Advertisement

Cancer and Metastasis Reviews

, Volume 29, Issue 4, pp 613–639 | Cite as

The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network

  • Lakshmanane BoominathanEmail author
NON-THEMATIC REVIEW

Abstract

The tumor suppressor p53 homologues, TA-p73, and p63 have been shown to function as tumor suppressors. However, how they function as tumor suppressors remains elusive. Here, I propose a number of tumor suppressor pathways that illustrate how the TA-p73 and p63 could function as negative regulators of invasion, metastasis, and cancer stem cells (CSCs) proliferation. Furthermore, I provide molecular insights into how TA-p73 and p63 could function as tumor suppressors. Remarkably, the guardians—p53, p73, and p63—of the genome are in control of most of the known tumor suppressor miRNAs, tumor suppressor genes, and metastasis suppressors by suppressing c-myc through miR-145/let-7/miR-34/TRIM32/PTEN/FBXW7. In particular, p53 and TA-p73/p63 appear to upregulate the expression of (1) tumor suppressor miRNAs, such as let-7, miR-34, miR-15/16a, miR-145, miR-29, miR-26, miR-30, and miR-146a; (2) tumor suppressor genes, such as PTEN, RBs, CDKN1a/b/c, and CDKN2a/b/c/d; (3) metastasis suppressors, such as Raf kinase inhibitory protein, CycG2, and DEC2, and thereby they enlarge their tumor suppressor network to inhibit tumorigenesis, invasion, angiogenesis, migration, metastasis, and CSCs proliferation.

Keywords

p53/p73/p63 c-myc PTEN miRNAs Metastasis CSCs 

Notes

Acknowledgments

Dr. Lakshmanane Boominathan, Ph.D. is the founding Director-cum-senior scientist of the Genome Discovery, Puducherry, India. He devotes this article to his Professors [from the National University of Singapore; The Weizmann Institute of Science; Jawaharlal Institute of Post-graduate Medical Education and Research; Pondicherry Central University, India] who have played a significant role in his career.

