Cancer and Metastasis Reviews

, Volume 30, Issue 2, pp 177–184 | Cite as

Mast cell: insight into remodeling a tumor microenvironment

  • Jing Liu
  • Yi Zhang
  • Jie Zhao
  • Zhuoshun Yang
  • Dapeng Li
  • Foad Katirai
  • Bo HuangEmail author


Mast cells are of paramount importance to allergies, pathogen immune responses during infections, and angiogenesis, as well as innate and adaptive immune regulations. Beyond all these roles, mast cells are now more and more being recognized as modulators of tumor microenvironment. Notwithstanding mounting evidences of mast cell accumulation in tumors, their exact role in tumor microenvironment is still incompletely understood. In this review, we discuss the significant role of mast cells in the remodeling of tumor microenvironment by either releasing various factors after activation or interacting with other cells within tumor and, as a result, the possible role of mast cell in cancer invasion and metastasis. We also discuss recent findings that mast cells actively release microparticles, which account for the transfer of membrane-type receptor signal and regulatory molecules such as microRNAs to tumor cells and immune cells. These findings on mast cells provide further insights into the complexity of tumor microenvironment remodeling.


Mast cell Tumor microenvironment Mediators Stromal cells Microparticles 



The authors thank Dr. Yonghong Wan of McMaster University (Canada) and Dr. Yan Su of The University of Maryland (USA) for their helpful discussion and assistance in editing this article.

This work was supported by the National Natural Science Foundation of China (30871020), Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (30911120482), the Program for New Century Excellent Talents in University (NCET-08-0219), Special Research Foundation for Universities affiliated with China Ministry of Education (Z2009005), Important National Science and Technology Specific Projects (2009ZX09301-014), Scientific Research Foundation of Wuhan City Human Resource for Returned Scholars.


