Advertisement

Cancer and Metastasis Reviews

, Volume 29, Issue 3, pp 503–510 | Cite as

Nutraceutical use in late-stage cancer

  • Michael J. Wargovich
  • Jay Morris
  • Vondina Brown
  • Jane Ellis
  • Britt Logothetis
  • Rebecca Weber
Article

Abstract

Access to a wealth of information on the internet has led many cancer patients to use complementary methods as an adjunct to traditional therapy for cancer, with, and more often, without informing their primary caregiver. Of the common complementary modalities, the use of dietary supplements appears to be highly prevalent in patients in active treatment for cancer, and later in cancer survivors. Emerging research suggests that some plant-based agents may, indeed, impact late-stage cancer, influencing molecular processes corrupted by tumor cells to evade detection, expand clonally, and invade surrounding tissues. The intent of this article is to review some of the current science underpinning the use of nutraceuticals in the latter stages of cancer.

Keywords

Dietary supplements Nutraceuticals Cancer treatment Metastasis 

Abbreviations

CAM

Complementary and alternative medicine

COX

Cycloxygenase

DNMT

DNA methyltransferase

EGFR

Epidermal growth factor receptor

ER

Estrogen receptor

IGF

Insulin-like growth factor

LOX

Lipoxygenase

MCP

Monocyte chemoattractant protein

MMP

Matrix metalloproteinase

RECK

The reversion-inducing cysteine-rich protein with Kazal motifs

TIMP

Matrix metalloproteinase tissue inhibitor

VEGF

Vascular endothelial growth factor

Notes

Acknowledgments

This publication was supported in part by grant R01CA96694 from the National Cancer Institute.