References

  1. 1.
    Boominathan, L. (2007). Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors. Molecular Cancer, 6, 27.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen, H. Z., Tsai, S. Y., & Leone, G. (2009). Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer, 9(11), 785–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Puig, P., Capodieci, P., Drobnjak, M., Verbel, D., Prives, C., Cordon-Cardo, C., et al. (2003). p73 expression in human normal and tumor tissues: loss of p73alpha expression is associated with tumor progression in bladder cancer. Clinical Cancer Research, 9(15), 5642–5651.PubMedGoogle Scholar
  4. 4.
    Urist, M. J., Di Como, C. J., Lu, M. L., Charytonowicz, E., Verbel, D., Crum, C. P., et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. The American Journal of Pathology, 161(4), 1199–1206.PubMedGoogle Scholar
  5. 5.
    Park, B. J., Lee, S. J., Kim, J. I., Lee, S. J., Lee, C. H., Chang, S. G., et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Research, 60(13), 3370–3374.PubMedGoogle Scholar
  6. 6.
    Oya, M., & Schulz, W. A. (2000). Decreased expression of p57(KIP2)mRNA in human bladder cancer. British Journal of Cancer, 83(5), 626–631.PubMedCrossRefGoogle Scholar
  7. 7.
    Kunze, E., Wendt, M., & Schlott, T. (2006). Promoter hypermethylation of the 14-3-3 sigma, SYK and CAGE-1 genes is related to the various phenotypes of urinary bladder carcinomas and associated with progression of transitional cell carcinomas. International Journal of Molecular Medicine, 18(4), 547–557.PubMedGoogle Scholar
  8. 8.
    Moreira, J. M., Gromov, P., & Celis, J. E. (2004). Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Molecular & Cellular Proteomics, 3(4), 410–419.CrossRefGoogle Scholar
  9. 9.
    Le Frère-Belda, M. A., Cappellen, D., Daher, A., Gil-Diez-de-Medina, S., Besse, F., Abbou, C. C., et al. (2001). p15(INK4b) in bladder carcinomas: decreased expression in superficial tumours. British Journal of Cancer, 85(10), 1515–1521.PubMedCrossRefGoogle Scholar
  10. 10.
    Pymar, L. S., Platt, F. M., Askham, J. M., Morrison, E. E., & Knowles, M. A. (2008). Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Human Molecular Genetics, 17(13), 2006–2017.PubMedCrossRefGoogle Scholar
  11. 11.
    Vecchione, A., Ishii, H., Baldassarre, G., Bassi, P., Trapasso, F., Alder, H., et al. (2002). FEZ1/LZTS1 is down-regulated in high-grade bladder cancer, and its restoration suppresses tumorigenicity in transitional cell carcinoma cells. The American Journal of Pathology, 160(4), 1345–1352.PubMedGoogle Scholar
  12. 12.
    Tsuruta, H., Kishimoto, H., Sasaki, T., Horie, Y., Natsui, M., Shibata, Y., et al. (2006). Hyperplasia and carcinomas in PTEN-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Research, 66(17), 8389–8396.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim, E. J., Kim, Y. J., Jeong, P., Ha, Y. S., Bae, S. C., & Kim, W. J. (2008). Methylation of the RUNX3 promoter as a potential prognostic marker for bladder tumor. Urology, 180(3), 1141–1145.CrossRefGoogle Scholar
  14. 14.
    Ostenfeld, M. S., Bramsen, J. B., Lamy, P., Villadsen, S. B., Fristrup, N., Sørensen, K. D., et al. (2010). miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene, 29(7), 1073–1084.PubMedCrossRefGoogle Scholar
  15. 15.
    Wiklund, E.D., Bramsen, J.B., Hulf, T., Dyrskjøt, L., Ramanathan, R., Hansen, T.B., et al. (2010). Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer (in press)Google Scholar
  16. 16.
    Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.PubMedCrossRefGoogle Scholar
  17. 17.
    Mo, L., Zheng, X., Huang, H. Y., Shapiro, E., Lepor, H., Cordon-Cardo, C., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. The Journal of Clinical Investigation, 117(2), 314–325.PubMedCrossRefGoogle Scholar
  18. 18.
    Knowles, M. A., Platt, F. M., Ross, R. L., & Hurst, C. D. (2009). Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer and Metastasis Reviews, 28(3–4), 305–316. Review.PubMedCrossRefGoogle Scholar
  19. 19.
    Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C. C., et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes & Development, 22(19), 2677–2691.CrossRefGoogle Scholar
  20. 20.
    He, L., Fan, C., Ning, X., Feng, X., Liu, Y., Chen, B., et al. (2008). Interaction of p14ARF with Brca1 in cancer cell lines and primary breast cancer. Cell Biology International, 32(10), 1302–1309.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhu, J. W., Field, S. J., Gore, L., Thompson, M., Yang, H., Fujiwara, Y., et al. (2001). E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Molecular and Cellular Biology, 2001(24), 8547–8564.CrossRefGoogle Scholar
  22. 22.
    Opavsky, R., Tsai, S. Y., Guimond, M., Arora, A., Opavska, J., Becknell, B., et al. (2007). Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15400–15405.PubMedCrossRefGoogle Scholar
  23. 23.
    Friedman, L. S., Thistlethwaite, F. C., Patel, K. J., Yu, V. P., Lee, H., Venkitaraman, A. R., et al. (1998). Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Research, 58(7), 1338–1343.PubMedGoogle Scholar
  24. 24.
    Szremska, A. P., Kenner, L., Weisz, E., Ott, R. G., Passegué, E., Artwohl, M., et al. (2003). JunB inhibits proliferation and transformation in B-lymphoid cells. Blood, 102(12), 4159–4165.PubMedCrossRefGoogle Scholar
  25. 25.
    Passegué, E., & Wagner, E. F. (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. The EMBO Journal, 19(12), 2969–2979.PubMedCrossRefGoogle Scholar
  26. 26.
    Passegué, E., Jochum, W., Schorpp-Kistner, M., Möhle-Steinlein, U., & Wagner, E. F. (2001). Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking JunB expression in the myeloid lineage. Cell, 104(1), 21–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Passegué, E., Wagner, E. F., & Weissman, I. L. (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell, 119(3), 431–443.PubMedCrossRefGoogle Scholar
  28. 28.
    Corn, P. G., Kuerbitz, S. J., van Noesel, M. M., Esteller, M., Compitello, N., Baylin, S. B., et al. (1999). Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Research, 59(14), 3352–3356.PubMedGoogle Scholar
  29. 29.
    Yamaguchi, H., Inokuchi, K., Sakuma, Y., & Dan, K. (2001). Mutation of the p51/p63 gene is associated with blastic crisis in chronic myelogenous leukemia. Leukemia, 11, 1729–1734.Google Scholar
  30. 30.
    Marreiros, A., Dudgeon, K., Dao, V., Grimm, M. O., Czolij, R., Crossley, M., et al. (2005). KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene, 24(4), 637–649.PubMedCrossRefGoogle Scholar
  31. 31.
    Koster, M. I., Kim, S., Huang, J., Williams, T., & Roop, D. R. (2006). TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis. Developmental Biology, 289(1), 253–261.PubMedCrossRefGoogle Scholar
  32. 32.
    Li, H., Watts, G. S., Oshiro, M. M., Futscher, B. W., & Domann, F. E. (2006). AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene, 25(39), 5405–5415.PubMedCrossRefGoogle Scholar
  33. 33.
    Mitchell, D. C., Abdelrahim, M., Weng, J., Stafford, L. J., Safe, S., Bar-Eli, M., et al. (2006). Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. The Journal of Biological Chemistry, 281(1), 51–58.PubMedCrossRefGoogle Scholar
  34. 34.
    Sanchez-Carbayo, M., Capodieci, P., & Cordon-Cardo, C. (2003). Tumor suppressor role of KiSS-1 in bladder cancer: loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. The American Journal of Pathology, 162(2), 609–617.PubMedGoogle Scholar
  35. 35.
    Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated miRNA cluster. Nature Genetics, 38(9), 1060–1065.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, S. P., Wang, W. L., Chang, Y. L., Wu, C. T., Chao, Y. C., Kao, S. H., et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biology, 6, 694–704.CrossRefGoogle Scholar
  37. 37.
    Lim, S. O., Kim, H., & Jung, G. (2010). p53 inhibits tumor cell invasion via the degradation of snail protein in hepatocellular carcinoma. FEBS Letters, 584(11), 2231–2236.PubMedCrossRefGoogle Scholar
  38. 38.
    Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell, 15(3), 195–206.PubMedCrossRefGoogle Scholar
  39. 39.
    Beach, S., Tang, H., Park, S., Dhillon, A. S., Keller, E. T., Kolch, W., et al. (2008). Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 27(15), 2243–2248.PubMedCrossRefGoogle Scholar
  40. 40.
    Jin, H., Yu, Y., Zhang, T., Zhou, X., Zhou, J., Jia, L., et al. (2010). Snail is critical for tumor growth and metastasis of ovarian carcinoma. International Journal of Cancer, 126(9), 2102–2111.Google Scholar
  41. 41.
    Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 28(4), 347–358.PubMedCrossRefGoogle Scholar
  42. 42.
    Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., et al. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell, 103(2), 321–330.PubMedCrossRefGoogle Scholar
  43. 43.
    Ozaki, T., Okoshi, R., Sang, M., Kubo, N., & Nakagawara, A. (2009). Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p73. Biochemical and Biophysical Research Communications, 386(1), 207–211.PubMedCrossRefGoogle Scholar
  44. 44.
    Sayan, B. S., Sayan, A. E., Yang, A. L., Aqeilan, R. I., Candi, E., Cohen, G. M., et al. (2007). Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10871–10876.PubMedCrossRefGoogle Scholar
  45. 45.
    Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y., et al. (2009). miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Letters, 275(1), 44–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Salvi, A., Sabelli, C., Moncini, S., Venturin, M., Arici, B., Riva, P., et al. (2009). MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. The FEBS Journal, 276(11), 2966–2982.PubMedCrossRefGoogle Scholar
  47. 47.
    Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., et al. (2010). p53- induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6334–6339.PubMedCrossRefGoogle Scholar
  48. 48.
    Sachdeva, M., & Mo, Y. Y. (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Research, 70(1), 378–387.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen, X., Gong, J., Zeng, H., Chen, N., Huang, R., et al. (2010). MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Research, 70(7), 2728–2738.PubMedCrossRefGoogle Scholar
  50. 50.
    Chiyomaru, T., Enokida, H., Tatarano, S., Kawahara, K., Uchida, Y., Nishiyama, K., et al. (2010). miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. British Journal of Cancer, 102(5), 883–891.PubMedCrossRefGoogle Scholar
  51. 51.
    Kano, M., Seki, N., Kikkawa, N., Fujimura, L., Hoshino, I., Akutsu, Y., Chiyomaru, T., Enokida, H., Nakagawa, M., Matsubara, H. (2010). miR-145, miR-133a and miR-133b: Tumor suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer (in press)Google Scholar
  52. 52.
    Barbieri, C. E., Tang, L. J., Brown, K. A., & Pietenpol, J. A. (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Research, 66(15), 7589–7597.PubMedCrossRefGoogle Scholar
  53. 53.
    Boominathan, L. (2010). The Tumor suppressors p53, p63, and p73 inhibit migrating cancer stem cells by increasing the expression of stem cell suppressing miRNAs Nature Precedings, http://hdl.handle.net/10101/npre.2010.4385.1.
  54. 54.
    Boominathan, L. (2009). p63, p73, & p53 are negative regulators of epithelial to mesenchymal transition (EMT), invasion & metastasis. Nature Precedings http://dx.doi.org/10.1038/npre.2009.4109.1.
  55. 55.
    Leong, K. G., Niessen, K., Kulic, I., Raouf, A., Eaves, C., Pollet, I., et al. (2007). Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. The Journal of Experimental Medicine, 204(12), 2935–2948.PubMedCrossRefGoogle Scholar
  56. 56.
    Hooper, C., Tavassoli, M., Chapple, J. P., Uwanogho, D., Goodyear, R., Melino, G., et al. (2006). TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones. Journal of Neurochemistry, 99(3), 989–999.PubMedCrossRefGoogle Scholar
  57. 57.
    Chu, W. K., Dai, P. M., Li, H. L., & Chen, J. K. (2008). Transcriptional activity of the DeltaNp63 promoter is regulated by STAT3. The Journal of Biological Chemistry, 283(12), 7328–7337.PubMedCrossRefGoogle Scholar
  58. 58.
    Nishi, H., Senoo, M., Nishi, K. H., Murphy, B., Rikiyama, T., Matsumura, Y., et al. (2001). p53 Homologue p63 represses epidermal growth factor receptor expression. The Journal of Biological Chemistry, 276(45), 41717–41724.PubMedCrossRefGoogle Scholar
  59. 59.
    Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., Wei, Y., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67(19), 9066–9076.PubMedCrossRefGoogle Scholar
  60. 60.
    Cho, M. S., Chan, I. L., & Flores, E. R. (2010). DeltaNp63 transcriptionally regulates brachyury, a gene with diverse roles in limb development, tumorigenesis and metastasis. Cell Cycle, 9(12).Google Scholar
  61. 61.
    Fernando, R. I., Litzinger, M., Trono, P., Hamilton, D. H., Schlom, J., & Palena, C. (2010). The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. The Journal of Clinical Investigation, 120(2), 533–544.PubMedCrossRefGoogle Scholar
  62. 62.
    Senoo, M., Matsumura, Y., & Habu, S. (2002). TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene, 21(16), 2455–2465.PubMedCrossRefGoogle Scholar
  63. 63.
    Yang, A. D., Camp, E. R., Fan, F., Shen, L., Gray, M. J., Liu, W., et al. (2006). Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Research, 66(1), 46–51.PubMedCrossRefGoogle Scholar
  64. 64.
    Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17(4), 319–332.PubMedCrossRefGoogle Scholar
  65. 65.
    Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology, 10(3), 295–305.PubMedCrossRefGoogle Scholar
  66. 66.
    Ansieau, S., Bastid, J., Doreau, A., Morel, A. P., Bouchet, B. P., Thomas, C., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14(1), 79–89.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6(10), 931–940.PubMedCrossRefGoogle Scholar
  68. 68.
    Fukushima, H., Koga, F., Kawakami, S., Fujii, Y., Yoshida, S., Ratovitski, E., et al. (2009). Loss of DeltaNp63alpha promotes invasion of urothelial carcinomas via N-cadherin/Src homology and collagen/extracellular signal-regulated kinase pathway. Cancer Research, 69(24), 9263–9270.PubMedCrossRefGoogle Scholar
  69. 69.
    Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W., & Blenis, J. (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Molecular Cell, 38(1), 114–127.PubMedCrossRefGoogle Scholar
  70. 70.
    Higashikawa, K., Yoneda, S., Tobiume, K., Saitoh, M., Taki, M., et al. (2009). DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. International Journal of Cancer, 124(12), 2837–2844.CrossRefGoogle Scholar
  71. 71.
    Kommagani, R., Leonard, M. K., Lewis, S., Romano, R. A., Sinha, S., & Kadakia, M. P. (2009). Regulation of VDR by deltaNp63alpha is associated with inhibition of cell invasion. Journal of Cell Science, 122(Pt 16), 2828–2835.PubMedCrossRefGoogle Scholar
  72. 72.
    Kommagani, R., Payal, V., & Kadakia, M. P. (2007). Differential regulation of vitamin D receptor (VDR) by the p53 Family: p73-dependent induction of VDR upon DNA damage. The Journal of Biological Chemistry, 282(41), 29847–29854.PubMedCrossRefGoogle Scholar
  73. 73.
