Cancer and Metastasis Reviews

, Volume 29, Issue 4, pp 641–653 | Cite as

Obesity and breast cancer: status of leptin and adiponectin in pathological processes

  • Michael E. Grossmann
  • Amitabha Ray
  • Katai J. Nkhata
  • Dmitry A. Malakhov
  • Olga P. Rogozina
  • Soner Dogan
  • Margot P. Cleary


It is well recognized that obesity increases the risk of various cancers, including breast malignancies in postmenopausal women. Furthermore, obesity may adversely affect tumor progression, metastasis, and overall prognosis in both pre- and postmenopausal women with breast cancer. However, the precise mechanism(s) through which obesity acts is/are still elusive and this relationship has been the subject of much investigation and speculation. Recently, adipose tissue and its associated cytokine-like proteins, adipokines, particularly leptin and adiponectin, have been investigated as mediators for the association of obesity with breast cancer. Higher circulating levels of leptin found in obese subjects could be a growth-enhancing factor as supported by in vitro and preclinical studies, whereas low adiponectin levels in obese women may be permissive for leptin’s growth-promoting effects. These speculations are supported by in vitro studies which indicate that leptin promotes human breast cancer cell proliferation while adiponectin exhibits anti-proliferative actions. Further, estrogen and its receptors have a definite impact on the response of human breast cancer cell lines to leptin and adiponectin. More in-depth studies are needed to provide additional and precise links between the in vivo development of breast cancer and the balance of adiponectin and leptin.


Breast tumorigenesis Cancer progression Adiposity Leptin Adiponectin Caloric restriction 



We are thankful to Dr. Joseph P. Grande of the Mayo Foundation, Rochester, Minnesota, for his pathological diagnosis of the tumors. We also thank The Breast Cancer Research Foundation, NCI grant CA101858 and the Hormel Foundation for the support.


  1. 1.
    Cleary, M. P., & Maihle, N. J. (1997). The role of body mass index in the relative risk of developing premenopausal versus postmenopausal breast cancer. Proceedings of the Society for Experimental Biology and Medicine, 216, 28–43.PubMedGoogle Scholar
  2. 2.
    Loi, S., Milne, R. L., Friedlander, M. L., McCredie, M. R., Giles, G. G., Hopper, J. L., et al. (2005). Obesity and outcomes in premenopausal and postmenopausal breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 14, 1686–1691.CrossRefGoogle Scholar
  3. 3.
    Porter, G. A., Inglis, K. M., Wood, L. A., & Veugelers, P. J. (2006). Effect of obesity on presentation of breast cancer. Annals of Surgical Oncology, 13, 327–332.PubMedCrossRefGoogle Scholar
  4. 4.
    Sweeney, C., Blair, C. K., Anderson, K. E., Lazovich, D., & Folsom, A. R. (2004). Risk factors for breast cancer in elderly women. American Journal of Epidemiology, 160, 868–875.PubMedCrossRefGoogle Scholar
  5. 5.
    Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E., & Klein, S. (2007). Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes, 56, 1010–1013.PubMedCrossRefGoogle Scholar
  6. 6.
    McTiernan, A. (2005). Obesity and cancer: the risks, science, and potential management strategies. Oncology (Williston Park), 19, 871–881.Google Scholar
  7. 7.
    Bondanelli, M., Margutti, A., Ambrosio, M. R., Plaino, L., Cobellis, L., Petraglia, F., et al. (2001). Blood growth hormone-binding protein levels in premenopausal and postmenopausal women: roles of body weight and estrogen levels. The Journal of Clinical Endocrinology and Metabolism, 86, 1973–1980.PubMedCrossRefGoogle Scholar
  8. 8.
    Mantzoros, C., Petridou, E., Dessypris, N., Chavelas, C., Dalamaga, M., Alexe, D. M., et al. (2004). Adiponectin and breast cancer risk. The Journal of Clinical Endocrinology and Metabolism, 89, 1102–1107.PubMedCrossRefGoogle Scholar
  9. 9.
    Miyoshi, Y., Funahashi, T., Kihara, S., Taguchi, T., Tamaki, Y., Matsuzawa, Y., et al. (2003). Association of serum adiponectin levels with breast cancer risk. Clinical Cancer Research, 9, 5699–5704.PubMedGoogle Scholar
  10. 10.
    Coskun, U., Gunel, N., Toruner, F. B., Sancak, B., Onuk, E., Bayram, O., et al. (2003). Serum leptin, prolactin and vascular endothelial growth factor (VEGF) levels in patients with breast cancer. Neoplasma, 50, 41–46.PubMedGoogle Scholar
  11. 11.
    Stattin, P., Söderberg, S., Biessy, C., Lenner, P., Hallmans, G., Kaaks, R., et al. (2004). Plasma leptin and breast cancer risk: a prospective study in northern Sweden. Breast Cancer Research and Treatment, 86, 191–196.PubMedCrossRefGoogle Scholar
  12. 12.
    Woo, H. Y., Park, H., Ki, C. S., Park, Y. L., & Bae, W. G. (2006). Relationships among serum leptin, leptin receptor gene polymorphisms, and breast cancer in Korea. Cancer Letters, 237, 137–142.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu, M. H., Chou, Y. C., Chou, W. Y., Hsu, G. C., Chu, C. H., Yu, C. P., et al. (2009). Circulating levels of leptin, adiposity and breast cancer risk. British Journal of Cancer, 100, 578–582.PubMedCrossRefGoogle Scholar
  14. 14.