References

  1. 1.
    Rhodes, V. A., & McDaniel, R. W. (2001). Nausea, vomiting, and retching: complex problems in palliative care. CA: A Cancer Journal for Clinicians, 51, 232–248. quiz 249-252.CrossRefGoogle Scholar
  2. 2.
    Di Luzio, R., Moscatiello, S., & Marchesini, G. (2010). Role of nutrition in gastrointestinal oncological patients. European Review for Medical and Pharmacological Sciences, 14, 277–284.PubMedGoogle Scholar
  3. 3.
    Aziz, N. M., & Rowland, J. H. (2003). Trends and advances in cancer survivorship research: challenge and opportunity. Seminars in Radiation Oncology, 13, 248–266.CrossRefPubMedGoogle Scholar
  4. 4.
    Rowland, J. H., Aziz, N., Tesauro, G., & Feuer, E. J. (2001). The changing face of cancer survivorship. Seminars in Oncology Nursing, 17, 236–240.CrossRefPubMedGoogle Scholar
  5. 5.
    Ernst, E., & Cassileth, B. R. (1998). The prevalence of complementary/alternative medicine in cancer: a systematic review. Cancer, 83, 777–782.CrossRefPubMedGoogle Scholar
  6. 6.
    Richardson, M. A., Sanders, T., Palmer, J. L., Greisinger, A., & Singletary, S. E. (2000). Complementary/alternative medicine use in a comprehensive cancer center and the implications for oncology. Journal of Clinical Oncology, 18, 2505–2514.PubMedGoogle Scholar
  7. 7.
    Rausch, S. M., Winegardner, F., Kruk, K. M., Phatak, V., Wahner-Roedler, D. L., Bauer, B., et al. (2010) Complementary and alternative medicine: use and disclosure in radiation oncology community practice. Support Care Cancer.(in press)Google Scholar
  8. 8.
    Wahner-Roedler, D. L., Elkin, P. L., Vincent, A., Thompson, J. M., Oh, T. H., Loehrer, L. L., et al. (2005). Use of complementary and alternative medical therapies by patients referred to a fibromyalgia treatment program at a tertiary care center. Mayo Clinic Proceedings, 80, 55–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Cassileth, B. R., Heitzer, M., & Wesa, K. (2009). The public health impact of herbs and nutritional supplements. Le Pharmacien Biologiste, 47, 761–767.CrossRefGoogle Scholar
  10. 10.
    Hu, Z., Yang, X., Ho, P. C., Chan, S. Y., Heng, P. W., Chan, E., et al. (2005). Herb–drug interactions: a literature review. Drugs, 65, 1239–1282.CrossRefPubMedGoogle Scholar
  11. 11.
    Gwilt, P. R., Lear, C. L., Tempero, M. A., Birt, D. D., Grandjean, A. C., Ruddon, R. W., et al. (1994). The effect of garlic extract on human metabolism of acetaminophen. Cancer Epidemiology, Biomarkers & Prevention, 3, 155–160.Google Scholar
  12. 12.
    Vaes, L. P., & Chyka, P. A. (2000). Interactions of warfarin with garlic, ginger, ginkgo, or ginseng: nature of the evidence. The Annals of Pharmacotherapy, 34, 1478–1482.PubMedGoogle Scholar
  13. 13.
    Block, K. I., & Mead, M. N. (2003). Immune system effects of echinacea, ginseng, and astragalus: a review. Integrative Cancer Therapies, 2, 247–267.CrossRefPubMedGoogle Scholar
  14. 14.
    Borrelli, F., & Izzo, A. A. (2009). Herb–drug interactions with St John’s wort (Hypericum perforatum): an update on clinical observations. The AAPS Journal, 11, 710–727.CrossRefPubMedGoogle Scholar
  15. 15.
    Oyagbemi, A. A., Saba, A. B., & Azeez, O. I. (2010). Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian Journal of Cancer, 47, 53–58.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee, S. H., Krisanapun, C., & Baek, S. J. (2010). NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis, 31, 719–728.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang, K. M., Pyo, J. O., Kim, G. Y., Yu, R., Han, I. S., Ju, S. A., et al. (2009). Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cellular & Molecular Biology Letters, 14, 497–510.CrossRefGoogle Scholar
  18. 18.
    Zhang, R., Humphreys, I., Sahu, R. P., Shi, Y., & Srivastava, S. K. (2008). In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis, 13, 1465–1478.CrossRefPubMedGoogle Scholar
  19. 19.
    Berger, A., Henderson, M., Nadoolman, W., Duffy, V., Cooper, D., Saberski, L., et al. (1995). Oral capsaicin provides temporary relief for oral mucositis pain secondary to chemotherapy/radiation therapy. Journal of Pain and Symptom Management, 10, 243–248.CrossRefPubMedGoogle Scholar
  20. 20.
    Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., Tharakan, S. T., Sung, B., Anand, P., et al. (2008). Potential of spice-derived phytochemicals for cancer prevention. Planta Medica, 74, 1560–1569.CrossRefPubMedGoogle Scholar
  21. 21.
    Manikandan, P., Vinothini, G., Vidya Priyadarsini, R., Prathiba, D., & Nagini, S. (2009). Eugenol inhibits cell proliferation via NF-kappaB suppression in a rat model of gastric carcinogenesis induced by MNNG. Investigational New Drugs, 23, 23.Google Scholar
