong, M., Ding, Y., & Tai, H. H. (2006). Reciprocal regulation of cyclooxygenase-2 and 15-hydroxyprostaglandin dehydrogenase expression in A549 human lung adenocarcinoma cells. Carcinogenesis, 27(11), 2170–2179.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.PubMedCrossRefGoogle Scholar
  73. 73.
    Fu, Y. G., Sung, J. J., Wu, K. C., Wu, H. P., Yu, J., Chan, M., et al. (2005). Inhibition of gastric cancer-associated angiogenesis by antisense COX-2 transfectants. Cancer Letters, 224(2), 243–252.PubMedCrossRefGoogle Scholar
  74. 74.
    Yao, L., Liu, F., Hong, L., Sun, L., Liang, S., Wu, K., et al. (2011). The function and mechanism of COX-2 in angiogenesis of gastric cancer cells. Journal of Experimental & Clinical Cancer Research, 30, 13.CrossRefGoogle Scholar
  75. 75.
    Ding, Y. B., Shi, R. H., Tong, J. D., Li, X. Y., Zhang, G. X., Xiao, W. M., et al. (2005). PGE2 up-regulates vascular endothelial growth factor expression in MKN28 gastric cancer cells via epidermal growth factor receptor signaling system. Experimental Oncology, 27(2), 108–113.PubMedGoogle Scholar
  76. 76.
    Sun, W. H., Zhu, F., Chen, G. S., Su, H., Luo, C., Zhao, Q. S., et al. (2008). Blockade of cholecystokinin-2 receptor and cyclooxygenase-2 synergistically induces cell apoptosis, and inhibits the proliferation of human gastric cancer cells in vitro. Cancer Letters, 263(2), 302–311.PubMedCrossRefGoogle Scholar
  77. 77.
    Yuan, X. L., Chen, L., Li, M. X., Dong, P., Xue, J., Wang, J., et al. (2010). Elevated expression of Foxp3 in tumor-infiltrating treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner. Clinical Immunology, 134(3), 277–288.PubMedCrossRefGoogle Scholar
  78. 78.
    Oshima, H., Matsunaga, A., Fujimura, T., Tsukamoto, T., Taketo, M. M., & Oshima, M. (2006). Carcinogenesis in mouse stomach by simultaneous activation of the wnt signaling and prostaglandin E2 pathway. Gastroenterology, 131(4), 1086–1095.PubMedCrossRefGoogle Scholar
  79. 79.
    Oshima, H., Itadani, H., Kotani, H., Taketo, M. M., & Oshima, M. (2009). Induction of prostaglandin E2 pathway promotes gastric hamartoma development with suppression of bone morphogenetic protein signaling. Cancer Research, 69(7), 2729–2733.PubMedCrossRefGoogle Scholar
  80. 80.
    Oshima, H., Oguma, K., Du, Y. C., & Oshima, M. (2009). Prostaglandin E2, wnt, and BMP in gastric tumor mouse models. Cancer Science, 100(10), 1779–1785.PubMedCrossRefGoogle Scholar
  81. 81.
    Oshima, M., Oshima, H., Matsunaga, A., & Taketo, M. M. (2005). Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-alpha-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Cancer Research, 65(20), 9147–9151.PubMedCrossRefGoogle Scholar
  82. 82.
    Itadani, H., Oshima, H., Oshima, M., & Kotani, H. (2009). Mouse gastric tumor models with prostaglandin E2 pathway activation show similar gene expression profiles to intestinal-type human gastric cancer. BMC Genomics, 10, 615.PubMedCrossRefGoogle Scholar
  83. 83.
    Oshima, H., Popivanova, B. K., Oguma, K., Kong, D., Ishikawa, T. O., & Oshima, M. (2011). Activation of epidermal growth factor receptor signaling by the prostaglandin E(2) receptor EP4 pathway during gastric tumorigenesis. Cancer Science, 102(4), 713–719.PubMedCrossRefGoogle Scholar
  84. 84.
    Oshima, H., Hioki, K., Popivanova, B. K., Oguma, K., Van Rooijen, N., Ishikawa, T. O., et al. (2011). Prostaglandin E 2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology, 140(2), 596–607.e7.PubMedCrossRefGoogle Scholar
  85. 85.
    Lefebvre, O., Chenard, M. P., Masson, R., Linares, J., Dierich, A., LeMeur, M., et al. (1996). Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science, 274(5285), 259–262.PubMedCrossRefGoogle Scholar
  86. 86.
    Saukkonen, K., Tomasetto, C., Narko, K., Rio, M. C., & Ristimäki, A. (2003). Cyclooxygenase-2 expression and effect of celecoxib in gastric adenomas of trefoil factor 1-deficient mice. Cancer Research, 63(12), 3032–3036.PubMedGoogle Scholar
  87. 87.
    Thiel, A., Narko, K., Heinonen, M., Hemmes, A., Tomasetto, C., Rio M. C., et al. (in press). Inhibition of cyclooxygenase-2 causes regression of gastric adenomas in trefoil factor 1 deficient mice. International Journal of Cancer.Google Scholar
  88. 88.
    Udd, L., Katajisto, P., Rossi, D. J., Lepisto, A., Lahesmaa, A. M., Ylikorkala, A., et al. (2004). Suppression of peutz-jeghers polyposis by inhibition of cyclooxygenase-2. Gastroenterology, 127(4), 1030–1037.PubMedCrossRefGoogle Scholar
  89. 89.
    Kanda, N., Seno, H., Kawada, M., Sawabu, T., Uenoyoma, Y., Nakajima, T., et al. (2006). Involvement of cyclooxygenase-2 in gastric mucosal hypertrophy in gastrin transgenic mice. American Journal of Physiology. Gastrointestinal and Liver Physiology, 290(3), G519–G527.PubMedCrossRefGoogle Scholar
  90. 90.
    Nam, K. T., Hahm, K. B., Oh, S. Y., Yeo, M., Han, S. U., Ahn, B., et al. (2004). The selective cyclooxygenase-2 inhibitor nimesulide prevents helicobacter pylori-associated gastric cancer development in a mouse model. Clinical Cancer Research, 10(23), 8105–8113.PubMedCrossRefGoogle Scholar
  91. 91.
    Leung, W. K., Wu, K. C., Wong, C. Y., Cheng, A. S., Ching, A. K., Chan, A. W., et al. (2008). Transgenic cyclooxygenase-2 expression and high salt enhanced susceptibility to chemical-induced gastric cancer development in mice. Carcinogenesis, 29(8), 1648–1654.PubMedCrossRefGoogle Scholar
  92. 92.
    Takasu, S., Tsukamoto, T., Cao, X. Y., Toyoda, T., Hirata, A., Ban, H., et al. (2008). Roles of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 expression and beta-catenin activation in gastric carcinogenesis in N-methyl-N-nitrosourea-treated K19-C2mE transgenic mice. Cancer Science, 99(12), 2356–2364.PubMedCrossRefGoogle Scholar
  93. 93.
    Tian, W., Zhao, Y., Liu, S., & Li, X. (2010). Meta-analysis on the relationship between nonsteroidal anti-inflammatory drug use and gastric cancer. European Journal of Cancer Prevention, 19(4), 288–298.PubMedCrossRefGoogle Scholar
  94. 94.
    Leung, W. K., Ng, E. K., Chan, F. K., Chan, W. Y., Chan, K. F., Auyeung, A. C., et al. (2006). Effects of long-term rofecoxib on gastric intestinal metaplasia: results of a randomized controlled trial. Clinical Cancer Research, 12(15), 4766–4772.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhang, L. J., Wang, S. Y., Huo, X. H., Zhu, Z. L., Chu, J. K., Ma, J. C., et al. (2009). Anti-Helicobacter pylori therapy followed by celecoxib on progression of gastric precancerous lesions. World Journal of Gastroenterology, 15(22), 2731–2738.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alexandra Thiel
    • 1
    • 2
  • Johanna Mrena
    • 1
    • 3
  • Ari Ristimäki
    • 1
    • 2
    • 4
  1. 1.Department of Pathology, HUSLAB and Haartman InstituteHelsinki University Central Hospital and University of HelsinkiHelsinkiFinland
  2. 2.Genome-Scale Biology, Research Program UnitUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Gastrointestinal SurgeryCentral Hospital of Central FinlandJyväskyläFinland
  4. 4.Genome-Scale Biology, Research Program Unit, Biomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland

Personalised recommendations