  1. 1.
    Metcalfe, D. D., Baram, D., & Mekori, Y. A. (1997). Mast cells. Physiological Reviews, 77, 1033–1079.PubMedGoogle Scholar
  2. 2.
    Heib, V., Becker, M., Taube, C., & Stassen, M. (2008). Advances in the understanding of mast cell function. British Journal Haematology, 142, 683–694.CrossRefGoogle Scholar
  3. 3.
    Bauer, O., & Razin, E. (2000). Mast Cell-Nerve Interactions. News in Physiological Sciences, 15, 213–218.PubMedGoogle Scholar
  4. 4.
    Weller, K., Foitzik, K., Paus, R., Syska, W., & Maurer, M. (2006). Mast cells are required for normal healing of skin wounds in mice. The FASEB Journal, 20, 2366–2368.PubMedCrossRefGoogle Scholar
  5. 5.
    Hebda, P. A., Collins, M. A., & Tharp, M. D. (1993). Mast cell and myofibroblast in wound healing. Dermatologic Clinics, 11, 685–696.PubMedGoogle Scholar
  6. 6.
    Blair, R. J., Meng, H., Marchese, M. J., Ren, S., Schwartz, L. B., Tonnesen, M. G., et al. (1997). Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. The Journal of Clinical Investigation, 99, 2691–2700.PubMedCrossRefGoogle Scholar
  7. 7.
    Williams, C. M., & Galli, S. J. (2000). The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. The Journal of Allergy and Clinical Immunology, 105, 847–859.PubMedCrossRefGoogle Scholar
  8. 8.
    Benoist, C., & Mathis, D. (2002). Mast cells in autoimmune disease. Nature, 420, 875–878.PubMedCrossRefGoogle Scholar
  9. 9.
    de Vries, V., Pino-Lagos, K., Elgueta, R., & Noelle, R. J. (2009). The enigmatic role of mast cells in dominant tolerance. Current Opinion in Organ Transplantation, 14, 332–337.PubMedCrossRefGoogle Scholar
  10. 10.
    Sayed, B. A., Christy, A., Quirion, M. R., & Brown, M. A. (2008). The master switch: the role of mast cells in autoimmunity and tolerance. Annual Review of Immunology, 26, 705–739.PubMedCrossRefGoogle Scholar
  11. 11.
    Palker, T. J., Dong, G., & Leitner, W. W. (2010). Mast cells in innate and adaptive immunity to infection. European Journal of Immunology, 40, 13–18.PubMedCrossRefGoogle Scholar
  12. 12.
    Galli, S. J., Nakae, S., & Tsai, M. (2005). Mast cells in the development of adaptive immune responses. Nature Immunology, 6, 135–142.PubMedCrossRefGoogle Scholar
  13. 13.
    Conti, P., Castellani, M. L., Kempuraj, D., Salini, V., Vecchiet, J., Tete, S., et al. (2007). Role of mast cells in tumor growth. Annals of Clinical and Laboratory Science, 37, 315–322.PubMedGoogle Scholar
  14. 14.
    Johansson, A., Rudolfsson, S., Hammarsten, P., Halin, S., Pietras, K., Jones, J., et al. (2010). Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. The American Journal of Pathology, 177, 1031–1041.PubMedCrossRefGoogle Scholar
  15. 15.
    Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews. Cancer, 8, 618–631.PubMedCrossRefGoogle Scholar
  16. 16.
    Mayani, H., Guilbert, L. J., & Janowska-Wieczorek, A. (1992). Biology of the hemopoietic microenvironment. European Journal of Haematology, 49, 225–233.PubMedCrossRefGoogle Scholar
  17. 17.
    Siclari, V. A., Guise, T. A., & Chirgwin, J. M. (2006). Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer and Metastasis Reviews, 25, 621–633.PubMedCrossRefGoogle Scholar
  18. 18.
    Noel, A., Jost, M., & Maquoi, E. (2008). Matrix metalloproteinases at cancer tumor-host interface. Seminars in Cell & Developmental Biology, 19, 52–60.CrossRefGoogle Scholar
  19. 19.
    Hanna, E., Quick, J., & Libutti, S. K. (2009). The tumour microenvironment: a novel target for cancer therapy. Oral Diseases, 15, 8–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Huang, B., Lei, Z., Zhang, G. M., Li, D., Song, C., Li, B., et al. (2008). SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood, 112, 1269–1279.PubMedCrossRefGoogle Scholar
  21. 21.
    Yang, Z., Zhang, B., Li, D., Lv, M., Huang, C., Shen, G. X., et al. (2010). Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS ONE, 5, e8922.PubMedCrossRefGoogle Scholar
  22. 22.
    Maltby, S., Khazaie, K., & McNagny, K. M. (2009). Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochimica et Biophysica Acta, 1796, 19–26.PubMedGoogle Scholar
  23. 23.
    Kinet, J. P. (1999). The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annual Review of Immunology, 17, 931–972.PubMedCrossRefGoogle Scholar
  24. 24.
    Malbec, O., & Daeron, M. (2007). The mast cell IgG receptors and their roles in tissue inflammation. Immunological Reviews, 217, 206–221.PubMedCrossRefGoogle Scholar
  25. 25.
    Marshall, J. S. (2004). Mast-cell responses to pathogens. Nature Reviews. Immunology, 4, 787–799.PubMedCrossRefGoogle Scholar
  26. 26.
    Dawicki, W., & Marshall, J. S. (2007). New and emerging roles for mast cells in host defence. Current Opinion in Immunology, 19, 31–38.PubMedCrossRefGoogle Scholar
  27. 27.
    Matsushima, H., Yamada, N., Matsue, H., & Shimada, S. (2004). TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. Journal of Immunology, 173, 531–541.Google Scholar
  28. 28.
    Varadaradjalou, S., Feger, F., Thieblemont, N., Hamouda, N. B., Pleau, J. M., Dy, M., et al. (2003). Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. European Journal of Immunology, 33, 899–906.PubMedCrossRefGoogle Scholar
  29. 29.
    Piccinini, A. M., & Midwood, K. S. (2010). DAMPening Inflammation by Modulating TLR Signalling. Mediators of Inflammation, 2010.Google Scholar
  30. 30.
    Fischer, M., & Ehlers, M. (2008). Toll-like receptors in autoimmunity. Annals of the New York Academy of Sciences, 1143, 21–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Sims, G. P., Rowe, D. C., Rietdijk, S. T., Herbst, R., & Coyle, A. J. (2010). HMGB1 and RAGE in inflammation and cancer. Annual Review of Immunology, 28, 367–388.PubMedCrossRefGoogle Scholar
  32. 32.
    Lu, W. J., Lee, N. P., Fatima, S., & Luk, J. M. (2009). Heat shock proteins in cancer: signaling pathways, tumor markers and molecular targets in liver malignancy. Protein and Peptide Letters, 16, 508–516.PubMedCrossRefGoogle Scholar
  33. 33.
    Smiley, S. T., King, J. A., & Hancock, W. W. (2001). Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. Journal of Immunology, 167, 2887–2894.Google Scholar
  34. 34.
    Tesniere, A., Panaretakis, T., Kepp, O., Apetoh, L., Ghiringhelli, F., Zitvogel, L., et al. (2008). Molecular characteristics of immunogenic cancer cell death. Cell Death and Differentiation, 15, 3–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Caughey, G. H. (2007). Mast cell tryptases and chymases in inflammation and host defense. Immunological Reviews, 217, 141–154.PubMedCrossRefGoogle Scholar
  36. 36.
    Datta, Y. H., Romano, M., Jacobson, B. C., Golan, D. E., Serhan, C. N., & Ewenstein, B. M. (1995). Peptido-leukotrienes are potent agonists of von Willebrand factor secretion and P-selectin surface expression in human umbilical vein endothelial cells. Circulation, 92, 3304–3311.PubMedGoogle Scholar
  37. 37.
    Boyce, J. A. (2007). Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunological Reviews, 217, 168–185.PubMedCrossRefGoogle Scholar
  38. 38.
    Mekori, Y. A., & Metcalfe, D. D. (1999). Mast cell-T cell interactions. The Journal of Allergy and Clinical Immunology, 104, 517–523.PubMedCrossRefGoogle Scholar
  39. 39.
    Kim, B. G., Li, C., Qiao, W., Mamura, M., Kasprzak, B., Anver, M., et al. (2006). Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature, 441, 1015–1019.PubMedCrossRefGoogle Scholar
  40. 40.
    Abraham, S. N., & St John, A. L. (2010). Mast cell-orchestrated immunity to pathogens. Nature Reviews. Immunology, 10, 440–452.PubMedCrossRefGoogle Scholar
  41. 41.
    Josko, J., & Mazurek, M. (2004). Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Medical Science Monitor, 10, RA89–RA98.PubMedGoogle Scholar
  42. 42.
    Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141, 39–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Zou, W. (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Reviews. Cancer, 5, 263–274.PubMedCrossRefGoogle Scholar
  44. 44.
    Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9, 162–174.PubMedCrossRefGoogle Scholar
  45. 45.
    Kitamura, Y., & Fujita, J. (1989). Regulation of mast cell differentiation. Bioessays, 10, 193–196.PubMedCrossRefGoogle Scholar
  46. 46.
    Tsuji, K., Nakahata, T., Takagi, M., Kobayashi, T., Ishiguro, A., Kikuchi, T., et al. (1990). Effects of interleukin-3 and interleukin-4 on the development of "connective tissue-type" mast cells: interleukin-3 supports their survival and interleukin-4 triggers and supports their proliferation synergistically with interleukin-3. Blood, 75, 421–427.PubMedGoogle Scholar
  47. 47.
    Zhang, W., Stoica, G., Tasca, S. I., Kelly, K. A., & Meininger, C. J. (2000). Modulation of tumor angiogenesis by stem cell factor. Cancer Research, 60, 6757–6762.PubMedGoogle Scholar
  48. 48.
    Finotto, S., Buerke, M., Lingnau, K., Schmitt, E., Galle, P. R., & Neurath, M. F. (2001). Local administration of antisense phosphorothioate oligonucleotides to the c-kit ligand, stem cell factor, suppresses airway inflammation and IL-4 production in a murine model of asthma. The Journal of Allergy and Clinical Immunology, 107, 279–286.PubMedCrossRefGoogle Scholar
  49. 49.
    Hassan, H. T. (2009). c-Kit expression in human normal and malignant stem cells prognostic and therapeutic implications. Leukemia Research, 33, 5–10.PubMedCrossRefGoogle Scholar
  50. 50.
    Kinet, J. P. (2007). The essential role of mast cells in orchestrating inflammation. Immunological Reviews, 217, 5–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Fossiez, F., Banchereau, J., Murray, R., Van, K. C., Garrone, P., & Lebecque, S. (1998). Interleukin-17. International Reviews of Immunology, 16, 541–551.PubMedCrossRefGoogle Scholar
  52. 52.
    Sylvester, J., Liacini, A., Li, W. Q., & Zafarullah, M. (2004). Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cellular Signalling, 16, 469–476.PubMedCrossRefGoogle Scholar
  53. 53.
    Blatner, N. R., Bonertz, A., Beckhove, P., Cheon, E. C., Krantz, S. B., Strouch, M., et al. (2010). In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 107, 6430–6435.PubMedCrossRefGoogle Scholar
  54. 54.
    Strouch, M. J., Cheon, E. C., Salabat, M. R., Krantz, S. B., Gounaris, E., Melstrom, L. G., et al. (2010). Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clinical Cancer Research, 16, 2257–2265.PubMedCrossRefGoogle Scholar
  55. 55.
    Melillo, R. M., Guarino, V., Avilla, E., Galdiero, M. R., Liotti, F., Prevete, N., et al. (2010). Mast cells have a protumorigenic role in human thyroid cancer. Oncogene, 29, 6203–6215.PubMedCrossRefGoogle Scholar
  56. 56.
    Bode, A. P., Sandberg, H., Dombrose, F. A., & Lentz, B. R. (1985). Association of factor V activity with membranous vesicles released from human platelets: requirement for platelet stimulation. Thrombosis Research, 39, 49–61.PubMedCrossRefGoogle Scholar
  57. 57.
    VanWijk, M. J., VanBavel, E., Sturk, A., & Nieuwland, R. (2003). Microparticles in cardiovascular diseases. Cardiovascular Research, 59, 277–287.PubMedCrossRefGoogle Scholar
  58. 58.
    Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 20, 1487–1495.PubMedCrossRefGoogle Scholar
  59. 59.
    Gilfillan, A. M., & Tkaczyk, C. (2006). Integrated signalling pathways for mast-cell activation. Nature Reviews. Immunology, 6, 218–230.PubMedCrossRefGoogle Scholar
  60. 60.
    Deregibus, M. C., Cantaluppi, V., Calogero, R., Lo, I. M., Tetta, C., Biancone, L., et al. (2007). Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood, 110, 2440–2448.PubMedCrossRefGoogle Scholar
  61. 61.
    Tang, K., Liu, J., Yang, Z. S., Zhang, B., Zhang, H. F., Huang, C. M., et al. (2010). Microparticles mediate enzyme transfer from platelets to mast cells: a new pathway for lipoxin A4 biosynthesis. Biochemical and Biophysical Research Communications, 400, 432–436.PubMedCrossRefGoogle Scholar
  62. 62.
    Kondo, K., Muramatsu, M., Okamoto, Y., Jin, D., Takai, S., Tanigawa, N., et al. (2006). Expression of chymase-positive cells in gastric cancer and its correlation with the angiogenesis. Journal of Surgical Oncology, 93, 36–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Terada, T., & Matsunaga, Y. (2000). Increased mast cells in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Journal of Hepatology, 3, 961–966.CrossRefGoogle Scholar
  64. 64.
    Pelosi, G., Barisella, M., Pasini, F., Leon, M. E., Veronesi, G., Spaggiari, L., et al. (2004). CD117 immunoreactivity in stage I adenocarcinoma and squamous cell carcinoma of the lung: relevance to prognosis in a subset of adenocarcinoma patients. Modern Pathology, 17, 711–721.PubMedCrossRefGoogle Scholar
  65. 65.
    Ju, M. J., Qiu, S. J., Gao, Q., Fan, J., Cai, M. Y., Li, Y. W., et al. (2009). Combination of peritumoral mast cells and T-regulatory cells predicts prognosis of hepatocellular carcinoma. Cancer Science, 100, 1267–1274.PubMedCrossRefGoogle Scholar
  66. 66.
    Xiang, M., Gu, Y., Zhao, F., Lu, H., Chen, S., & Yin, L. (2010). Mast cell tryptase promotes breast cancer migration and invasion. Oncology Reports, 23, 615–619.PubMedGoogle Scholar
  67. 67.
    Starkey, J. R., Crowle, P. K., & Taubenberger, S. (1988). Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. International Journal of Cancer, 42, 48–52.CrossRefGoogle Scholar
  68. 68.
    Dabbous, M. K., Haney, L., Nicolson, G. L., Eckley, D., & Woolley, D. E. (1991). Mast cell modulation of tumour cell proliferation in rat mammary adenocarcinoma 13762NF. British Journal of Cancer, 63, 873–878.PubMedCrossRefGoogle Scholar
  69. 69.
    Theoharides, T. C., Rozniecki, J. J., Sahagian, G., Jocobson, S., Kempuraj, D., Conti, P., et al. (2008). Impact of stress and mast cells on brain metastases. Journal of Neuroimmunology, 205, 1–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Yano, H., Kinuta, M., Tateishi, H., Nakano, Y., Matsui, S., Monden, T., et al. (1999). Mast cell infiltration around gastric cancer cells correlates with tumor angiogenesis and metastasis. Gastric Cancer, 2, 26–32.PubMedCrossRefGoogle Scholar
  71. 71.
    Huang, B., Lei, Z., Zhao, J., Gong, W., Liu, J., Chen, Z., et al. (2007). CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Letters, 252, 86–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jing Liu
    • 1
  • Yi Zhang
    • 1
  • Jie Zhao
    • 2
  • Zhuoshun Yang
    • 1
  • Dapeng Li
    • 1
  • Foad Katirai
    • 1
  • Bo Huang
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanThe People’s Republic of China
  2. 2.Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanThe People’s Republic of China

Personalised recommendations