  22. 22.
    Slamenova, D., Horvathova, E., Wsolova, L., Sramkova, M., Navarova, J., Manikandan, P., et al. (2009). Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutation Research, 677, 46–52.PubMedGoogle Scholar
  23. 23.
    Manikandan, P., Murugan, R. S., Priyadarsini, R. V., Vinothini, G., Nagini, S. (2010) Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life sciences. (in press)Google Scholar
  24. 24.
    Kundu, J. K., Na, H. K., & Surh, Y. J. (2009). Ginger-derived phenolic substances with cancer preventive and therapeutic potential. Forum of Nutrition, 61, 182–192.CrossRefPubMedGoogle Scholar
  25. 25.
    Dugasani, S., Pichika, M. R., Nadarajah, V. D., Balijepalli, M. K., Tandra, S., & Korlakunta, J. N. (2010). Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of Ethnopharmacology, 127, 515–520.CrossRefPubMedGoogle Scholar
  26. 26.
    Lee, H. S., Seo, E. Y., Kang, N. E., & Kim, W. K. (2008). [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. The Journal of Nutritional Biochemistry, 19, 313–319.CrossRefPubMedGoogle Scholar
  27. 27.
    Nigam, N., Bhui, K., Prasad, S., George, J., & Shukla, Y. (2009). [6]-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells. Chemico-Biological Interactions, 181, 77–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Rhode, J., Fogoros, S., Zick, S., Wahl, H., Griffith, K., Huang, J., et al. (2007). Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complementary and Alternative Medicine, 7, 44.CrossRefPubMedGoogle Scholar
  29. 29.
    Hoffman, T. (2007). Ginger: an ancient remedy and modern miracle drug. Hawaii Medical Journal, 66, 326–327.PubMedGoogle Scholar
  30. 30.
    Zick, S., Ruffin, M., Lee, J., Normolle, D., Siden, R., Alrawi, S., et al. (2009). Phase II trial of encapsulated ginger as a treatment for chemotherapy-induced nausea and vomiting. Supportive Care in Cancer, 17, 563–572.CrossRefPubMedGoogle Scholar
  31. 31.
    Taylor, W. G., Elder, J. L., Chang, P. R., & Richards, K. W. (2000). Microdetermination of diosgenin from fenugreek (Trigonella foenum-graecum) seeds. Journal of Agricultural and Food Chemistry, 48, 5206–5210.CrossRefPubMedGoogle Scholar
  32. 32.
    Raju, J., & Bird, R. P. (2007). Diosgenin, a naturally occurring steroid [corrected] saponin suppresses 3-hydroxy-3-methylglutaryl CoA reductase expression and induces apoptosis in HCT-116 human colon carcinoma cells. Cancer Letters, 255, 194–204.CrossRefPubMedGoogle Scholar
  33. 33.
    Shishodia, S., Aggarwal, B. B., Raju, J., Bird, R. P., Srinivasan, S., Koduru, S., et al. (2006). Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. Oncogene, 25, 1463–1473.CrossRefPubMedGoogle Scholar
  34. 34.
    Srinivasan, S., Koduru, S., Kumar, R., Venguswamy, G., Kyprianou, N., & Damodaran, C. (2009). Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. International Journal of Cancer, 125, 961–967.CrossRefGoogle Scholar
  35. 35.
    Raju, J., & Mehta, R. (2009). Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutrition and Cancer, 61, 27–35.CrossRefPubMedGoogle Scholar
  36. 36.
    Hummer, W., & Schreier, P. (2008). Analysis of proanthocyanidins. Molecular Nutrition & Food Research, 52, 1381–1398.CrossRefGoogle Scholar
  37. 37.
    Nassiri-Asl, M., & Hosseinzadeh, H. (2009). Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Phytotherapy Research, 23, 1197–1204.CrossRefPubMedGoogle Scholar
  38. 38.
    Sandhu, A. K., & Gu, L. (2010). Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of Vitis rotundifolia (Muscadine Grapes) As determined by HPLC-DAD-ESI-MS(n). Journal of Agricultural and Food Chemistry, 58, 4681–4692.CrossRefPubMedGoogle Scholar
  39. 39.
    Hsieh, T-c., & Wu, J. M. (2010) Resveratrol: biological and pharmaceutical properties as anticancer molecule. BioFactors (in press)Google Scholar
  40. 40.
    Yance, D. R., & Sagar, S. M. (2006). Targeting angiogenesis with integrative cancer therapies. Integrative Cancer Therapies, 5, 9–29.CrossRefPubMedGoogle Scholar
  41. 41.
    Guha, P., Dey, A., Sarkar, B., Dhyani, M. V., Chattopadhyay, S., & Bandyopadhyay, S. K. (2009). Improved antiulcer and anticancer properties of a trans-resveratrol analog in mice. The Journal of Pharmacology and Experimental Therapeutics, 328, 829–838.CrossRefPubMedGoogle Scholar
  42. 42.
    ClinicalTrials.gov. (2010). A clinical study to assess the safety and activity of srt501 alone or in combination with bortezomib in patients with multiple myeloma. Bethesda: National Institutes of Health.Google Scholar
  43. 43.
    Liu, P. L., Tsai, J. R., Charles, A. L., Hwang, J. J., Chou, S. H., Ping, Y. H., et al. (2010) Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases. Molecular Nutrition & Food Research (in press)Google Scholar