    Hancke, K., Grubeck, D., Hauser, N., Kreienberg, R., & Weiss, J. M. (2010). Adipocyte fatty acid-binding protein as a novel prognostic factor in obese breast cancer patients. Breast Cancer Research and Treatment, 119, 367–377.PubMedCrossRefGoogle Scholar
  15. 15.
    Garofalo, C., Koda, M., Cascio, S., Sulkowska, M., Kanczuga-Koda, L., Golaszewska, J., et al. (2006). Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clinical Cancer Research, 12, 1447–1453.PubMedCrossRefGoogle Scholar
  16. 16.
    Miyoshi, Y., Funahashi, T., Tanaka, S., Taguchi, T., Tamaki, Y., Shimomura, I., et al. (2006). High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. International Journal of Cancer, 118, 1414–1419.CrossRefGoogle Scholar
  17. 17.
    Scherer, P. E., Williams, S., Fogliano, M., Baldini, G., & Lodish, H. F. (1995). A novel serum protein similar to C1q, produced exclusively in adipocytes. The Journal of Biological Chemistry, 270, 26746–26749.PubMedCrossRefGoogle Scholar
  18. 18.
    Ryan, A. S., Berman, D. M., Nicklas, B. J., Sinha, M., Gingerich, R. L., Meneilly, G. S., et al. (2003). Plasma adiponectin and leptin levels, body composition, and glucose utilization in adult women with wide ranges of age and obesity. Diabetes Care, 26, 2383–2388.PubMedCrossRefGoogle Scholar
  19. 19.
    Hopkins, T. A., Ouchi, N., Shibata, R., & Walsh, K. (2007). Adiponectin actions in the cardiovascular system. Cardiovascular Research, 74, 11–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Oh, D. K., Ciaraldi, T., & Henry, R. R. (2007). Adiponectin in health and disease. Diabetes, Obesity & Metabolism, 9, 282–289.CrossRefGoogle Scholar
  21. 21.
    Ouchi, N., & Walsh, K. (2007). Adiponectin as an anti-inflammatory factor. Clinica Chimica Acta, 380, 24–30.CrossRefGoogle Scholar
  22. 22.
    Garofalo, C., & Surmacz, E. (2006). Leptin and cancer. Journal of Cellular Physiology, 207, 12–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., et al. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423, 762–769.PubMedCrossRefGoogle Scholar
  24. 24.
    Tsao, T. S., Murrey, H. E., Hug, C., Lee, D. H., & Lodish, H. F. (2002). Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). The Journal of Biological Chemistry, 277, 29359–29562.PubMedCrossRefGoogle Scholar
  25. 25.
    Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., et al. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proceedings of the National Academy of Sciences of the United States of America, 98, 2005–2010.PubMedCrossRefGoogle Scholar
  26. 26.
    Kang, J. H., Lee, Y. Y., Yu, B. Y., Yang, B. S., Cho, K. H., Yoon, D. K., et al. (2005). Adiponectin induces growth arrest and apoptosis of MDA-MB-231 breast cancer cell. Archives of Pharmaceutical Research, 28, 1263–1269.CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Lam, J. B., Lam, K. S., Liu, J., Lam, M. C., Hoo, R. L., et al. (2006). Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Research, 66, 11462–11470.PubMedCrossRefGoogle Scholar
  28. 28.
    Arditi, J. D., Venihaki, M., Karalis, K. P., & Chrousos, G. P. (2007). Antiproliferative effect of adiponectin on MCF7 breast cancer cells: a potential hormonal link between obesity and cancer. Hormone and Metabolic Research, 39, 9–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Dieudonne, M. N., Bussiere, M., Dos Santos, E., Leneveu, M. C., Giudicelli, Y., & Pecquery, R. (2006). Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochemical and Biophysical Research Communications, 345, 271–279.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang, Y., Lam, K. S., Xu, J. Y., Lu, G., Xu, L. Y., Cooper, G. J., et al. (2005). Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. The Journal of Biological Chemistry, 280, 18341–18347.PubMedCrossRefGoogle Scholar
  31. 31.
    Brakenhielm, E., Veitonmaki, N., Cao, R., Kihara, S., Matsuzawa, Y., Zhivotovsky, B., et al. (2004). Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 101, 2476–2481.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.PubMedCrossRefGoogle Scholar
  33. 33.
    Knerr, I., Herzog, D., Rauh, M., Rascher, W., & Horbach, T. (2006). Leptin and ghrelin expression in adipose tissues and serum levels in gastric banding patients. European Journal of Clinical Investigation, 36, 389–394.PubMedCrossRefGoogle Scholar
  34. 34.
    Oksanen, L., Ohman, M., Heiman, M., Kainulainen, K., Kaprio, J., Mustajoki, P., et al. (1997). Markers for the gene ob and serum leptin levels in human morbid obesity. Human Genetics, 99, 559–564.PubMedCrossRefGoogle Scholar
  35. 35.
    Ramos, A. P., de Abreu, M. R., Vendramini, R. C., Brunetti, I. L., & Pepato, M. T. (2006). Decrease in circulating glucose, insulin and leptin levels and improvement in insulin resistance at 1 and 3 months after gastric bypass. Obesity Surgery, 16, 1359–1364.PubMedCrossRefGoogle Scholar
  36. 36.
    Klok, M. D., Jakobsdottir, S., & Drent, M. L. (2007). The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obesity Reviews, 8, 21–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Dieudonne, M. N., Machinal-Quelin, F., Serazin-Leroy, V., Leneveu, M. C., Pecquery, R., & Giudicelli, Y. (2002). Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochemical and Biophysical Research Communications, 293, 622–628.PubMedCrossRefGoogle Scholar
  38. 38.
    Frankenberry, K. A., Skinner, H., Somasundar, P., McFadden, D. W., & Vona-Davis, L. C. (2006). Leptin receptor expression and cell signaling in breast cancer. International Journal of Oncology, 28, 985–993.PubMedGoogle Scholar
  39. 39.
    Hu, X., Juneja, S. C., Maihle, N. J., & Cleary, M. P. (2002). Leptin—a growth factor in normal and malignant breast cells and for normal mammary gland development. Journal of the National Cancer Institute, 94, 1704–1711.PubMedGoogle Scholar
  40. 40.
    Ray, A., Nkhata, K. J., & Cleary, M. P. (2007). Effects of leptin on human breast cancer cell lines in relationship to estrogen receptor and HER2 status. International Journal of Oncology, 30, 1499–1509.PubMedGoogle Scholar
  41. 41.
    Cleary, M. P., Phillips, F. C., Getzin, S. C., Jacobson, T. L., Jacobson, M. K., Christensen, T. A., et al. (2003). Genetically obese MMTV-TGF-alpha/Lep(ob)Lep(ob) female mice do not develop mammary tumors. Breast Cancer Research and Treatment, 77, 205–215.PubMedCrossRefGoogle Scholar
  42. 42.
    Cleary, M. P., Juneja, S. C., Phillips, F. C., Hu, X., Grande, J. P., & Maihle, N. J. (2004). Leptin receptor-deficient MMTV-TGF-alpha/Lepr(db)Lepr(db) female mice do not develop oncogene-induced mammary tumors. Experimental Biology and Medicine (Maywood), 229, 182–193.Google Scholar
  43. 43.
    Garofalo, C., Sisci, D., & Surmacz, E. (2004). Leptin interferes with the effects of the antiestrogen ICI 182, 780 in MCF-7 breast cancer cells. Clinical Cancer Research, 10, 6466–6475.PubMedCrossRefGoogle Scholar
  44. 44.
    Harvie, M., & Howell, A. (2006). Energy balance adiposity and breast cancer—energy restriction strategies for breast cancer prevention. Obesity Reviews, 7, 33–47.PubMedCrossRefGoogle Scholar
  45. 45.
    Inoue, M., Maehata, E., Yano, M., Taniyama, M., & Suzuki, S. (2005). Correlation between the adiponectin–leptin ratio and parameters of insulin resistance in patients with type 2 diabetes. Metabolism, 54, 281–286.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhuo, Q., Wang, Z., Fu, P., Piao, J., Tian, Y., Xu, J., et al. (2009). Comparison of adiponectin, leptin and leptin to adiponectin ratio as diagnostic marker for metabolic syndrome in older adults of Chinese major cities. Diabetes Research and Clinical Practice, 84, 27–33.PubMedCrossRefGoogle Scholar
  47. 47.
    Kiec-Klimczak, M., Malczewska-Malec, M., & Huszno, B. (2008). Leptin to adiponectin ratio, as an index of insulin resistance and atherosclerosis development. Przegla̧d Lekarski, 65, 844–849.PubMedGoogle Scholar
  48. 48.
    Cleary, M. P., Ray, A., Rogozina, O. P., Dogan, S., & Grossmann, M. E. (2009). Targeting the adiponectin:leptin ratio for postmenopausal breast cancer prevention. Frontiers in Bioscience, S1, 329–357.Google Scholar
  49. 49.
    Chen, D. C., Chung, Y. F., Yeh, Y. T., Chaung, H. C., Kuo, F. C., Fu, O. Y., et al. (2006). Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Letters, 237, 109–114.PubMedCrossRefGoogle Scholar
  50. 50.
    Stark, A., Stahl, M.S., Kirchner, H.L., Krum, S., Prichard, J., Evans, J. (2010). Body mass index at the time of diagnosis and the risk of advanced stages and poorly differentiated cancers of the breast: findings from a case-series study. International Journal of Obesity (London). PubMed ID: 20351736.Google Scholar
  51. 51.
    Daling, J. R., Malone, K. E., Doody, D. R., Johnson, L. G., Gralow, J. R., & Porter, P. L. (2001). Relation of body mass index to tumor markers and survival among young women with invasive ductal breast carcinoma. Cancer, 92, 720–729.PubMedCrossRefGoogle Scholar
  52. 52.
    Carmichael, A. R., Bendall, S., Lockerbie, L., Prescott, R. J., & Bates, T. (2004). Does obesity compromise survival in women with breast cancer? Breast, 13, 93–96.PubMedCrossRefGoogle Scholar
  53. 53.
    Jones, B. A., Kasi, S. V., Curnen, M. G., Owens, P. H., & Dubrow, R. (1997). Severe obesity as an explanatory factor for the black/white difference in stage at diagnosis of breast cancer. American Journal of Epidemiology, 146, 394–404.PubMedGoogle Scholar
  54. 54.
    Moorman, P. G., Jones, B. A., Millikan, R. C., Hall, I. J., & Newman, B. (2001). Race, anthropometric factors, and stage at diagnosis of breast cancer. American Journal of Epidemiology, 153, 284–291.PubMedCrossRefGoogle Scholar
  55. 55.
    Cui, Y., Whiteman, M. K., Flaws, J. A., Langenberg, P., Tkaczuk, K. H., & Bush, T. L. (2002). Body mass and stage of breast cancer at diagnosis. International Journal of Cancer, 98, 279–283.CrossRefGoogle Scholar
  56. 56.
    Cui, Y., Whiteman, M. K., Langenberg, P., Sexton, M., Tkaczuk, K. H., Flaws, J. A., et al. (2002). Can obesity explain the racial difference in stage of breast cancer at diagnosis between black and white women? Journal of Women’s Health & Gender-Based Medicine, 11, 527–536.CrossRefGoogle Scholar
  57. 57.
    Deglise, C., Bouchardy, C., Burri, M., Usel, M., Neyroud-Caspar, I., Vlastos, G., et al. (2010). Impact of obesity on diagnosis and treatment of breast cancer. Breast Cancer Research and Treatment, 120, 185–193.PubMedCrossRefGoogle Scholar
  58. 58.
    Chagpar, A. B., McMasters, K. M., Saul, J., Nurko, J., Martin, R. C., 2nd, Scoggins, C. R., et al. (2007). Body mass index influences palpability but not stage of breast cancer at diagnosis. The American Surgeon, 73, 555–560.PubMedGoogle Scholar
  59. 59.
    Abe, R., Kumagai, N., Kimura, M., Hirosaki, A., & Nakamura, T. (1976). Biological characteristics of breast cancer in obesity. The Tohoku Journal of Experimental Medicine, 120, 351–359.PubMedCrossRefGoogle Scholar
  60. 60.
    Chaves, M. R., Tomé, C. B., Monteiro-Grillo, I., Camilo, M., Ravasco, P. (2010). The diversity of nutritional status in cancer: New insights. Oncologist, 15, 523–530.Google Scholar
  61. 61.
    Healy, L. A., Ryan, A. M., Carroll, P., Ennis, D., Crowley, V., Boyle, T., et al. (2010). Metabolic syndrome, central obesity and insulin resistance are associated with adverse pathological features in postmenopausal breast cancer. Clinical Oncology (Royal College of Radiologists), 22, 281–288.Google Scholar
  62. 62.
    Litton, J. K., Gonzalez-Angulo, A. M., Warneke, C. L., Buzdar, A. U., Kau, S. W., Bondy, M., et al. (2008). Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. Journal of Clinical Oncology, 26, 4072–4077.PubMedCrossRefGoogle Scholar
  63. 63.
    McEligot, A. J., Im, T., Dillman, R. O., West, J. G., Salem, R., Haque, R., et al. (2008). Abstracting height and weight from medical records, and breast cancer pathologic factors. Cancer Causes & Control, 19, 1217–1226.CrossRefGoogle Scholar
  64. 64.
    Maehle, B. O., Tretli, S., Skjaerven, R., & Thorsen, T. (2001). Premorbid body weight and its relations to primary tumour diameter in breast cancer patients; its dependence on estrogen and progesterone receptor status. Breast Cancer Research and Treatment, 68, 159–169.PubMedCrossRefGoogle Scholar
  65. 65.
    Kalish, L. A. (1984). Relationships of body size with breast cancer. Journal of Clinical Oncology, 2, 287–293.PubMedGoogle Scholar
  66. 66.
    Daniell, H. W. (1988). Increased lymph node metastases at mastectomy for breast cancer associated with host obesity, cigarette smoking, age, and large tumor size. Cancer, 62, 429–435.PubMedCrossRefGoogle Scholar
  67. 67.
    Verreault, R., Brisson, J., Deschênes, L., & Naud, F. (1989). Body weight and prognostic indicators in breast cancer. Modifying effect of estrogen receptors. American Journal of Epidemiology, 129, 260–268.PubMedGoogle Scholar
  68. 68.
    Schapira, D. V., Kumar, N. B., Lyman, G. H., & Cox, C. E. (1991). Obesity and body fat distribution and breast cancer prognosis. Cancer, 67, 523–528.PubMedCrossRefGoogle Scholar
  69. 69.
    Honda, H., Ohi, Y., Umekita, Y., Takasaki, T., Kuriwaki, K., Ohyabu, I., et al. (1999). Obesity affects expression of progesterone receptors and node metastasis of mammary carcinomas in postmenopausal women without a family history. Pathology International, 49, 198–202.PubMedCrossRefGoogle Scholar
  70. 70.
    Maehle, B. O., Tretli, S., & Thorsen, T. (2004). The associations of obesity, lymph node status and prognosis in breast cancer patients: dependence on estrogen and progesterone receptor status. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 112, 349–357.PubMedGoogle Scholar
  71. 71.
    Gillespie, E. F., Sorbero, M. E., Hanauer, D. A., Sabel, M. S., Herrmann, E. J., Weiser, L. J., et al. (2010). Obesity and angiolymphatic invasion in primary breast cancer. Annals of Surgical Oncology, 17, 752–759.PubMedCrossRefGoogle Scholar
  72. 72.
    de Azambuja, E., McCaskill-Stevens, W., Francis, P., Quinaux, E., Crown, J. P., Vicente, M., et al. (2010). The effect of body mass index on overall and disease-free survival in node-positive breast cancer patients treated with docetaxel and doxorubicin-containing adjuvant chemotherapy: the experience of the BIG 02-98 trial. Breast Cancer Research and Treatment, 119, 145–153.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen, X., Lu, W., Zheng, W., Gu, K., Chen, Z., Zheng, Y., Shu, X. O. (2010). Obesity and weight change in relation to breast cancer survival. Breast Cancer Research and Treatment, 122, 823–833.Google Scholar
  74. 74.
    Majed, B., Moreau, T., Senouci, K., Sigal, B., Salmon, R. J., Fourquet, A., et al. (2009). Stoutness and prognosis of female non-metastatic breast cancer: results from a French observational cohort study. Bulletin du Cancer, 96, 531–541.PubMedGoogle Scholar
  75. 75.
    Vona-Davis, L., Rose, D. P., Hazard, H., Howard-McNatt, M., Adkins, F., Partin, J., et al. (2008). Triple-negative breast cancer and obesity in a rural Appalachian population. Cancer Epidemiology, Biomarkers & Prevention, 17, 3319–3324.CrossRefGoogle Scholar
  76. 76.
    Caan, B. J., Kwan, M. L., Hartzell, G., Castillo, A., Slattery, M. L., Sternfeld, B., et al. (2008). Pre-diagnosis body mass index, post-diagnosis weight change, and prognosis among women with early stage breast cancer. Cancer Causes & Control, 19, 1319–1328.CrossRefGoogle Scholar
  77. 77.
    Dal Maso, L., Zucchetto, A., Talamini, R., Serraino, D., Stocco, C. F., Vercelli, M., et al. (2008). Effect of obesity and other lifestyle factors on mortality in women with breast cancer. International Journal of Cancer, 123, 2188–2194.CrossRefGoogle Scholar
  78. 78.
    Kerlikowske, K., Walker, R., Miglioretti, D. L., Desai, A., Ballard-Barbash, R., & Buist, D. S. (2008). Obesity, mammography use and accuracy, and advanced breast cancer risk. Journal of the National Cancer Institute, 100, 1724–1733.PubMedCrossRefGoogle Scholar
  79. 79.
    Dawood, S., Broglio, K., Gonzalez-Angulo, A. M., Kau, S. W., Islam, R., Hortobagyi, G. N., et al. (2008). Prognostic value of body mass index in locally advanced breast cancer. Clinical Cancer Research, 14, 1718–1725.PubMedCrossRefGoogle Scholar
  80. 80.
    Majed, B., Moreau, T., Senouci, K., Salmon, R. J., Fourquet, A., & Asselain, B. (2008). Is obesity an independent prognosis factor in woman breast cancer? Breast Cancer Research and Treatment, 111, 329–342.PubMedCrossRefGoogle Scholar
  81. 81.
    Demirkan, B., Alacacioglu, A., & Yilmaz, U. (2007). Relation of body mass index (BMI) to disease free (DFS) and distant disease free survivals (DDFS) among Turkish women with operable breast carcinoma. Japanese Journal of Clinical Oncology, 37, 256–265.PubMedCrossRefGoogle Scholar
  82. 82.
    Abrahamson, P. E., Gammon, M. D., Lund, M. J., Flagg, E. W., Porter, P. L., Stevens, J., et al. (2006). General and abdominal obesity and survival among young women with breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 15, 1871–1877.CrossRefGoogle Scholar
  83. 83.
    Dignam, J. J., Wieand, K., Johnson, K. A., Raich, P., Anderson, S. J., Somkin, C., et al. (2006). Effects of obesity and race on prognosis in lymph node-negative, estrogen receptor-negative breast cancer. Breast Cancer Research and Treatment, 97, 245–254.PubMedCrossRefGoogle Scholar
  84. 84.
    Whiteman, M. K., Hillis, S. D., Curtis, K. M., McDonald, J. A., Wingo, P. A., & Marchbanks, P. A. (2005). Body mass and mortality after breast cancer diagnosis. Cancer Epidemiology, Biomarkers & Prevention, 14, 2009–2014.CrossRefGoogle Scholar
  85. 85.
    Kroenke, C. H., Chen, W. Y., Rosner, B., & Holmes, M. D. (2005). Weight, weight gain, and survival after breast cancer diagnosis. Journal of Clinical Oncology, 23, 1370–1378.PubMedCrossRefGoogle Scholar
  86. 86.
    Tillman, L., Myers, S., Pockaj, B., Perry, C., Bay, R. C., & Al-kasspooles, M. (2005). Breast cancer in Native American women treated at an urban-based Indian health referral center 1982–2003. American Journal of Surgery, 190, 895–902.PubMedCrossRefGoogle Scholar
  87. 87.
    Enger, S. M., Greif, J. M., Polikoff, J., & Press, M. (2004). Body weight correlates with mortality in early-stage breast cancer. Archives of Surgery, 139, 954–958.PubMedCrossRefGoogle Scholar
  88. 88.
    Dignam, J. J., Wieand, K., Johnson, K. A., Fisher, B., Xu, L., & Mamounas, E. P. (2003). Obesity, tamoxifen use, and outcomes in women with estrogen receptor-positive early-stage breast cancer. Journal of the National Cancer Institute, 95, 1467–1476.PubMedGoogle Scholar
  89. 89.
    Borugian, M. J., Sheps, S. B., Kim-Sing, C., Olivotto, I. A., Van Patten, C., Dunn, B. P., et al. (2003). Waist-to-hip ratio and breast cancer mortality. American Journal of Epidemiology, 158, 963–968.PubMedCrossRefGoogle Scholar
  90. 90.
    McTiernan, A., Rajan, K. B., Tworoger, S. S., Irwin, M., Bernstein, L., Baumgartner, R., et al. (2003). Adiposity and sex hormones in postmenopausal breast cancer survivors. Journal of Clinical Oncology, 21, 1961–1966.PubMedCrossRefGoogle Scholar
  91. 91.
    Ishikawa, M., Kitayama, J., & Nagawa, H. (2004). Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clinical Cancer Research, 10, 4325–4331.PubMedCrossRefGoogle Scholar
  92. 92.
    Liu, C. L., Chang, Y. C., Cheng, S. P., Chern, S. R., Yang, T. L., Lee, J. J., et al. (2007). The roles of serum leptin concentration and polymorphism in leptin receptor gene at codon 109 in breast cancer. Oncology, 72, 75–81.PubMedCrossRefGoogle Scholar
  93. 93.
    Macciò, A., Madeddu, C., Gramignano, G., Mulas, C., Floris, C., Massa, D., et al. (2010). Correlation of body mass index and leptin with tumor size and stage of disease in hormone-dependent postmenopausal breast cancer: preliminary results and therapeutic implications. Journal of Molecular Medicine, 88, 677–686.Google Scholar
  94. 94.
    Ray, A., & Cleary, M. P. (2010). Leptin as a potential therapeutic target for breast cancer prevention and treatment. Expert Opinion on Therapeutic Targets, 14, 443–451.PubMedCrossRefGoogle Scholar
  95. 95.
    Hou, W. K., Xu, Y. X., Yu, T., Zhang, L., Zhang, W. W., Fu, C. L., et al. (2007). Adipocytokines and breast cancer risk. Chinese Medical Journal, 120, 1592–1596.PubMedGoogle Scholar
  96. 96.
    Cust, A. E., Stocks, T., Lukanova, A., Lundin, E., Hallmans, G., Kaaks, R., et al. (2009). The influence of over-weight and insulin resistance on breast cancer risk and tumour stage at diagnosis: a prospective study. Breast Cancer Research and Treatment, 113, 567–576.PubMedCrossRefGoogle Scholar
  97. 97.
    Jarde, T., Caldefie-Chezet, F., Damez, M., Mishellany, F., Perrone, D., Penault-Llorca, F., et al. (2008). Adiponectin and leptin expression in primary ductal breast cancer and in adjacent healthy epithelial and myoepithelial tissue. Histopathology, 53, 484–487.PubMedCrossRefGoogle Scholar
  98. 98.
    Grossmann, M. E., Ray, A., Dogan, S., Mizuno, N. K., Cleary, M. P. (2007). Balance of adiponectin and leptin in relationship to breast cancer cell growth and signaling. Advances in Breast Cancer Research: Genetics, Biology, and Clinical Applications. San Diego, California. October 17–20, 2007; Abstract #B50.Google Scholar
  99. 99.
    Grossmann, M. E., Ray, A., Dogan, S., Mizuno, N. K., & Cleary, M. P. (2008). Balance of adiponectin and leptin modulates breast cancer cell growth. Cell Research, 18, 1154–1156.PubMedCrossRefGoogle Scholar
  100. 100.
    Nkhata, K. J., Ray, A., Schuster, T. F., Grossmann, M. E., & Cleary, M. P. (2009). Effects of adiponectin and leptin co-treatment on human breast cancer cell growth. Oncology Reports, 21, 1611–1619.PubMedGoogle Scholar
  101. 101.
    Nkhata, K. J., Ray, A., Dogan, S., Grande, J. P., & Cleary, M. P. (2009). Mammary tumor development from T47-D human breast cancer cells in obese ovariectomized mice with and without estradiol supplements. Breast Cancer Research and Treatment, 114, 71–83.PubMedCrossRefGoogle Scholar
  102. 102.
    Ray, A., Nkhata, K. J., Malakhov, D. A., Grossmann, M. E., Grande, J. P., Cleary, M. P. (2008). Characteristics of MCF-7 breast cancer cell line tumors in response to obesity and diet. Third Frontiers in Cancer Research and 8th International Skin Carcinogenesis Conferences. Austin, Minnesota. October 4–7, 2008; p.172/Abstract #36.Google Scholar
  103. 103.
    Pfeiler, G. H., Buechler, C., Neumeier, M., Schaffler, A., Schmitz, G., Ortmann, O., et al. (2008). Adiponectin effects on human breast cancer cells are dependent on 17-beta estradiol. Oncology Reports, 19, 787–793.PubMedGoogle Scholar
  104. 104.
    Althuis, M. D., Fergenbaum, J. H., Garcia-Closas, M., Brinton, L. A., Madigan, M. P., & Sherman, M. E. (2004). Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiology, Biomarkers & Prevention, 13, 1558–1568.Google Scholar
  105. 105.
    Suzuki, R., Rylander-Rudqvist, T., Ye, W., Saji, S., & Wolk, A. (2006). Body weight and postmenopausal breast cancer risk defined by estrogen and progesterone receptor status among Swedish women: a prospective cohort study. International Journal of Cancer, 119, 1683–1689.CrossRefGoogle Scholar
  106. 106.
    Cleary, M. P., Grande, J. P., Juneja, S. C., & Maihle, N. J. (2004). Diet-induced obesity and mammary tumor development in MMTV-neu female mice. Nutrition and Cancer, 50, 174–180.PubMedCrossRefGoogle Scholar
  107. 107.
    Khalid, S., Hwang, D., Babichev, Y., Kolli, R., Altamentova, S., Koren, S., et al. (2010). Evidence for a tumor promoting effect of high-fat diet independent of insulin resistance in HER2/Neu mammary carcinogenesis. Breast Cancer Research and Treatment, 122, 647–659.Google Scholar
  108. 108.
    Blackburn, G. L., & Wang, K. A. (2007). Dietary fat reduction and breast cancer outcome: results from the Women’s Intervention Nutrition Study (WINS). The American Journal of Clinical Nutrition, 86, s878–s881.PubMedGoogle Scholar
  109. 109.
    Rose, D. P., & Vona-Davis, L. (2009). Influence of obesity on breast cancer receptor status and prognosis. Expert Review of Anticancer Therapy, 9, 1091–1101.PubMedCrossRefGoogle Scholar
  110. 110.
    Denzel, M. S., Hebbard, L. W., Shostak, G., Shapiro, L., Cardiff, R. D., & Ranscht, B. (2009). Adiponectin deficiency limits tumor vascularization in the MMTV-PyV-mT mouse model of mammary cancer. Clinical Cancer Research, 15, 3256–3264.PubMedCrossRefGoogle Scholar
  111. 111.
    Landskroner-Eiger, S., Qian, B., Muise, E. S., Nawrocki, A. R., Berger, J. P., Fine, E. J., et al. (2009). Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo. Clinical Cancer Research, 15, 3265–3276.PubMedCrossRefGoogle Scholar
  112. 112.
    Barresi, V., Tuccari, G., & Barresi, G. (2009). Adiponectin immunohistochemical expression in colorectal cancer and its correlation with histological grade and tumour microvessel density. Pathology, 41, 533–538.PubMedCrossRefGoogle Scholar
  113. 113.
    Soares, A. F., Guichardant, M., Cozzone, D., Bernoud-Hubac, N., Bouzaïdi-Tiali, N., Lagarde, M., et al. (2005). Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes. Free Radical Biology & Medicine, 38, 882–889.CrossRefGoogle Scholar
  114. 114.
    Swarbrick, M. M., & Havel, P. J. (2008). Physiological, pharmacological, and nutritional regulation of circulating adiponectin concentrations in humans. Metabolic Syndrome and Related Disorders, 6, 87–102.PubMedCrossRefGoogle Scholar
  115. 115.
    Goldstein, B. J., Scalia, R. G., & Ma, X. L. (2009). Protective vascular and myocardial effects of adiponectin. Nature Clinical Practice. Cardiovascular Medicine, 6, 27–35.PubMedCrossRefGoogle Scholar
  116. 116.
    Dubey, L., & Hesong, Z. (2006). Role of leptin in atherogenesis. Experimental and Clinical Cardiology, 11, 269–275.PubMedGoogle Scholar
  117. 117.
    Wu, B., Fukuo, K., Suzuki, K., Yoshino, G., & Kazumi, T. (2009). Relationships of systemic oxidative stress to body fat distribution, adipokines and inflammatory markers in healthy middle-aged women. Endocrine Journal, 56, 773–782.PubMedCrossRefGoogle Scholar
  118. 118.
    Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F., & Loguercio, C. (2007). Chronic inflammation and oxidative stress in human carcinogenesis. International Journal of Cancer, 121, 2381–2386.CrossRefGoogle Scholar
  119. 119.
    Hursting, S. D., Nunez, N. P., Varticovski, L., & Vinson, C. (2007). The obesity–cancer link: lessons learned from a fatless mouse. Cancer Research, 67, 2391–2393.PubMedCrossRefGoogle Scholar
  120. 120.
    Nunez, N. P., Oh, W. J., Rozenberg, J., Perella, C., Anver, M., Barrett, J. C., et al. (2006). Accelerated tumor formation in a fatless mouse with type 2 diabetes and inflammation. Cancer Research, 66, 5469–5576.PubMedCrossRefGoogle Scholar
  121. 121.
    Ablamunits, V., Cohen, Y., Brazee, I. B., Gaetz, H. P., Vinson, C., & Klebanov, S. (2006). Susceptibility to induced and spontaneous carcinogenesis is increased in fatless A-ZIP/F-1 but not in obese ob/ob mice. Cancer Research, 66, 8897–8902.PubMedCrossRefGoogle Scholar
  122. 122.
    Badid, N., Baba Ahmed, F. Z., Merzouk, H., Belbraouet, S., Mokhtari, N., Merzouk, S. A., et al. (2010). Oxidant/antioxidant status, lipids and hormonal profile in overweight women with breast cancer. Pathology & Oncology Research, 16, 159–167.Google Scholar
  123. 123.
    Tsuchiya, Y., Nakajima, M., & Yokoi, T. (2005). Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Letters, 227, 115–124.PubMedCrossRefGoogle Scholar
  124. 124.
    Bozina, N., Bradamante, V., & Lovrić, M. (2009). Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arhiv za Higijenu Rada i Toksikologiju, 60, 217–242.PubMedGoogle Scholar
  125. 125.
    Shih, C. C., Lin, C. H., Lin, W. L., & Wu, J. B. (2009). Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. Journal of Ethnopharmacology, 123, 82–90.PubMedCrossRefGoogle Scholar
  126. 126.
    Zhou, X. R., Sun, C. H., Liu, J. R., & Zhao, D. (2008). Dietary conjugated linoleic acid increases PPAR gamma gene expression in adipose tissue of obese rat, and improves insulin resistance. Growth Hormone & IGF Research, 18, 361–368.CrossRefGoogle Scholar
  127. 127.
    Kotidis, E. V., Koliakos, G. G., Baltzopoulos, V. G., Ioannidis, K. N., Yovos, J. G., & Papavramidis, S. T. (2006). Serum ghrelin, leptin and adiponectin levels before and after weight loss: comparison of three methods of treatment—a prospective study. Obesity Surgery, 16, 1425–1432.PubMedCrossRefGoogle Scholar
  128. 128.
    Fenton, J. I., Nuñez, N. P., Yakar, S., Perkins, S. N., Hord, N. G., & Hursting, S. D. (2009). Diet-induced adiposity alters the serum profile of inflammation in C57BL/6N mice as measured by antibody array. Diabetes, Obesity & Metabolism, 11, 343–354.CrossRefGoogle Scholar
  129. 129.
    Cleary, M. P., Jacobson, M. K., Phillips, F. C., Getzin, S. C., Grande, J. P., & Maihle, N. J. (2002). Weight-cycling decreases incidence and increases latency of mammary tumors to a greater extent than does chronic caloric restriction in mouse mammary tumor virus-transforming growth factor-alpha female mice. Cancer Epidemiology, Biomarkers & Prevention, 11, 836–843.Google Scholar
  130. 130.
    Pape-Ansorge, K. A., Grande, J. P., Christensen, T. A., Maihle, N. J., & Cleary, M. P. (2002). Effect of moderate caloric restriction and/or weight cycling on mammary tumor incidence and latency in MMTV-Neu female mice. Nutrition and Cancer, 44, 162–168.PubMedCrossRefGoogle Scholar
  131. 131.
    Cleary, M. P., Hu, X., Grossmann, M. E., Juneja, S. C., Dogan, S., Grande, J. P., et al. (2007). Prevention of mammary tumorigenesis by intermittent caloric restriction: does caloric intake during refeeding modulate the response? Experimental Biology and Medicine (Maywood), 232, 70–80.Google Scholar
  132. 132.
    Rogozina, O. P., Bonorden, M. J., Grande, J. P., & Cleary, M. P. (2009). Serum insulin-like growth factor-I and mammary tumor development in ad libitum-fed, chronic calorie-restricted, and intermittent calorie-restricted MMTV-TGF-alpha mice. Cancer Prevention Research (Phila Pa), 2, 712–719.Google Scholar
  133. 133.
    Dogan, S., Rogozina, O. P., Loshkin, A., Grande, J. P., & Cleary, M. P. (2010). Comparison of chronic vs intermittent calorie restriction on mammary tumor incidence and serum adiponectin and leptin levels in MMTV-TGF-a mice at different ages. Oncology Letters, 1, 167–176.Google Scholar
  134. 134.
    Howell, A., Chapman, M., & Harvie, M. (2009). Energy restriction for breast cancer prevention. Recent Results in Cancer Research, 181, 97–111.PubMedCrossRefGoogle Scholar
  135. 135.
    Varady, K. A., Tussing, L., Bhutani, S., & Braunschweig, C. L. (2009). Degree of weight loss required to improve adipokine concentrations and decrease fat cell size in severely obese women. Metabolism, 58, 1096–1101.PubMedCrossRefGoogle Scholar
  136. 136.
    Glade, M. J. (1999). Food, nutrition, and the prevention of cancer: a global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition, 15, 523–526.PubMedCrossRefGoogle Scholar
  137. 137.
    World Cancer Research Fund/American Institute for Cancer Research. (2007). Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: AICR, 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michael E. Grossmann
    • 1
  • Amitabha Ray
    • 1
  • Katai J. Nkhata
    • 1
  • Dmitry A. Malakhov
    • 1
  • Olga P. Rogozina
    • 1
  • Soner Dogan
    • 1
  • Margot P. Cleary
    • 1
  1. 1.The Hormel InstituteUniversity of MinnesotaAustinUSA

Personalised recommendations