    Pálmer, H. G., González-Sancho, J. M., Espada, J., Berciano, M. T., Puig, I., Baulida, J., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.PubMedCrossRefGoogle Scholar
  74. 74.
    Pálmer, H. G., Larriba, M. J., García, J. M., Ordóñez-Morán, P., Peña, C., Peiró, S., et al. (2004). The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Natural Medicines, 10(9), 917–919.CrossRefGoogle Scholar
  75. 75.
    Peña, C., García, J. M., Silva, J., García, V., Rodríguez, R., Alonso, I., et al. (2005). E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Human Molecular Genetics, 14(22), 3361–3370.PubMedCrossRefGoogle Scholar
  76. 76.
    Higashikawa, K., Yoneda, S., Tobiume, K., Taki, M., & Shigeishi, H. (2007). Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma. Cancer Research, 67(19), 9207–9213.PubMedCrossRefGoogle Scholar
  77. 77.
    Aberdam, D., Gambaro, K., Rostagno, P., Aberdam, E., de la Forest Divonne, S., & Rouleau, M. (2007). Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle, 6(3), 291–294.PubMedGoogle Scholar
  78. 78.
    Chikh, A., Sayan, E., Thibaut, S., Lena, A. M., DiGiorgi, S., Bernard, B. A., et al. (2007). Expression of GATA-3 in epidermis and hair follicle: relationship to p63. Biochemical and Biophysical Research Communications, 361(1), 1–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Yan, W., Cao, Q. J., Arenas, R. B., Bentley, B., & Shao, R. (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial–mesenchymal transition. The Journal of Biological Chemistry, 285(18), 14042–14051.PubMedCrossRefGoogle Scholar
  80. 80.
    Kouros-Mehr, H., Bechis, S. K., Slorach, E. M., Littlepage, L. E., Egeblad, M., Ewald, A. J., et al. (2008). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell, 13(2), 141–152.PubMedCrossRefGoogle Scholar
  81. 81.
    Dydensborg, A. B., Rose, A. A., Wilson, B. J., Grote, D., Paquet, M., Giguère, V., et al. (2009). GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene, 28(29), 2634–2642.PubMedCrossRefGoogle Scholar
  82. 82.
    Candi, E., Terrinoni, A., Rufini, A., Chikh, A., Lena, A. M., Suzuki, Y., et al. (2006). p63 is upstream of IKK alpha in epidermal development. Journal of Cell Science, 119(Pt 22), 4617–4622.PubMedCrossRefGoogle Scholar
  83. 83.
    Descargues, P., Sil, A. K., & Karin, M. (2008). IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. The EMBO Journal, 27(20), 2639–2647.PubMedCrossRefGoogle Scholar
  84. 84.
    Marinari, B., Ballaro, C., Koster, M. I., Giustizieri, M. L., Moretti, F., Crosti, F., et al. (2009). IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. The Journal of Investigative Dermatology, 129(1), 60–69.PubMedCrossRefGoogle Scholar
  85. 85.
    Koster, M. I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M., et al. (2007). p63 induces key target genes required for epidermal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3255–3260.PubMedCrossRefGoogle Scholar
  86. 86.
    Beretta, C., Chiarelli, A., Testoni, B., Mantovani, R., & Guerrini, L. (2005). Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63. Cell Cycle, 11, 1625–1631.Google Scholar
  87. 87.
    Carroll, D. K., Carroll, J. S., Leong, C. O., Cheng, F., Brown, M., Mills, A. A., et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biology, 6, 551–561.CrossRefGoogle Scholar
  88. 88.
    Sato, K., Tomizawa, Y., Iijima, H., Saito, R., Ishizuka, T., Nakajima, T., et al. (2006). Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncology Reports, 15(1), 129–135.PubMedGoogle Scholar
  89. 89.
    Zamisch, M., Tian, L., Grenningloh, R., Xiong, Y., Wildt, K. F., Ehlers, M., et al. (2009). The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. The Journal of Experimental Medicine, 206(12), 2685–2699.PubMedCrossRefGoogle Scholar
  90. 90.
    Lee, K. S., Lee, Y. S., Lee, J. M., Ito, K., Cinghu, S., Kim, J. H., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene, 29(23), 3349–3361.PubMedCrossRefGoogle Scholar
  91. 91.
    Chang, T. L., Ito, K., Ko, T. K., Liu, Q., Salto-Tellez, M., Yeoh, K. G., et al. (2010). Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology, 138(1), 255–265. e1–3.PubMedCrossRefGoogle Scholar
  92. 92.
    Lopardo, T., Lo Iacono, N., Marinari, B., Giustizieri, M. L., Cyr, D. G., Merlo, G., et al. (2008). Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS ONE, 3(7), e2715.PubMedCrossRefGoogle Scholar
  93. 93.
    Chao, Y. C., Pan, S. H., Yang, S. C., Yu, S. L., Che, T. F., Lin, C. W., et al. (2009). Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. American Journal of Respiratory and Critical Care Medicine, 179(2), 123–133.PubMedCrossRefGoogle Scholar
  94. 94.
    Berger, A. H., Niki, M., Morotti, A., Taylor, B. S., Socci, N. D., Viale, A., et al. (2010). Identification of DOK genes as lung tumor suppressors. Nature Genetics, 42(3), 216–223.PubMedCrossRefGoogle Scholar
  95. 95.
    Niki, M., Di Cristofano, A., Zhao, M., Honda, H., Hirai, H., Van Aelst, L., et al. (2004). Role of Dok-1 and Dok-2 in leukemia suppression. The Journal of Experimental Medicine, 200(12), 1689–1695.PubMedCrossRefGoogle Scholar
  96. 96.
    Wu, G., Nomoto, S., Hoque, M. O., Dracheva, T., Osada, M., Lee, C. C., et al. (2003). DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Research, 63(10), 2351–2357.PubMedGoogle Scholar
  97. 97.
    Zamò, A., Malpeli, G., Scarpa, A., Doglioni, C., Chilosi, M., & Menestrina, F. (2005). Expression of TP73L is a helpful diagnostic marker of primary mediastinal large B-cell lymphomas. Modern Pathology, 18(11), 1448–1453.PubMedCrossRefGoogle Scholar
  98. 98.
    Pruneri, G., Fabris, S., Dell’Orto, P., Biasi, M. O., Valentini, S., Del Curto, B., et al. (2005). The transactivating isoforms of p63 are overexpressed in high-grade follicular lymphomas independent of the occurrence of p63 gene amplification. The Journal of Pathology, 206(3), 337–345.PubMedCrossRefGoogle Scholar
  99. 99.
    Nicolas, M., Koster, M. I., Lu, S. L., White, L. D., Wang, X. J., & Roop, D. R. (2006). Reactivation of developmentally expressed p63 isoforms predisposes to tumor development and progression. Cancer Research, 66(8), 3981–3986.CrossRefGoogle Scholar
  100. 100.
    Sasaki, Y., Ishida, S., Morimoto, I., Yamashita, T., Kojima, T., Kihara, C., et al. (2002). The p53 family member genes are involved in the Notch signal pathway. The Journal of Biological Chemistry, 277(1), 719–724.PubMedCrossRefGoogle Scholar
  101. 101.
    Shimomura, Y., Wajid, M., Shapiro, L., & Christiano, A. M. (2008). P-cadherin is a p63 target gene with a crucial role in the developing human limb bud and hair follicle. Development, 135(4), 743–753.PubMedCrossRefGoogle Scholar
  102. 102.
    Taniuchi, K., Nakagawa, H., Hosokawa, M., Nakamura, T., Eguchi, H., Ohigashi, H., et al. (2005). Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Research, 65(8), 3092–3099.PubMedGoogle Scholar
  103. 103.
    Bui, T., Sequeira, J., Wen, T. C., Sola, A., Higashi, Y., Kondoh, H., et al. (2009). ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS ONE, 4(2), e4373. PLoS One. 4(8):e6816.PubMedCrossRefGoogle Scholar
  104. 104.
    Nicolas, M., Wolfer, A., Raj, K., Kummer, J. A., Mill, P., van Noort, M., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33(3), 416–421.PubMedCrossRefGoogle Scholar
  105. 105.
    Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. P., 4th, Silverman, L. B., Sanchez-Irizarry, C., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306(5694), 269–271.PubMedCrossRefGoogle Scholar
  106. 106.
    Lefort, K., Mandinova, A., Ostano, P., Kolev, V., Calpini, V., Kolfschoten, I., et al. (2007). Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes & Development, 21(5), 562–577.CrossRefGoogle Scholar
  107. 107.
    Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., et al. (2009). MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE, 4(8), e6816.PubMedCrossRefGoogle Scholar
  108. 108.
    Yugawa, T., Narisawa-Saito, M., Yoshimatsu, Y., Haga, K., Ohno, S., Egawa, N., et al. (2010). DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Research, 70(10), 4034–4044.PubMedCrossRefGoogle Scholar
  109. 109.
    Dotto, G. P. (2009). Crosstalk of Notch with p53 and p63 in cancer growth control. Nature Reviews. Cancer, 8, 587–595.CrossRefGoogle Scholar
  110. 110.
    Schwamborn, J. C., Berezikov, E., & Knoblich, J. A. (2009). The TRIM-NHL protein TRIM32 activates miRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136(5), 913–925.PubMedCrossRefGoogle Scholar
  111. 111.
    Loedige, I., & Filipowicz, W. (2009). TRIM-NHL proteins take on miRNA regulation. Cell, 136(5), 818–820.PubMedCrossRefGoogle Scholar
  112. 112.
    Boominathan, L. (2009). Tumor suppressors function as a bottleneck against cellular reprogramming into iPS cells. Nature Precedings http://dx.doi.org/10.1038/npre.2009.4113.1.
  113. 113.
    Boominathan, L. (2010). The tumor suppressors p53, p63 and p73 are regulators of miRNA processing complex. PLoS ONE, 5(5), e10615.PubMedCrossRefGoogle Scholar
  114. 114.
    Viganò, M. A., Lamartine, J., Testoni, B., Merico, D., Alotto, D., Castagnoli, C., et al. (2006). New p63 targets in keratinocytes identified by a genome-wide approach. The EMBO Journal, 25(21), 5105–5116.PubMedCrossRefGoogle Scholar
  115. 115.
    Lee, M., & Vasioukhin, V. (2008). Cell polarity and cancer–cell and tissue polarity as a non-canonical tumor suppressor. Journal of Cell Science, 121(Pt 8), 1141–1150.PubMedCrossRefGoogle Scholar
  116. 116.
    Wodarz, A., & Gonzalez, C. (2006). Connecting cancer to the asymmetric division of stem cells. Cell, 124(6), 1121–1123.PubMedCrossRefGoogle Scholar
  117. 117.
    Boominathan, L. (2010) The TA-p73 functions as a Lung tumor suppressor by increasing the expression of miRNA, let-7. Nature Precedings http://dx.doi.org/10.1038/npre.2010.4252.1>.
  118. 118.
    Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., et al. (2007). Differential regulation of miRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6(13), 1586–1593.PubMedCrossRefGoogle Scholar
  119. 119.
    Rosenbluth, J. M., Mays, D. J., Pino, M. F., Tang, L. J., & Pietenpol, J. A. (2008). A gene signature-based approach identifies mTOR as a regulator of p73. Molecular and Cellular Biology, 19, 5951–5964.CrossRefGoogle Scholar
  120. 120.
    Kumar, M. S., Erkeland, S. J., Pester, R. E., Chen, C. Y., Ebert, M. S., Sharp, P. A., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 miRNA family. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3903–3908.PubMedCrossRefGoogle Scholar
  121. 121.
    Esquela-Kerscher, A., Trang, P., Wiggins, J. F., Patrawala, L., Cheng, A., Ford, L., et al. (2008). The let-7 miRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7(6), 759–764.PubMedCrossRefGoogle Scholar
  122. 122.
    Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 miRNAs in human lung cancers in association with shortened postoperative surviva. Cancer Research, 64(11), 3753–3756.PubMedCrossRefGoogle Scholar
  123. 123.
    Johnson, C. D., Esquela-Kerscher, A., Stefani, G., Byrom, M., & Kelnar, K. (2007). The let-7 miRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16), 7713–7722.PubMedCrossRefGoogle Scholar
  124. 124.
    Baker, D. J., Perez-Terzic, C., Jin, F., Pitel, K., Niederländer, N. J., et al. (2008). Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biology, 10(7), 825–836.PubMedCrossRefGoogle Scholar
  125. 125.
    Bearzatto, A., Conte, D., Frattini, M., Zaffaroni, N., Andriani, F., et al. (2002). p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clinical Cancer Research, 8(12), 3782–3787.PubMedGoogle Scholar
  126. 126.
    Seike, M., Gemma, A., Hosoya, Y., Hemmi, S., Taniguchi, Y., et al. (2000). Increase in the frequency of p16INK4 gene inactivation by hypermethylation in lung cancer during the process of metastasis and its relation to the status of p53. Clinical Cancer Research, 6(11), 4307–4313.PubMedGoogle Scholar
  127. 127.
    Lee, H. (2003). Impaired phosphorylation and mis-localization of Bub1 and BubR1 are responsible for the defective mitotic checkpoint function in Brca2-mutant thymic lymphomas. Experimental & Molecular Medicine, 35(5), 448–453.Google Scholar
  128. 128.
    Mullighan, C. G., Goorha, S., Radtke, I., Miller, C. B., Coustan-Smith, E., Dalton, J. D., et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 446(7137), 758–764.PubMedCrossRefGoogle Scholar
  129. 129.
    Yang, A., Zhu, Z., Kapranov, P., McKeon, F., Church, G. M., Gingeras, T. R., et al. (2006). Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Molecular Cell, 24(4), 593–602.PubMedCrossRefGoogle Scholar
  130. 130.
    Zhang, J., Jun Cho, S., & Chen, X. (2010). RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9614–9619.PubMedCrossRefGoogle Scholar
  131. 131.
    Boominathan, L. (2006) Role of c-Jun in the regulation of the tumor suppressor p53 homologue, p73. Ph.D thesis, National University of Singapore, https://scholarbank.nus.edu.sg/handle/10635/15006.
  132. 132.
    Lena, A. M., Shalom-Feuerstein, R., Rivetti di Val Cervo, P., Aberdam, D., Knight, R. A., Melino, G., et al. (2008). miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death and Differentiation, 15(7), 1187–1195.PubMedCrossRefGoogle Scholar
  133. 133.
    Lin, H. K., Chen, Z., Wang, G., Nardella, C., Lee, S. W., Chan, C. H., et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature, 464(7287), 374–379.PubMedCrossRefGoogle Scholar
  134. 134.
    Chan, C. H., Lee, S. W., Li, C. F., Wang, J., Yang, W. L., Wu, C. Y., et al. (2010). Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nature Cell Biology, 12(5), 457–467.PubMedCrossRefGoogle Scholar
  135. 135.
    Zhang, S., Tang, Q., Xu, F., Xue, Y., Zhen, Z., Deng, Y., et al. (2009). RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Molecular Cancer Research, 7(4), 570–580.PubMedCrossRefGoogle Scholar
  136. 136.
    Tedesco, D., Lukas, J., & Reed, S. I. (2002). The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes & Development, 16(22), 2946–2957.CrossRefGoogle Scholar
  137. 137.
    Kitagawa, M., Lee, S. H., & McCormick, F. (2008). Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Molecular Cell, 29(2), 217–231.PubMedCrossRefGoogle Scholar
  138. 138.
    Belletti, B., Nicoloso, M. S., Schiappacassi, M., Berton, S., Lovat, F., Wolf, K., et al. (2008). Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Molecular Biology of the Cell, 19(5), 2003–2013.PubMedCrossRefGoogle Scholar
  139. 139.
    Keller, U. B., Old, J. B., Dorsey, F. C., Nilsson, J. A., Nilsson, L., MacLean, K. H., et al. (2007). Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. The EMBO Journal, 26(10), 2562–2574.PubMedCrossRefGoogle Scholar
  140. 140.
    Schaffer, B. E., Park, K. S., Yiu, G., Conklin, J. F., Lin, C., Burkhart, D. L., et al. (2010). Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Research, 70(10), 3877–3883.PubMedCrossRefGoogle Scholar
  141. 141.
    Gonzalez, S., Klatt, P., Delgado, S., Conde, E., Lopez-Rios, F., Sanchez-Cespedes, M., et al. (2006). Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature, 440(7084), 702–706.PubMedCrossRefGoogle Scholar
  142. 142.
    Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 137(1), 87–98.PubMedCrossRefGoogle Scholar
  143. 143.
    Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T., Toffanin, S., et al. (2009). Lin28 enhances tumorigenesis and is associated with advanced human malignancies. Nature Genetics, 41(7), 843–848.PubMedCrossRefGoogle Scholar
  144. 144.
    Lee, Y. S., & Dutta, A. (2007). The tumor suppressor miRNA let-7 represses the HMGA2 oncogene. Genes & Development, 21(9), 1025–1030.CrossRefGoogle Scholar
  145. 145.
    Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135(2), 227–239.PubMedCrossRefGoogle Scholar
  146. 146.
    Thuault, S., Tan, E. J., Peinado, H., Cano, A., Heldin, C. H., & Moustakas, A. (2008). HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. The Journal of Biological Chemistry, 283(48), 33437–33446.PubMedCrossRefGoogle Scholar
  147. 147.
    Klanrit, P., Taebunpakul, P., Flinterman, M. B., Odell, E. W., Riaz, M. A., Melino, G., et al. (2009). PML involvement in the p73-mediated E1A-induced suppression of EGFR and induction of apoptosis in head and neck cancers. Oncogene, 28(39), 3499–3512.PubMedCrossRefGoogle Scholar
  148. 148.
    Peter, M. E. (2009). Let-7 and miR-200 miRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 8(6), 843–852.PubMedGoogle Scholar
  149. 149.
    Boyerinas, B., Park, S. M., Shomron, N., Hedegaard, M. M., Vinther, J., Andersen, J. S., et al. (2008). Identification of let-7-regulated oncofetal genes. Cancer Research, 68(8), 2587–2591.PubMedCrossRefGoogle Scholar
  150. 150.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRefGoogle Scholar
  151. 151.
    Mao, H. J., Perez-losada, J., Wu, J., DelRosario, R., Tsunematsu, R., Nakayama, K. I., et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature, 432, 775–779.PubMedCrossRefGoogle Scholar
  152. 152.
    Sim, K. G., Zang, Z., Yang, C. M., Bonventre, J. V., & Hsu, S. I. (2004). TRIP-Br links E2F to novel functions in the regulation of cyclin E expression during cell cycle progression and in the maintenance of genomic stability. Cell Cycle, 3(10), 1296–1304.PubMedGoogle Scholar
  153. 153.
    Welcker, W., Orian, A., Jin, J., Grim, J. A., Harper, J. W., Eisenman, R. N., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 9085–9090.PubMedCrossRefGoogle Scholar
  154. 154.
    Onoyama, I., Tsunematsu, R., Matsumoto, A., Kimura, T., de Alborán, I. M., Nakayama, K., et al. (2007). Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. The Journal of Experimental Medicine, 204(12), 2875–2888.PubMedCrossRefGoogle Scholar
  155. 155.
    Matsuoka, S., Oike, Y., Onoyama, I., Iwama, A., Arai, F., & Takubo, K. (2008). Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes & Development, 22(8), 986–991.CrossRefGoogle Scholar
  156. 156.
    Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3207–3212.PubMedCrossRefGoogle Scholar
  157. 157.
    Liu, X., Sempere, L. F., Galimberti, F., Freemantle, S. J., Black, C., Dragnev, K. H., et al. (2009). Uncovering growth-suppressive MiRNAs in lung cancer. Clinical Cancer Research, 15(4), 1177–1183.PubMedCrossRefGoogle Scholar
  158. 158.
    Yamasaki, L., Jacks, T., Bronson, R., Goillot, E., Harlow, E., & Dyson, N. J. (1996). Tumor induction and tissue atrophy in mice lacking E2F-1. Cell, 85(4), 537–548.PubMedCrossRefGoogle Scholar
  159. 159.
    Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.PubMedCrossRefGoogle Scholar
  160. 160.
    He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A miRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.PubMedCrossRefGoogle Scholar
  161. 161.
    Ernst, A., Campos, B., Meier, J., Devens, F., Liesenberg, F., Wolter, M., et al. (2010). De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene, 29(23), 3411–3422.PubMedCrossRefGoogle Scholar
  162. 162.
    Mendell, J. T. (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell, 133(2), 217–222. Review.PubMedCrossRefGoogle Scholar
  163. 163.
    Alimonti, A., Nardella, C., Chen, Z., Clohessy, J. G., Carracedo, A., Trotman, L. C., et al. (2010). A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. The Journal of Clinical Investigation, 120(3), 681–693.PubMedCrossRefGoogle Scholar
  164. 164.
    Matsubara, H., Takeuchi, T., Nishikawa, E., Yanagisawa, K., Hayashita, Y., Ebi, H., et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene, 26(41), 6099–6105.PubMedCrossRefGoogle Scholar
  165. 165.
    Morris, E. J., Ji, J. Y., Yang, F., Di Stefano, L., Herr, A., Moon, N. S., et al. (2008). E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature, 455(7212), 552–556.PubMedCrossRefGoogle Scholar
  166. 166.
    Zhao, C., Blum, J., Chen, A., Kwon, H. Y., Jung, S. H., Cook, J. M., et al. (2007). Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell, 6, 528–541.CrossRefGoogle Scholar
  167. 167.
    Stuart, S. A., Minami, Y., & Wang, J. Y. (2009). The CML stem cell: evolution of the progenitor. Cell Cycle, 8(9), 1338–1343.PubMedGoogle Scholar
  168. 168.
    Yan, H. L., Xue, G., Mei, Q., Wang, Y. Z., Ding, F. X., Liu, M. F., et al. (2009). Repression of the miR-17–92 cluster by p53 has an important function in hypoxia-induced apoptosis. The EMBO Journal, 28(18), 2719–2732.PubMedCrossRefGoogle Scholar
  169. 169.
    Bueno, M. J., Gomez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signalling. Molecular and Cellular Biology, 12, 2983–2995.CrossRefGoogle Scholar
  170. 170.
    Mu, P., Han, Y. C., Betel, D., Yao, E., Squatrito, M., Ogrodowski, P., et al. (2009). Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes & Development, 23(24), 2806–2811.CrossRefGoogle Scholar
  171. 171.
    Rempel, R. E., Mori, S., Gasparetto, M., Glozak, M. A., Andrechek, E. R., Adler, S. B., et al. (2009). A role for E2F activities in determining the fate of Myc-induced lymphomagenesis. PLoS Genetics, 5(9), e1000640.PubMedCrossRefGoogle Scholar
  172. 172.
    Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., et al. (2008). Widespread miRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1), 43–50.PubMedCrossRefGoogle Scholar
  173. 173.
    Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.PubMedCrossRefGoogle Scholar
  174. 174.
    Watanabe, K., Ozaki, T., Nakagawa, T., Miyazaki, K., Takahashi, M., et al. (2002). Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. The Journal of Biological Chemistry, 277(17), 15113–15123.PubMedCrossRefGoogle Scholar
  175. 175.
    Horvilleur, E., Bauer, M., Goldschneider, D., Mergui, X., de la Motte, A., et al. (2008). p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Research, 36(13), 4222–4232.PubMedCrossRefGoogle Scholar
  176. 176.
    Giuriato, S., Ryeom, S., Fan, A. C., Bachireddy, P., Lynch, R. C., Rioth, M. J., et al. (2006). Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16266–16271.PubMedCrossRefGoogle Scholar
  177. 177.
    Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MiRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15805–15810.PubMedCrossRefGoogle Scholar
  178. 178.
    Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E., Callegari, E., et al. (2009). MiRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 113(25), 6411–6418.PubMedCrossRefGoogle Scholar
  179. 179.
    Deneault, E., Cellot, S., Laverdure, F. A., JP, F. M., Chagraoui, J., et al. (2009). Functional screen to identify novel effectors of hematopoietic stem cell activity. Cell, 137(2), 369–379.PubMedCrossRefGoogle Scholar
  180. 180.
    Wang, H., Garzon, R., Sun, H., Ladner, K. J., Singh, R., Dahlman, J., et al. (2008). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14(5), 369–381.PubMedCrossRefGoogle Scholar
  181. 181.
    Park, Y., Lee, J. H., Ha, M., Nam, J. W., & Kim, V. N. (2009). miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nature Structural & Molecular Biology, 16(1), 23–29.CrossRefGoogle Scholar
  182. 182.
    Sinha, A. U., Kaimal, V., Chen, J., & Jegga, A. G. (2008). Dissecting microregulation of a master regulatory network. BMC Genomics, 9, 88.PubMedCrossRefGoogle Scholar
  183. 183.
    Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sánchez-Céspedes, M., Blanco, D., et al. (2008). A miRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13556–13561.PubMedCrossRefGoogle Scholar
  184. 184.
    Duursma, A. M., Kedde, M., Schrier, M., le Sage, C., & Agami, R. (2008). miR-148 targets human DNMT3b protein coding region. RNA, 14(5), 872–877.PubMedCrossRefGoogle Scholar
  185. 185.
    Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J., et al. (2007). MiRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3432–3437.PubMedCrossRefGoogle Scholar
  186. 186.
    Braun, C. J., Zhang, X., Savelyeva, I., Wolff, S., Moll, U. M., Schepeler, T., et al. (2008). p53-Responsive miRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Research, 68(24), 1094–1104.CrossRefGoogle Scholar
  187. 187.
    Georges, S. A., Biery, M. C., Kim, S. Y., Schelter, J. M., Guo, J., Chang, A. N., et al. (2008). Coordinated regulation of cell cycle transcripts by p53-Inducible miRNAs, miR-192 and miR-215. Cancer Research, 68(24), 10105–10112.PubMedCrossRefGoogle Scholar
  188. 188.
    Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMedCrossRefGoogle Scholar
  189. 189.
    Bracken, C. P., Gregory, P. A., Kolesnikoff, N., Bert, A. G., Wang, J., Shannon, M. F., et al. (2008). A double-negative feedback loop between ZEB1-SIP1 and the miRNA-200 family regulates epithelial-mesenchymal transition. Cancer Research, 68(19), 7846–7854.PubMedCrossRefGoogle Scholar
  190. 190.
    Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.PubMedCrossRefGoogle Scholar
  191. 191.
    Sengupta, S., den Boon, J. A., Chen, I. H., Newton, M. A., Stanhope, S. A., Cheng, Y. J., et al. (2008). MiRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5874–5878.PubMedCrossRefGoogle Scholar
  192. 192.
    Qin, L., Liao, L., Redmond, A., Young, L., Yuan, Y., Chen, H., et al. (2008). The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Molecular and Cellular Biology, 19, 5937–5950.CrossRefGoogle Scholar
  193. 193.
    Zenz, T., Mohr, J., Eldering, E., Kater, A. P., Buhler, A., Kienle, D., et al. (2009). MiR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood, 113(16), 3801–3808.PubMedCrossRefGoogle Scholar
  194. 194.
    He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). miRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134.PubMedCrossRefGoogle Scholar
  195. 195.
    He, L., He, X., Lowe, S. W., & Hannon, G. J. (2007). miRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nature Reviews. Cancer, 7(11), 819–822. Review.PubMedCrossRefGoogle Scholar
  196. 196.
    Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., et al. (2008). Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Letters, 582(10), 1564–1568.PubMedCrossRefGoogle Scholar
  197. 197.
    Aslanian, A., Iaquinta, P. J., Verona, R., & Lees, J. A. (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes & Development, 18(12), 1413–1422.CrossRefGoogle Scholar
  198. 198.
    Ji, Q., Hao, X., Meng, Y., Zhang, M., Desano, J., Fan, D., et al. (2008). Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer, 8, 266.PubMedCrossRefGoogle Scholar
  199. 199.
    Wang, S., Yuan, Y., Liao, L., Kuang, S. Q., Tien, J. C., O’Malley, B. W., et al. (2009). Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 151–156.PubMedCrossRefGoogle Scholar
  200. 200.
    Qin, L., Liu, Z., Chen, H., & Xu, J. (2009). The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Research, 69(9), 3819–3827.PubMedCrossRefGoogle Scholar
  201. 201.
    Nguyen, D. X., Chiang, A. C., Zhang, X. H., Kim, J. Y., Kris, M. G., Ladanyi, M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 138(1), 51–62.PubMedCrossRefGoogle Scholar
  202. 202.
    Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Natural Medicines, 14(11), 1271–1277.CrossRefGoogle Scholar
  203. 203.
    Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., et al. (2010). The DLEU2/miR-15a/16–1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17(1), 28–40.PubMedCrossRefGoogle Scholar
  204. 204.
    Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.PubMedCrossRefGoogle Scholar
  205. 205.
    Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5166–5171.PubMedCrossRefGoogle Scholar
  206. 206.
    Chatterjee, A., Chang, X., Sen, T., Ravi, R., Bedi, A., & Sidransky, D. (2010). Regulation of p53 family member isoform DeltaNp63alpha by the nuclear factor-kappaB targeting kinase IkappaB kinase beta. Cancer Research, 70(4), 1419–1429.PubMedCrossRefGoogle Scholar
  207. 207.
    Boominathan, L. (2009) Curcumin functions a positive regulator of miRNA processing and a negative regulator of stem cell proliferation. Nature Precedings, http://dx.doi.org/10.1038/npre.2009.4110.1
  208. 208.
    Dovey, J. S., Zacharek, S. J., Kim, C. F., & Lees, J. A. (2008). Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11857–11862.PubMedCrossRefGoogle Scholar
  209. 209.
    Bueno, M. J., Gómez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A. M., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Molecular and Cellular Biology, 30(12), 2983–2995.PubMedCrossRefGoogle Scholar
  210. 210.
    Sander, S., Bullinger, L., Klapproth, K., Fiedler, K., Kestler, H. A., Barth, T. F., et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood, 112(10), 4202–4212.PubMedCrossRefGoogle Scholar
  211. 211.
    Sander, S., Bullinger, L., & Wirth, T. (2009). Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle, 8(4), 556–559.PubMedGoogle Scholar
  212. 212.
    Fujii, S., & Ochiai, A. (2008). Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Science, 99(4), 738–746.PubMedCrossRefGoogle Scholar
  213. 213.
    Fujii, S., Ito, K., Ito, Y., & Ochiai, A. (2008). Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. The Journal of Biological Chemistry, 283(25), 17324–17332.PubMedCrossRefGoogle Scholar
  214. 214.
    Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., et al. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene, 27(58), 7274–7284.PubMedCrossRefGoogle Scholar
  215. 215.
    Beke, L., Nuytten, M., Van Eynde, A., Beullens, M., & Bollen, M. (2007). The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene, 26(31), 4590–4595.PubMedCrossRefGoogle Scholar
  216. 216.
    Yang, X., Karuturi, R. K., Sun, F., Aau, M., Yu, K., Shao, R., et al. (2009). CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE, 4(4), e5011.PubMedCrossRefGoogle Scholar
  217. 217.
    Ezhkova, E., Pasolli, H. A., Parker, J. S., Stokes, N., Su, I. H., Hannon, G., et al. (2009). Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell, 136(6), 1122–1135.PubMedCrossRefGoogle Scholar
  218. 218.
    Kota, J., Chivukula, R. R., O’Donnell, K. A., Wentzel, E. A., Montgomery, C. L., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6), 1005–1017.PubMedCrossRefGoogle Scholar
  219. 219.
    Friedman, J. M., Liang, G., Liu, C. C., Wolff, E. M., Tsai, Y. C., et al. (2009). The putative tumor suppressor miRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Research, 69(6), 2623–2629.PubMedCrossRefGoogle Scholar
  220. 220.
    Faber, J., Krivtsov, A. V., Stubbs, M. C., Wright, R., Davis, T. N., van den Heuvel-Eibrink, M., et al. (2009). HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood, 113(11), 2375–2385.PubMedCrossRefGoogle Scholar
  221. 221.
    Rowland, B. D., Bernards, R., & Peeper, D. S. (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biology, 7(11), 1074–1082.PubMedCrossRefGoogle Scholar
  222. 222.
    Li, Y., Zhou, Z., & Chen, C. (2008). WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death and Differentiation, 15(12), 1941–1951.PubMedCrossRefGoogle Scholar
  223. 223.
    Yu, F., Deng, H., Yao, H., Liu, Q., Su, F., Song, E. (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene (in press)Google Scholar
  224. 224.
    Braun, J., Hoang-Vu, C., Dralle, H., Hüttelmaier, S. (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene (in press)Google Scholar
  225. 225.
    Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745–752.PubMedCrossRefGoogle Scholar
  226. 226.
    Kim, W. Y., Perera, S., Zhou, B., Carretero, J., Yeh, J. J., Heathcote, S. A., et al. (2009). HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. The Journal of Clinical Investigation, 119(8), 2160–2170.PubMedCrossRefGoogle Scholar
  227. 227.
    Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., et al. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15(6), 501–513.PubMedCrossRefGoogle Scholar
  228. 228.
    Keith, B., & Simon, M. C. (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell, 129(3), 465–472. Review.PubMedCrossRefGoogle Scholar
  229. 229.
    Gordan, J. D., & Simon, M. C. (2007). Hypoxia-inducible factors: central regulators of the tumor phenotype. Current Opinion in Genetics & Development, 17(1), 71–77. Review.CrossRefGoogle Scholar
  230. 230.
    Gort, E. H., Groot, A. J., van der Wall, E., van Diest, P. J., & Vooijs, M. A. (2008). Hypoxic regulation of metastasis via hypoxia-inducible factors. Current Molecular Medicine, 8(1), 60–67. Review.PubMedCrossRefGoogle Scholar
  231. 231.
    Jazdzewski, K., Murray, E. L., Franssila, K., Jarzab, B., Schoenberg, D. R., & de la Chapelle, A. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7269–7274.PubMedCrossRefGoogle Scholar
  232. 232.
    Jazdzewski, K., Liyanarachchi, S., Swierniak, M., Pachucki, J., Ringel, M. D., Jarzab, B., et al. (2009). Polymorphic mature miRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1502–1505.PubMedCrossRefGoogle Scholar
  233. 233.
    Lin, S. L., Chiang, A., Chang, D., & Ying, S. Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 14(3), 417–424.PubMedCrossRefGoogle Scholar
  234. 234.
    Hurst, D. R., Edmonds, M. D., Scott, G. K., Benz, C. C., Vaidya, K. S., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Research, 69(4), 1279–1283.PubMedCrossRefGoogle Scholar
  235. 235.
    Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68(10), 3645–3654.PubMedCrossRefGoogle Scholar
  236. 236.
    Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRefGoogle Scholar
  237. 237.
    Khew-Goodall, Y., & Goodall, G. J. (2010). Myc-modulated miR-9 makes more metastases. Nature Cell Biology, 12(3), 209–211.PubMedGoogle Scholar
  238. 238.
    Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated miRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMedGoogle Scholar
  239. 239.
    Smith, S. C., & Theodorescu, D. (2009). Learning therapeutic lessons from metastasis suppressor proteins. Nature Reviews. Cancer, 9(4), 253–264.PubMedCrossRefGoogle Scholar
  240. 240.
    Kim, J. W., Mori, S., & Nevins, J. R. (2010). Myc-induced MicroRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Research, 70(12), 4820–4828.PubMedCrossRefGoogle Scholar
  241. 241.
    Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S. S., Ngankeu, A., et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16(6), 498–509.PubMedCrossRefGoogle Scholar
  242. 242.
    Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G. A., et al. (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 27(43), 5651–5661.PubMedCrossRefGoogle Scholar
  243. 243.
    Wu, C. H., van Riggelen, J., Yetil, A., Fan, A. C., Bachireddy, P., & Felsher, D. W. (2007). Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13028–13033.PubMedCrossRefGoogle Scholar
  244. 244.
    Guney, I., Wu, S., & Sedivy, J. M. (2006). Reduced c-Myc signaling triggers telomere independent senescence by regulating Bmi-1 and p16(INK4a). Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3645–3650.PubMedCrossRefGoogle Scholar
  245. 245.
    Nemajerova, A., Petrenko, O., Trümper, L., Palacios, G., & Moll, U. M. (2010). Loss of p73 promotes dissemination of Myc-induced B cell lymphomas in mice. The Journal of Clinical Investigation, 120(6), 2070–2080.PubMedCrossRefGoogle Scholar
  246. 246.
    Zheng, H., Ying, H., Yan, H., Kimmelman, A. C., Hiller, D. J., Chen, A. J., et al. (2008). p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 455(7216), 1129–1133.PubMedCrossRefGoogle Scholar
  247. 247.
    Liu, X., Karnell, JL., Yin, B., Zhang, R., Zhang, J., Li, P., et al. (2010) Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J Clin Invest (in press)Google Scholar
  248. 248.
    Guo, W., Lasky, J. L., Chang, C. J., Mosessian, S., Lewis, X., Xiao, Y., et al. (2008). Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 453(7194), 529–533.PubMedCrossRefGoogle Scholar
  249. 249.
    Yanagi, S., Kishimoto, H., Kawahara, K., Sasaki, T., Sasaki, M., Nishio, M., et al. (2007). Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. The Journal of Clinical Investigation, 117(10), 2929–2940.PubMedCrossRefGoogle Scholar
  250. 250.
    Du, L., & Pertsemlidis, A. (2010). microRNAs and lung cancer: tumors and 22-mers. Cancer and Metastasis Reviews, 29(1), 109–122. Review.PubMedCrossRefGoogle Scholar
  251. 251.
    Gregory, M. A., Qi, Y., & Hann, S. R. (2005). The ARF tumor suppressor: keeping Myc on a leash. Cell Cycle, 4(2), 24952.Google Scholar
  252. 252.
    Nicholson, S. A., Okby, N. T., Khan, M. A., Welsh, J. A., McMenamin, M. G., Travis, W. D., et al. (2001). Alterations of p14ARF, p53, and p73 genes involved in the E2F-1-mediated apoptotic pathways in non-small cell lung carcinoma. Cancer Research, 61(14), 5636–5643.PubMedGoogle Scholar
  253. 253.
    Inoue, K., Mallakin, A., & Frazier, D. P. (2007). Dmp1 and tumor suppression. Oncogene, 26(30), 4329–4335. Review.PubMedCrossRefGoogle Scholar
  254. 254.
    Mallakin, A., Sugiyama, T., Taneja, P., Matise, L. A., Frazier, D. P., Choudhary, M., et al. (2007). Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell, 12(4), 381–394.PubMedCrossRefGoogle Scholar
  255. 255.
    Inoue, K., Sugiyama, T., Taneja, P., Morgan, R. L., & Frazier, D. P. (2008). Emerging roles of DMP1 in lung cancer. Cancer Research, 68(12), 4487–4490. Review.PubMedCrossRefGoogle Scholar
  256. 256.
    Malone, & Hannon. (2009). Small RNAs as guardians of the genome. Cell, 136, 656–668.PubMedCrossRefGoogle Scholar
  257. 257.
    Xi, Y., Shalgi, R., Fodstad, O., Pilpel, Y., & Ju, J. (2006). Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clinical Cancer Research, 12(7 Pt 1), 2014–2024.PubMedCrossRefGoogle Scholar
  258. 258.
    Theurkauf, W. E., Klattenhoff, C., Bratu, D. P., McGinnis-Schultz, N., Koppetsch, B. S., & Cook, H. A. (2006). rasiRNAs, DNA damage, and embryonic axis specification. Cold Spring Harbor Symposia on Quantitative Biology, 71, 171–180.PubMedCrossRefGoogle Scholar
  259. 259.
    Kutter, C., & Svoboda, P. (2008). miRNA, siRNA, piRNA: knowns of the unknown. RNA Biology, 5(4), 181–188.PubMedGoogle Scholar
  260. 260.
    Boominathan, L. (2009). The guardians of the genome dependent tumor suppressor miRNAs network Nature Precedings, http://dx.doi.org/10.1038/npre.2009.4112.1

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Genome DiscoveryPuducherryIndia

Personalised recommendations