  44. 44.
    Uchiyama, T., Toda, K., & Takahashi, S. (2010). Resveratrol inhibits angiogenic response of cultured endothelial F-2 cells to vascular endothelial growth factor, but not to basic fibroblast growth factor. Biological & Pharmaceutical Bulletin, 33, 1095–1100.CrossRefGoogle Scholar
  45. 45.
    Gagliano, N., Aldini, G., Colombo, G., Rossi, R., Colombo, R., Gioia, M., et al. (2010). The potential of resveratrol against human gliomas. Anti-Cancer Drugs, 21, 140–150.CrossRefPubMedGoogle Scholar
  46. 46.
    Chatelain, K., Phippen, S., McCabe, J., Teeters, C. A., O’Malley, S., Kingsley, K. (2008) Cranberry and grape seed extracts inhibit the proliferative phenotype of oral squamous cell carcinomas. eCAM, nen047Google Scholar
  47. 47.
    Deziel, B. A., Patel, K., Neto, C., Gottschall-Pass, K., Hurta, R. A. (2010) Proanthocyanidins from the american cranberry (vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways. Journal of Cellular Biochemistry. (epub ahead of print)Google Scholar
  48. 48.
    Boehm, K., Borrelli, F., Ernst, E., Habacher, G., Hung SK, Milazzo S, et al. (2009) Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database of Systematic Reviews CD005004Google Scholar
  49. 49.
    Butt, M. S., & Sultan, M. T. (2009). Green tea: nature’s defense against malignancies. Critical Reviews in Food Science and Nutrition, 49, 463–473.CrossRefPubMedGoogle Scholar
  50. 50.
    Sagar, S. M., Yance, D., & Wong, R. K. (2006). Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1. Curr Oncol, 13, 14–26.PubMedGoogle Scholar
  51. 51.
    Hazgui, S., Bonnomet, A., Nawrocki-Raby, B., Milliot, M., Terryn, C., Cutrona, J., et al. (2008). Epigallocatechin-3-gallate (EGCG) inhibits the migratory behavior of tumor bronchial epithelial cells. Respiratory Research, 9, 33.CrossRefPubMedGoogle Scholar
  52. 52.
    Kato, K., Long, N. K., Makita, H., Toida, M., Yamashita, T., Hatakeyama, D., et al. (2008). Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. British Journal of Cancer, 99, 647–654.CrossRefPubMedGoogle Scholar
  53. 53.
    Larsen, C. A., & Dashwood, R. H. (2010) Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells. Archives of Biochemistry and Biophysics. Corrected ProofGoogle Scholar
  54. 54.
    Shankar, S., Ganapathy, S., Hingorani, S. R., & Srivastava, R. K. (2008). EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Frontiers in Bioscience, 13, 440–452.CrossRefPubMedGoogle Scholar
  55. 55.
    Issa, A. Y., Volate, S. R., Muga, S. J., Nitcheva, D., Smith, T., & Wargovich, M. J. (2007). Green tea selectively targets initial stages of intestinal carcinogenesis in the AOM-ApcMin mouse model. Carcinogenesis, 28, 1978–1984.CrossRefPubMedGoogle Scholar
  56. 56.
    Volate, S. R., Muga, S. J., Issa, A. Y., Nitcheva, D., Smith, T., & Wargovich, M. J. (2009). Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Molecular Carcinogenesis, 48, 920–933.CrossRefPubMedGoogle Scholar
  57. 57.
    Roomi, M. W., Monterrey, J. C., Kalinovsky, T., Rath, M., & Niedzwiecki, A. (2010). Comparative effects of EGCG, green tea and a nutrient mixture on the patterns of MMP-2 and MMP-9 expression in cancer cell lines. Oncology Reports, 24, 747–757.PubMedGoogle Scholar
  58. 58.
    Park, I. J., Lee, Y. K., Hwang, J. T., Kwon, D. Y., Ha, J., & Park, O. J. (2009). Green tea catechin controls apoptosis in colon cancer cells by attenuation of H2O2-stimulated COX-2 expression via the AMPK signaling pathway at low-dose H2O2. Annals of the New York Academy of Sciences, 1171, 538–544.CrossRefPubMedGoogle Scholar
  59. 59.
    Choi, K. C., Jung, M. G., Lee, Y. H., Yoon, J. C., Kwon, S. H., Kang, H. B., et al. (2009). Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Research, 69, 583–592.CrossRefPubMedGoogle Scholar
  60. 60.
    Fang, M., Chen, D., & Yang, C. S. (2007). Dietary polyphenols may affect DNA methylation. The Journal of Nutrition, 137, 223S–228S.PubMedGoogle Scholar
  61. 61.
    Srinivasan, K. (2007). Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Critical Reviews in Food Science and Nutrition, 47, 735–748.CrossRefPubMedGoogle Scholar
  62. 62.
    Aggarwal, B. B. (2010). Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annual Review of Nutrition, 30, 173–199.CrossRefPubMedGoogle Scholar
  63. 63.
    Bezerra, D. P., de Castro, F. O., Alves, A. P. N. N., Pessoa, C., de Moraes, M. O., Silveira, E. R., et al. (2008). In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine. Journal of Applied Toxicology, 28, 156–163.CrossRefPubMedGoogle Scholar
  64. 64.
    Pradeep, C. R., & Kuttan, G. (2002). Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clinical & Experimental Metastasis, 19, 703–708.CrossRefGoogle Scholar
  65. 65.
    Kakarala, M., Brenner, D., Korkaya, H., Cheng, C., Tazi, K., Ginestier, C., et al. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785.CrossRefPubMedGoogle Scholar
  66. 66.
    Barnes, S. (2010). The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphatic Research and Biology, 8, 89–98.CrossRefPubMedGoogle Scholar
  67. 67.
    Rakha, E. A., Reis-Filho, J. S., & Ellis, I. O. (2010). Combinatorial biomarker expression in breast cancer. Breast Cancer Research and Treatment, 120, 293–308.CrossRefPubMedGoogle Scholar
  68. 68.
    Franke, A. A., Halm, B. M., Kakazu, K., Li, X., & Custer, L. J. (2009). Phytoestrogenic isoflavonoids in epidemiologic and clinical research. Drug Testing and Analysis, 1, 14–21.CrossRefPubMedGoogle Scholar
  69. 69.
    Helferich, W. G., Andrade, J. E., & Hoagland, M. S. (2008). Phytoestrogens and breast cancer: a complex story. Inflammopharmacology, 16, 219–226.CrossRefPubMedGoogle Scholar
  70. 70.
    Nagata, C. (2010). Factors to consider in the association between soy isoflavone intake and breast cancer risk. Journal of Epidemiology, 20, 83–89.CrossRefPubMedGoogle Scholar
  71. 71.
    El-Rayes, B. F., Philip, P. A., Sarkar, F. H., Shields, A. F., Ferris, A. M., Hess, K., et al. (2010) A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Investigational New Drugs. (in press).Google Scholar
  72. 72.
    Vantyghem, S. A., Wilson, S. M., Postenka, C. O., Al-Katib, W., Tuck, A. B., & Chambers, A. F. (2005). Dietary genistein reduces metastasis in a postsurgical orthotopic breast cancer model. Cancer Research, 65, 3396–3403.PubMedGoogle Scholar
  73. 73.
    Lakshman, M., Xu, L., Ananthanarayanan, V., Cooper, J., Takimoto, C. H., Helenowski, I., et al. (2008). Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Research, 68, 2024–2032.CrossRefPubMedGoogle Scholar
  74. 74.
    Farina, H. G., Pomies, M., Alonso, D. F., & Gomez, D. E. (2006). Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncology Reports, 16, 885–891.PubMedGoogle Scholar
  75. 75.
    Singh, A. V., Franke, A. A., Blackburn, G. L., & Zhou, J. R. (2006). Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Research, 66, 1851–1858.CrossRefPubMedGoogle Scholar
  76. 76.
    Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Letters, 267, 133–164.CrossRefPubMedGoogle Scholar
  77. 77.
    Goel, A., Jhurani, S., & Aggarwal, B. B. (2008). Multi-targeted therapy by curcumin: how spicy is it? Molecular Nutrition & Food Research, 52, 1010–1030.CrossRefGoogle Scholar
  78. 78.
    Bachmeier, B. E., Killian, P., Pfeffer, U., & Nerlich, A. G. (2010). Novel aspects for the application of Curcumin in chemoprevention of various cancers. Frontiers in Bioscience: A Journal and Virtual Library (Schol Ed), 2, 697–717.CrossRefGoogle Scholar
  79. 79.
    Kamat, A. M., Tharakan, S. T., Sung, B., & Aggarwal, B. B. (2009). Curcumin potentiates the antitumor effects of Bacillus Calmette-Guerin against bladder cancer through the downregulation of NF-kappaB and upregulation of TRAIL receptors. Cancer Research, 69, 8958–8966.CrossRefPubMedGoogle Scholar
  80. 80.
    Kang, H. J., Lee, S. H., Price, J. E., & Kim, L. S. (2009). Curcumin suppresses the paclitaxel-induced nuclear factor-kappa beta in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. The Breast Journal, 15, 223–229.CrossRefPubMedGoogle Scholar
  81. 81.
    Kunnumakkara, A. B., Diagaradjane, P., Anand, P., Harikumar, K. B., Deorukhkar, A., Gelovani, J., et al. (2009). Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model. International Journal of Cancer, 125, 2187–2197.CrossRefGoogle Scholar
  82. 82.
    Lin, S.-S., Lai, K.-C., Hsu, S.-C., Yang, J.-S., Kuo, C.-L., Lin, J.-P., et al. (2009). Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and vascular endothelial growth factor (VEGF). Cancer Letters, 285, 127–133.CrossRefPubMedGoogle Scholar
  83. 83.
    Sandur, S. K., Deorukhkar, A., Pandey, M. K., Pabon, A. M., Shentu, S., Guha, S., et al. (2009). Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-kappaB activity. International Journal of Radiation Oncology, Biology, Physics, 75, 534–542.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michael J. Wargovich
    • 1
  • Jay Morris
    • 1
  • Vondina Brown
    • 1
  • Jane Ellis
    • 2
  • Britt Logothetis
    • 3
  • Rebecca Weber
    • 1
  1. 1.Department of Cell & Molecular Pharmacology and Experimental TherapeuticsHollings Cancer Center, Medical University of South CarolinaCharlestonUSA
  2. 2.Department of BiologyPresbyterian CollegeClintonUSA
  3. 3.Department of ChemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations