Cancer and Metastasis Reviews

, Volume 29, Issue 3, pp 405–434 | Cite as

Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals

  • Subash C. Gupta
  • Ji Hye Kim
  • Sahdeo Prasad
  • Bharat B. AggarwalEmail author


Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine and medicine be thy food.” Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed.


Inflammation NF-κB Nutraceuticals Therapeutics Tumorigenesis 



We thank Tamara Locke from the Department of Scientific Publications for carefully proofreading the manuscript and providing valuable comments. Dr. Aggarwal is the Ransom Horne, Jr., Professor of Cancer Research. This work was supported by a grant from the Clayton Foundation for Research (B.B.A.), a core grant from the National Institutes of Health (CA-16 672), a program project grant from National Institutes of Health (NIH CA-124787-01A2), and grant from Center for Targeted Therapy of M.D. Anderson Cancer Center.


  1. 1.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Aggarwal, B. B., Van Kuiken, M. E., Iyer, L. H., Harikumar, K. B., & Sung, B. (2009). Molecular targets of nutraceuticals derived from dietary spices: Potential role in suppression of inflammation and tumorigenesis. Experimental Biology and Medicine (Maywood, N.J), 234, 825–849.CrossRefGoogle Scholar
  3. 3.
    McGinnis, J. M., & Foege, W. H. (1993). Actual causes of death in the United States. JAMA, 270, 2207–2212.PubMedCrossRefGoogle Scholar
  4. 4.
    Reddy, L., Odhav, B., & Bhoola, K. D. (2003). Natural products for cancer prevention: A global perspective. Pharmacology & Therapeutics, 99, 1–13.CrossRefGoogle Scholar
  5. 5.
    Block, G., Patterson, B., & Subar, A. (1992). Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutrition and Cancer, 18, 1–29.PubMedCrossRefGoogle Scholar
  6. 6.
    Benetou, V., Orfanos, P., Lagiou, P., Trichopoulos, D., Boffetta, P., & Trichopoulou, A. (2008). Vegetables and fruits in relation to cancer risk: Evidence from the Greek EPIC cohort study. Cancer Epidemiology, Biomarkers & Prevention, 17, 387–392.CrossRefGoogle Scholar
  7. 7.
    Freedman, N. D., Park, Y., Subar, A. F., Hollenbeck, A. R., Leitzmann, M. F., Schatzkin, A., et al. (2008). Fruit and vegetable intake and head and neck cancer risk in a large United States prospective cohort study. International Journal of Cancer, 122, 2330–2336.CrossRefGoogle Scholar
  8. 8.
    Steinmetz, K. A., & Potter, J. D. (1996). Vegetables, fruit, and cancer prevention: A review. Journal of the American Dietetic Association, 96, 1027–1039.PubMedCrossRefGoogle Scholar
  9. 9.
    Doll, R., & Peto, R. (1981). The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. Journal of the National Cancer Institute, 66, 1191–1308.PubMedGoogle Scholar
  10. 10.
    Hardy, G., Hardy, I., & Ball, P. A. (2003). Nutraceuticals—A pharmaceutical viewpoint: Part II. Current Opinion in Clinical Nutrition and Metabolic Care, 6, 661–671.PubMedCrossRefGoogle Scholar
  11. 11.
    Chan, A. T., & Giovannucci, E. L. (2010). Primary prevention of colorectal cancer. Gastroenterology, 138, 2029.e10–2043.e10.Google Scholar
  12. 12.
    Khan, N., Afaq, F., & Mukhtar, H. (2008). Cancer chemoprevention through dietary antioxidants: Progress and promise. Antioxidants Redox Signaling, 10, 475–510.PubMedCrossRefGoogle Scholar
  13. 13.
    Syed, D. N., Suh, Y., Afaq, F., & Mukhtar, H. (2008). Dietary agents for chemoprevention of prostate cancer. Cancer Letters, 265, 167–176.PubMedCrossRefGoogle Scholar
  14. 14.
    Haseen, F., Cantwell, M. M., O'Sullivan, J. M., & Murray, L. J. (2009). Is there a benefit from lycopene supplementation in men with prostate cancer? A systematic review. Prostate Cancer and Prostatic Diseases, 12, 325–332.PubMedCrossRefGoogle Scholar
  15. 15.
    Bougnoux, P., Hajjaji, N., Maheo, K., Couet, C., & Chevalier, S. (2010). Fatty acids and breast cancer: Sensitization to treatments and prevention of metastatic re-growth. Progress in Lipid Research, 49, 76–86.PubMedCrossRefGoogle Scholar
  16. 16.
    Cranganu, A., & Camporeale, J. (2009). Nutrition aspects of lung cancer. Nutrition in Clinical Practice, 24, 688–700.PubMedCrossRefGoogle Scholar
  17. 17.
    Goralczyk, R. (2009). Beta-carotene and lung cancer in smokers: Review of hypotheses and status of research. Nutrition and Cancer, 61, 767–774.PubMedCrossRefGoogle Scholar
  18. 18.
    Bjelakovic, G., Nikolova, D., Simonetti, R.G., & Gluud, C. (2008). Antioxidant supplements for preventing gastrointestinal cancers. Cochrane Database of Systematic Reviews (Online), CD004183.Google Scholar
  19. 19.
    Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Letters, 267, 133–164.PubMedCrossRefGoogle Scholar
  20. 20.
    Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10, 789–799.PubMedCrossRefGoogle Scholar
  21. 21.
    Amin, A. R., Kucuk, O., Khuri, F. R., & Shin, D. M. (2009). Perspectives for cancer prevention with natural compounds. Journal of Clinical Oncology, 27, 2712–2725.PubMedCrossRefGoogle Scholar
  22. 22.
    Martinez, M. E., Marshall, J. R., & Giovannucci, E. (2008). Diet and cancer prevention: The roles of observation and experimentation. Nature Reviews. Cancer, 8, 694–703.PubMedCrossRefGoogle Scholar
  23. 23.
    Brower, V. (1998). Nutraceuticals: Poised for a healthy slice of the healthcare market? Nature Biotechnology, 16, 728–731.PubMedCrossRefGoogle Scholar
  24. 24.
    Zeisel, S. H. (1999). Regulation of “nutraceuticals”. Science, 285, 1853–1855.PubMedCrossRefGoogle Scholar
  25. 25.
    Kalra, E. K. (2003). Nutraceutical–Definition and introduction. AAPS PharmSci, 5, E25.PubMedCrossRefGoogle Scholar
  26. 26.
    Aggarwal, B. B., & Gehlot, P. (2009). Inflammation and cancer: How friendly is the relationship for cancer patients? Current Opinion in Pharmacology, 9, 351–369.PubMedCrossRefGoogle Scholar
  27. 27.
    Kabrun, N., & Enrietto, P. J. (1994). The Rel family of proteins in oncogenesis and differentiation. Seminars in Cancer Biology, 5, 103–112.PubMedGoogle Scholar
  28. 28.
    Ghosh, S., & Karin, M. (2002). Missing pieces in the NF-kappaB puzzle. Cell, 109(Suppl), S81–S96.PubMedCrossRefGoogle Scholar
  29. 29.
    Gupta, S.C., Sundaram, C., Reuter, S., & Aggarwal, B.B. (2010). Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochimica et Biophysica Acta, in pressGoogle Scholar
  30. 30.
    Plummer, S. M., Holloway, K. A., Manson, M. M., Munks, R. J., Kaptein, A., Farrow, S., et al. (1999). Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene, 18, 6013–6020.PubMedCrossRefGoogle Scholar
  31. 31.
    Singh, S., & Aggarwal, B. B. (1995). Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. The Journal of Biological Chemistry, 270, 24995–25000.PubMedCrossRefGoogle Scholar
  32. 32.
    Bharti, A. C., Donato, N., Singh, S., & Aggarwal, B. B. (2003). Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood, 101, 1053–1062.PubMedCrossRefGoogle Scholar
  33. 33.
    Philip, S., & Kundu, G. C. (2003). Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha/IKK signaling pathways, and curcumin (diferuloylmethane) down-regulates these pathways. The Journal of Biological Chemistry, 278, 14487–14497.PubMedCrossRefGoogle Scholar
  34. 34.
    Kunnumakkara, A. B., Diagaradjane, P., Anand, P., Harikumar, K. B., Deorukhkar, A., Gelovani, J., et al. (2009). Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model. International Journal of Cancer, 125, 2187–2197.CrossRefGoogle Scholar
  35. 35.
    Shishodia, S., & Aggarwal, B. B. (2004). Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. The Journal of Biological Chemistry, 279, 47148–47158.PubMedCrossRefGoogle Scholar
  36. 36.
    Mouria, M., Gukovskaya, A. S., Jung, Y., Buechler, P., Hines, O. J., Reber, H. A., et al. (2002). Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. International Journal of Cancer, 98, 761–769.CrossRefGoogle Scholar
  37. 37.
    Banerjee, S., Bueso-Ramos, C., & Aggarwal, B. B. (2002). Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Research, 62, 4945–4954.PubMedGoogle Scholar
  38. 38.
    Aggarwal, B. B., & Shishodia, S. (2004). Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: Reasoning for seasoning. Annals of the New York Academy of Sciences, 1030, 434–441.PubMedCrossRefGoogle Scholar
  39. 39.
    Surh, Y. J., & Lee, S. S. (1995). Capsaicin, a double-edged sword: Toxicity, metabolism, and chemopreventive potential. Life Sciences, 56, 1845–1855.PubMedCrossRefGoogle Scholar
  40. 40.
    Surh, Y. J., & Lee, S. S. (1996). Capsaicin in hot chili pepper: Carcinogen, co-carcinogen or anticarcinogen? Food and Chemical Toxicology, 34, 313–316.PubMedCrossRefGoogle Scholar
  41. 41.
    Surh, Y. J., Lee, R. C., Park, K. K., Mayne, S. T., Liem, A., & Miller, J. A. (1995). Chemoprotective effects of capsaicin and diallyl sulfide against mutagenesis or tumorigenesis by vinyl carbamate and N-nitrosodimethylamine. Carcinogenesis, 16, 2467–2471.PubMedCrossRefGoogle Scholar
  42. 42.
    Surh, Y. J. (2002). More than spice: Capsaicin in hot chili peppers makes tumor cells commit suicide. Journal of the National Cancer Institute, 94, 1263–1265.PubMedGoogle Scholar
  43. 43.
    Han, S. S., Keum, Y. S., Seo, H. J., Chun, K. S., Lee, S. S., & Surh, Y. J. (2001). Capsaicin suppresses phorbol ester-induced activation of NF-kappaB/Rel and AP-1 transcription factors in mouse epidermis. Cancer Letters, 164, 119–126.PubMedCrossRefGoogle Scholar
  44. 44.
    Natarajan, K., Singh, S., Burke, T. R., Jr., Grunberger, D., & Aggarwal, B. B. (1996). Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proceedings of the National Academy of Sciences of the United States of America, 93, 9090–9095.PubMedCrossRefGoogle Scholar
  45. 45.
    Chaturvedi, M. M., Kumar, A., Darnay, B. G., Chainy, G. B., Agarwal, S., & Aggarwal, B. B. (1997). Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-kappaB activation, IkappaBalpha phosphorylation, and degradation. The Journal of Biological Chemistry, 272, 30129–30134.PubMedCrossRefGoogle Scholar
  46. 46.
    Kumar, A., Dhawan, S., & Aggarwal, B. B. (1998). Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) inhibits TNF-induced NF-kappaB activation, IkappaB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene, 17, 913–918.PubMedCrossRefGoogle Scholar
  47. 47.
    Jing, Y., Yang, J., Wang, Y., Li, H., Chen, Y., Hu, Q., et al. (2006). Alteration of subcellular redox equilibrium and the consequent oxidative modification of nuclear factor kappaB are critical for anticancer cytotoxicity by emodin, a reactive oxygen species-producing agent. Free Radical Biology & Medicine, 40, 2183–2197.CrossRefGoogle Scholar
  48. 48.
    Nomura, M., Ma, W., Chen, N., Bode, A. M., & Dong, Z. (2000). Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced NF-kappaB activation by tea polyphenols, (−)-epigallocatechin gallate and theaflavins. Carcinogenesis, 21, 1885–1890.PubMedCrossRefGoogle Scholar
  49. 49.
    Afaq, F., Adhami, V. M., Ahmad, N., & Mukhtar, H. (2003). Inhibition of ultraviolet B-mediated activation of nuclear factor kappaB in normal human epidermal keratinocytes by green tea constituent (−)-epigallocatechin-3-gallate. Oncogene, 22, 1035–1044.PubMedCrossRefGoogle Scholar
  50. 50.
    Choi, K. C., Jung, M. G., Lee, Y. H., Yoon, J. C., Kwon, S. H., Kang, H. B., et al. (2009). Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Research, 69, 583–592.PubMedCrossRefGoogle Scholar
  51. 51.
    Choi, K. C., Lee, Y. H., Jung, M. G., Kwon, S. H., Kim, M. J., Jun, W. J., et al. (2009). Gallic acid suppresses lipopolysaccharide-induced nuclear factor-kappaB signaling by preventing RelA acetylation in A549 lung cancer cells. Molecular Cancer Research, 7, 2011–2021.PubMedCrossRefGoogle Scholar
  52. 52.
    Sung, B., Pandey, M. K., Ahn, K. S., Yi, T., Chaturvedi, M. M., Liu, M., et al. (2008). Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood, 111, 4880–4891.PubMedCrossRefGoogle Scholar
  53. 53.
    Steller, H. (1995). Mechanisms and genes of cellular suicide. Science, 267, 1445–1449.PubMedCrossRefGoogle Scholar
  54. 54.
    Green, D. R. (2000). Apoptotic pathways: Paper wraps stone blunts scissors. Cell, 102, 1–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Meier, P., Finch, A., & Evan, G. (2000). Apoptosis in development. Nature, 407, 796–801.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang, S., Yang, D., & Lippman, M. E. (2003). Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Seminars in Oncology, 30, 133–142.PubMedCrossRefGoogle Scholar
  57. 57.
    Ambrosini, G., Adida, C., & Altieri, D. C. (1997). A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Medicine, 3, 917–921.PubMedCrossRefGoogle Scholar
  58. 58.
    Campbell, C. T., Prince, M., Landry, G. M., Kha, V., & Kleiner, H. E. (2007). Pro-apoptotic effects of 1'-acetoxychavicol acetate in human breast carcinoma cells. Toxicology Letters, 173, 151–160.PubMedCrossRefGoogle Scholar
  59. 59.
    Ho, Y. T., Lu, C. C., Yang, J. S., Chiang, J. H., Li, T. C., Ip, S. W., et al. (2009). Berberine induced apoptosis via promoting the expression of caspase-8, -9 and -3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells. Anticancer Research, 29, 4063–4070.PubMedGoogle Scholar
  60. 60.
    Katiyar, S. K., Meeran, S. M., Katiyar, N., & Akhtar, S. (2009). p53 cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Molecular Carcinogenesis, 48, 24–37.PubMedCrossRefGoogle Scholar
  61. 61.
    Takada, Y., Sethi, G., Sung, B., & Aggarwal, B. B. (2008). Flavopiridol suppresses tumor necrosis factor-induced activation of activator protein-1, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK, and Akt, inhibits expression of antiapoptotic gene products, and enhances apoptosis through cytochrome c release and caspase activation in human myeloid cells. Molecular Pharmacology, 73, 1549–1557.PubMedCrossRefGoogle Scholar
  62. 62.
    Gu, H., Rao, S., Zhao, J., Wang, J., Mu, R., Rong, J., et al. (2009). Gambogic acid reduced bcl-2 expression via p53 in human breast MCF-7 cancer cells. Journal of Cancer Research and Clinical Oncology, 135, 1777–1782.PubMedCrossRefGoogle Scholar
  63. 63.
    Xu, X., Liu, Y., Wang, L., He, J., Zhang, H., Chen, X., et al. (2009). Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells. International Journal of Dermatology, 48, 186–192.PubMedCrossRefGoogle Scholar
  64. 64.
    Liao, C. H., Sang, S., Ho, C. T., & Lin, J. K. (2005). Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells. Journal of Cellular Biochemistry, 96, 155–169.PubMedCrossRefGoogle Scholar
  65. 65.
    Choi, H. S., Cho, M. C., Lee, H. G., & Yoon, D. Y. (2010). Indole-3-carbinol induces apoptosis through p53 and activation of caspase-8 pathway in lung cancer A549 cells. Food and Chemical Toxicology, 48, 883–890.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhao, W., Bao, P., Qi, H., & You, H. (2010). Resveratrol down-regulates survivin and induces apoptosis in human multidrug-resistant SPC-A-1/CDDP cells. Oncology Reports, 23, 279–286.PubMedCrossRefGoogle Scholar
  67. 67.
    Choi, W. Y., Jin, C. Y., Han, M. H., Kim, G. Y., Kim, N. D., Lee, W. H., et al. (2009). Sanguinarine sensitizes human gastric adenocarcinoma AGS cells to TRAIL-mediated apoptosis via down-regulation of AKT and activation of caspase-3. Anticancer Research, 29, 4457–4465.PubMedGoogle Scholar
  68. 68.
    Choi, W. Y., Kim, G. Y., Lee, W. H., & Choi, Y. H. (2008). Sanguinarine, a benzophenanthridine alkaloid, induces apoptosis in MDA-MB-231 human breast carcinoma cells through a reactive oxygen species-mediated mitochondrial pathway. Chemotherapy, 54, 279–287.PubMedCrossRefGoogle Scholar
  69. 69.
    Han, M. H., Yoo, Y. H., & Choi, Y. H. (2008). Sanguinarine-induced apoptosis in human leukemia U937 cells via Bcl-2 downregulation and caspase-3 activation. Chemotherapy, 54, 157–165.PubMedCrossRefGoogle Scholar
  70. 70.
    Shankar, S., Chen, Q., Sarva, K., Siddiqui, I., & Srivastava, R. K. (2007). Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: Molecular mechanisms of apoptosis, migration and angiogenesis. Journal of Molecular Signaling, 2, 10.PubMedCrossRefGoogle Scholar
  71. 71.
    Shankar, S., & Srivastava, R. K. (2007). Involvement of Bcl-2 family members, phosphatidylinositol 3'-kinase/AKT and mitochondrial p53 in curcumin (diferuloylmethane)-induced apoptosis in prostate cancer. International Journal of Oncology, 30, 905–918.PubMedGoogle Scholar
  72. 72.
    Siegelin, M. D., Gaiser, T., & Siegelin, Y. (2009). The XIAP inhibitor embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by down-regulation of the short isoform of FLIP. Neurochemistry International, 55, 423–430.PubMedCrossRefGoogle Scholar
  73. 73.
    Szliszka, E., Czuba, Z. P., Mazur, B., Sedek, L., Paradysz, A., & Krol, W. (2009). Chalcones enhance TRAIL-induced apoptosis in prostate cancer cells. International Journal of Molecular Sciences, 11, 1–13.PubMedCrossRefGoogle Scholar
  74. 74.
    Pan, L., Becker, H., & Gerhauser, C. (2005). Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Molecular Nutrition & Food Research, 49, 837–843.CrossRefGoogle Scholar
  75. 75.
    Chintharlapalli, S., Papineni, S., Ramaiah, S. K., & Safe, S. (2007). Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Research, 67, 2816–2823.PubMedCrossRefGoogle Scholar
  76. 76.
    Frese, S., Frese-Schaper, M., Andres, A. C., Miescher, D., Zumkehr, B., & Schmid, R. A. (2006). Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5. Cancer Research, 66, 5867–5874.PubMedCrossRefGoogle Scholar
  77. 77.
    Prasad, S., Ravindran, J., Sung, B., Pandey, M. K., & Aggarwal, B. B. (2010). Garcinol potentiates TRAIL-induced apoptosis through modulation of death receptors and antiapoptotic proteins. Molecular Cancer Therapeutics, 9, 856–868.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim, J. Y., Kim, E. H., Kim, S. U., Kwon, T. K., & Choi, K. S. (2010). Capsaicin sensitizes malignant glioma cells to TRAIL-mediated apoptosis via DR5 upregulation and survivin downregulation. Carcinogenesis, 31, 367–375.PubMedCrossRefGoogle Scholar
  79. 79.
    Sung, B., Park, B., Yadav, V. R., & Aggarwal, B. B. (2010). Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors. The Journal of Biological Chemistry, 285, 11498–11507.PubMedCrossRefGoogle Scholar
  80. 80.
    Yodkeeree, S., Sung, B., Limtrakul, P., & Aggarwal, B. B. (2009). Zerumbone enhances TRAIL-induced apoptosis through the induction of death receptors in human colon cancer cells: Evidence for an essential role of reactive oxygen species. Cancer Research, 69, 6581–6589.PubMedCrossRefGoogle Scholar
  81. 81.
    Sakinah, S. A., Handayani, S. T., & Hawariah, L. P. (2007). Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio. Cancer Cell International, 7, 4.PubMedCrossRefGoogle Scholar
  82. 82.
    Kang, H. G., Jenabi, J. M., Liu, X. F., Reynolds, C. P., Triche, T. J., & Sorensen, P. H. (2010). Inhibition of the insulin-like growth factor I receptor by epigallocatechin gallate blocks proliferation and induces the death of Ewing tumor cells. Molecular Cancer Therapeutics, 9, 1396–1407.PubMedCrossRefGoogle Scholar
  83. 83.
    Ouyang, G., Yao, L., Ruan, K., Song, G., Mao, Y., & Bao, S. (2009). Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways. Cell Biology International, 33, 1237–1244.PubMedCrossRefGoogle Scholar
  84. 84.
    Ramakrishnan, G., Lo Muzio, L., Elinos-Baez, C. M., Jagan, S., Augustine, T. A., Kamaraj, S., et al. (2009). Silymarin inhibited proliferation and induced apoptosis in hepatic cancer cells. Cell Proliferation, 42, 229–240.PubMedCrossRefGoogle Scholar
  85. 85.
    Muto, A., Hori, M., Sasaki, Y., Saitoh, A., Yasuda, I., Maekawa, T., et al. (2007). Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Molecular Cancer Therapeutics, 6, 987–994.PubMedCrossRefGoogle Scholar
  86. 86.
    Bhutani, M., Pathak, A. K., Nair, A. S., Kunnumakkara, A. B., Guha, S., Sethi, G., et al. (2007). Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clinical Cancer Research, 13, 3024–3032.PubMedCrossRefGoogle Scholar
  87. 87.
    Ito, S., Oyake, T., Murai, K., & Ishida, Y. (2010). Deguelin suppresses cell proliferation via the inhibition of survivin expression and STAT3 phosphorylation in HTLV-1-transformed T cells. Leukemia Research, 34, 352–357.PubMedCrossRefGoogle Scholar
  88. 88.
    Nair, A. S., Shishodia, S., Ahn, K. S., Kunnumakkara, A. B., Sethi, G., & Aggarwal, B. B. (2006). Deguelin, an Akt inhibitor, suppresses IkappaBalpha kinase activation leading to suppression of NF-kappaB-regulated gene expression, potentiation of apoptosis, and inhibition of cellular invasion. Journal of Immunology, 177, 5612–5622.Google Scholar
  89. 89.
    Ito, K., Nakazato, T., Murakami, A., Yamato, K., Miyakawa, Y., Yamada, T., et al. (2004). Induction of apoptosis in human myeloid leukemic cells by 1'-acetoxychavicol acetate through a mitochondrial- and Fas-mediated dual mechanism. Clinical Cancer Research, 10, 2120–2130.PubMedCrossRefGoogle Scholar
  90. 90.
    Ahmad, A., Wang, Z., Ali, R., Maitah, M. Y., Kong, D., Banerjee, S., et al. (2010). Apoptosis-inducing effect of garcinol is mediated by NF-kappaB signaling in breast cancer cells. Journal of Cellular Biochemistry, 109, 1134–1141.PubMedGoogle Scholar
  91. 91.
    Ahmad, A., Banerjee, S., Wang, Z., Kong, D., & Sarkar, F. H. (2008). Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of NF-kappaB and Bcl-2. Journal of Cellular Biochemistry, 105, 1461–1471.PubMedCrossRefGoogle Scholar
  92. 92.
    Gomathinayagam, R., Sowmyalakshmi, S., Mardhatillah, F., Kumar, R., Akbarsha, M. A., & Damodaran, C. (2008). Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. Anticancer Research, 28, 785–792.PubMedGoogle Scholar
  93. 93.
    Murtaza, I., Adhami, V. M., Hafeez, B. B., Saleem, M., & Mukhtar, H. (2009). Fisetin, a natural flavonoid, targets chemoresistant human pancreatic cancer AsPC-1 cells through DR3-mediated inhibition of NF-kappaB. International Journal of Cancer, 125, 2465–2473.CrossRefGoogle Scholar
  94. 94.
    Shankar, S., Ganapathy, S., & Srivastava, R. K. (2008). Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis. Clinical Cancer Research, 14, 6855–6866.PubMedCrossRefGoogle Scholar
  95. 95.
    Ichikawa, H., Takada, Y., Murakami, A., & Aggarwal, B. B. (2005). Identification of a novel blocker of I kappa B alpha kinase that enhances cellular apoptosis and inhibits cellular invasion through suppression of NF-kappa B-regulated gene products. Journal of Immunology, 174, 7383–7392.Google Scholar
  96. 96.
    Takada, Y., Kobayashi, Y., & Aggarwal, B. B. (2005). Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion. The Journal of Biological Chemistry, 280, 17203–17212.PubMedCrossRefGoogle Scholar
  97. 97.
    Sung, B., Ahn, K. S., & Aggarwal, B. B. (2010). Noscapine, a benzylisoquinoline alkaloid, sensitizes leukemic cells to chemotherapeutic agents and cytokines by modulating the NF-kappaB signaling pathway. Cancer Research, 70, 3259–3268.PubMedCrossRefGoogle Scholar
  98. 98.
    Sethi, G., Ahn, K. S., Sandur, S. K., Lin, X., Chaturvedi, M. M., & Aggarwal, B. B. (2006). Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. The Journal of Biological Chemistry, 281, 23425–23435.PubMedCrossRefGoogle Scholar
  99. 99.
    Ichikawa, H., Nair, M. S., Takada, Y., Sheeja, D. B., Kumar, M. A., Oommen, O. V., et al. (2006). Isodeoxyelephantopin, a novel sesquiterpene lactone, potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis through suppression of nuclear factor-kappaB (nf-kappaB) activation and nf-kappaB-regulated gene expression. Clinical Cancer Research, 12, 5910–5918.PubMedCrossRefGoogle Scholar
  100. 100.
    Kunnumakkara, A. B., Ichikawa, H., Anand, P., Mohankumar, C. J., Hema, P. S., Nair, M. S., et al. (2008). Coronarin D, a labdane diterpene, inhibits both constitutive and inducible nuclear factor-kappa B pathway activation, leading to potentiation of apoptosis, inhibition of invasion, and suppression of osteoclastogenesis. Molecular Cancer Therapeutics, 7, 3306–3317.PubMedCrossRefGoogle Scholar
  101. 101.
    Sethi, G., Ahn, K. S., & Aggarwal, B. B. (2008). Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Molecular Cancer Research, 6, 1059–1070.PubMedCrossRefGoogle Scholar
  102. 102.
    Ahn, K. S., Sethi, G., Krishnan, K., & Aggarwal, B. B. (2007). Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. The Journal of Biological Chemistry, 282, 809–820.PubMedCrossRefGoogle Scholar
  103. 103.
    Harikumar, K. B., Sung, B., Pandey, M. K., Guha, S., Krishnan, S., & Aggarwal, B. B. (2010). Escin, a pentacyclic triterpene, chemosensitizes human tumor cells through inhibition of nuclear factor-kappaB signaling pathway. Molecular Pharmacology, 77, 818–827.PubMedCrossRefGoogle Scholar
  104. 104.
    Ichikawa, H., Takada, Y., Shishodia, S., Jayaprakasam, B., Nair, M. G., & Aggarwal, B. B. (2006). Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB-regulated gene expression. Molecular Cancer Therapeutics, 5, 1434–1445.PubMedCrossRefGoogle Scholar
  105. 105.
    Heikkila, R., Schwab, G., Wickstrom, E., Loke, S. L., Pluznik, D. H., Watt, R., et al. (1987). A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1. Nature, 328, 445–449.PubMedCrossRefGoogle Scholar
  106. 106.
    Ryan, K. M., & Birnie, G. D. (1996). Myc oncogenes: The enigmatic family. The Biochemical Journal, 314(Pt 3), 713–721.PubMedGoogle Scholar
  107. 107.
    Evan, G. I., & Littlewood, T. D. (1993). The role of c-myc in cell growth. Current Opinion in Genetics & Development, 3, 44–49.CrossRefGoogle Scholar
  108. 108.
    Kuerbitz, S. J., Plunkett, B. S., Walsh, W. V., & Kastan, M. B. (1992). Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proceedings of the National Academy of Sciences of the United States of America, 89, 7491–7495.PubMedCrossRefGoogle Scholar
  109. 109.
    Dulic, V., Kaufmann, W. K., Wilson, S. J., Tlsty, T. D., Lees, E., Harper, J. W., et al. (1994). p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell, 76, 1013–1023.PubMedCrossRefGoogle Scholar
  110. 110.
    el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell, 75, 817–825.PubMedCrossRefGoogle Scholar
  111. 111.
    Weinberg, R. A. (1995). The retinoblastoma protein and cell cycle control. Cell, 81, 323–330.PubMedCrossRefGoogle Scholar
  112. 112.
    King, K. L., & Cidlowski, J. A. (1998). Cell cycle regulation and apoptosis. Annual Review of Physiology, 60, 601–617.PubMedCrossRefGoogle Scholar
  113. 113.
    Hiebert, S. W. (1993). Regions of the retinoblastoma gene product required for its interaction with the E2F transcription factor are necessary for E2 promoter repression and pRb-mediated growth suppression. Molecular and Cellular Biology, 13, 3384–3391.PubMedGoogle Scholar
  114. 114.
    Qian, Y., Luckey, C., Horton, L., Esser, M., & Templeton, D. J. (1992). Biological function of the retinoblastoma protein requires distinct domains for hyperphosphorylation and transcription factor binding. Molecular and Cellular Biology, 12, 5363–5372.PubMedGoogle Scholar
  115. 115.
    Qin, X. Q., Chittenden, T., Livingston, D. M., & Kaelin, W. G., Jr. (1992). Identification of a growth suppression domain within the retinoblastoma gene product. Genes & Development, 6, 953–964.CrossRefGoogle Scholar
  116. 116.
    Kujubu, D. A., Fletcher, B. S., Varnum, B. C., Lim, R. W., & Herschman, H. R. (1991). TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3 T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. The Journal of Biological Chemistry, 266, 12866–12872.PubMedGoogle Scholar
  117. 117.
    Maier, J. A., Hla, T., & Maciag, T. (1990). Cyclooxygenase is an immediate-early gene induced by interleukin-1 in human endothelial cells. The Journal of Biological Chemistry, 265, 10805–10808.PubMedGoogle Scholar
  118. 118.
    DuBois, R. N., Awad, J., Morrow, J., Roberts, L. J., 2nd, & Bishop, P. R. (1994). Regulation of eicosanoid production and mitogenesis in rat intestinal epithelial cells by transforming growth factor-alpha and phorbol ester. Journal of Clinical Investigation, 93, 493–498.PubMedCrossRefGoogle Scholar
  119. 119.
    Jones, D. A., Carlton, D. P., McIntyre, T. M., Zimmerman, G. A., & Prescott, S. M. (1993). Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. The Journal of Biological Chemistry, 268, 9049–9054.PubMedGoogle Scholar
  120. 120.
    Subbaramaiah, K., & Dannenberg, A. J. (2003). Cyclooxygenase 2: A molecular target for cancer prevention and treatment. Trends in Pharmacological Sciences, 24, 96–102.PubMedCrossRefGoogle Scholar
  121. 121.
    Dannenberg, A. J., Altorki, N. K., Boyle, J. O., Dang, C., Howe, L. R., Weksler, B. B., et al. (2001). Cyclo-oxygenase 2: A pharmacological target for the prevention of cancer. The Lancet Oncology, 2, 544–551.PubMedCrossRefGoogle Scholar
  122. 122.
    Liu, J. J., Huang, B., & Hooi, S. C. (2006). Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. British Journal of Pharmacology, 148, 1099–1107.PubMedCrossRefGoogle Scholar
  123. 123.
    Xu, S., Kojima-Yuasa, A., Azuma, H., Huang, X., Norikura, T., Kennedy, D. O., et al. (2008). (1'S)-Acetoxychavicol acetate and its enantiomer inhibit tumor cells proliferation via different mechanisms. Chem Biol Interact, 172, 216–223.PubMedCrossRefGoogle Scholar
  124. 124.
    Patlolla, J. M., Raju, J., Swamy, M. V., & Rao, C. V. (2006). Beta-escin inhibits colonic aberrant crypt foci formation in rats and regulates the cell cycle growth by inducing p21(waf1/cip1) in colon cancer cells. Molecular Cancer Therapeutics, 5, 1459–1466.PubMedCrossRefGoogle Scholar
  125. 125.
    Cai, X. Z., Wang, J., Li, X. D., Wang, G. L., Liu, F. N., Cheng, M. S., et al. (2009). Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression. Cancer Biology & Therapy, 8, 1360–1368.Google Scholar
  126. 126.
    Murillo, G., Peng, X., Torres, K. E., & Mehta, R. G. (2009). Deguelin inhibits growth of breast cancer cells by modulating the expression of key members of the Wnt signaling pathway. Cancer Prevention Research (Philadelphia, PA), 2, 942–950.Google Scholar
  127. 127.
    Kuo, P. L., Lin, T. C., & Lin, C. C. (2002). The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Sciences, 71, 1879–1892.PubMedCrossRefGoogle Scholar
  128. 128.
    Khan, N., Afaq, F., Syed, D. N., & Mukhtar, H. (2008). Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells. Carcinogenesis, 29, 1049–1056.PubMedCrossRefGoogle Scholar
  129. 129.
    Lee, Y. M., Lim, D. Y., Cho, H. J., Seon, M. R., Kim, J. K., Lee, B. Y., et al. (2009). Piceatannol, a natural stilbene from grapes, induces G1 cell cycle arrest in androgen-insensitive DU145 human prostate cancer cells via the inhibition of CDK activity. Cancer Letters, 285, 166–173.PubMedCrossRefGoogle Scholar
  130. 130.
    Mateen, S., Tyagi, A., Agarwal, C., Singh, R. P., & Agarwal, R. (2010). Silibinin inhibits human nonsmall cell lung cancer cell growth through cell-cycle arrest by modulating expression and function of key cell-cycle regulators. Molecular Carcinogenesis, 49, 247–258.PubMedGoogle Scholar
  131. 131.
    Kaseb, A. O., Chinnakannu, K., Chen, D., Sivanandam, A., Tejwani, S., Menon, M., et al. (2007). Androgen receptor and E2F-1 targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer Research, 67, 7782–7788.PubMedCrossRefGoogle Scholar
  132. 132.
    Hung, H. (2007). Dietary quercetin inhibits proliferation of lung carcinoma cells. Forum of Nutrition, 60, 146–157.PubMedCrossRefGoogle Scholar
  133. 133.
    Bryant, C. S., Kumar, S., Chamala, S., Shah, J., Pal, J., Haider, M., et al. (2010). Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells. Molecular Cancer, 9, 47.PubMedCrossRefGoogle Scholar
  134. 134.
    Moon, D. O., Kim, M. O., Choi, Y. H., Hyun, J. W., Chang, W. Y., & Kim, G. Y. (2010). Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Letters, 288, 204–213.PubMedCrossRefGoogle Scholar
  135. 135.
    Ge, P., Ji, X., Ding, Y., Wang, X., Fu, S., Meng, F., et al. (2010). Celastrol causes apoptosis and cell cycle arrest in rat glioma cells. Neurological Research, 32, 94–100.PubMedCrossRefGoogle Scholar
  136. 136.
    Chen, M. C., Yu, C. H., Wang, S. W., Pu, H. F., Kan, S. F., Lin, L. C., et al. (2010). Anti-proliferative effects of evodiamine on human thyroid cancer cell line ARO. Journal of Cellular Biochemistry, 110, 1495–1503.PubMedCrossRefGoogle Scholar
  137. 137.
    Rong, J. J., Hu, R., Song, X. M., Ha, J., Lu, N., Qi, Q., et al. (2010). Gambogic acid triggers DNA damage signaling that induces p53/p21(Waf1/CIP1) activation through the ATR-Chk1 pathway. Cancer Letters, 296, 55–64.PubMedCrossRefGoogle Scholar
  138. 138.
    Yang, L. J., Chen, Y., Ma, Q., Fang, J., He, J., Cheng, Y. Q., et al. (2010). Effect of betulinic acid on the regulation of Hiwi and cyclin B1 in human gastric adenocarcinoma AGS cells. Acta Pharmacologica Sinica, 31, 66–72.PubMedCrossRefGoogle Scholar
  139. 139.
    Xian, M., Ito, K., Nakazato, T., Shimizu, T., Chen, C. K., Yamato, K., et al. (2007). Zerumbone, a bioactive sesquiterpene, induces G2/M cell cycle arrest and apoptosis in leukemia cells via a Fas- and mitochondria-mediated pathway. Cancer Science, 98, 118–126.PubMedCrossRefGoogle Scholar
  140. 140.
    Liu, Z., Liu, Q., Xu, B., Wu, J., Guo, C., Zhu, F., et al. (2009). Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutation Research, 662, 75–83.PubMedGoogle Scholar
  141. 141.
    Shishodia, S., Sethi, G., Ahn, K. S., & Aggarwal, B. B. (2007). Guggulsterone inhibits tumor cell proliferation, induces S-phase arrest, and promotes apoptosis through activation of c-Jun N-terminal kinase, suppression of Akt pathway, and downregulation of antiapoptotic gene products. Biochemical Pharmacology, 74, 118–130.PubMedCrossRefGoogle Scholar
  142. 142.
    Lin, Y. G., Kunnumakkara, A. B., Nair, A., Merritt, W. M., Han, L. Y., Armaiz-Pena, G. N., et al. (2007). Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clinical Cancer Research, 13, 3423–3430.PubMedCrossRefGoogle Scholar
  143. 143.
    Liu, Q., Loo, W. T., Sze, S. C., & Tong, Y. (2009). Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFkappaB, cyclinD and MMP-1 transcription. Phytomedicine, 16, 916–922.PubMedCrossRefGoogle Scholar
  144. 144.
    Suh, Y., Afaq, F., Johnson, J. J., & Mukhtar, H. (2009). A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-kappaB-signaling pathways. Carcinogenesis, 30, 300–307.PubMedCrossRefGoogle Scholar
  145. 145.
    Shishodia, S., & Aggarwal, B. B. (2006). Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. Oncogene, 25, 1463–1473.PubMedCrossRefGoogle Scholar
  146. 146.
    Manna, S. K., Aggarwal, R. S., Sethi, G., Aggarwal, B. B., & Ramesh, G. T. (2007). Morin (3, 5, 7, 2', 4'-pentahydroxyflavone) abolishes nuclear factor-kappaB activation induced by various carcinogens and inflammatory stimuli, leading to suppression of nuclear factor-kappaB-regulated gene expression and up-regulation of apoptosis. Clinical Cancer Research, 13, 2290–2297.PubMedCrossRefGoogle Scholar
  147. 147.
    Sethi, G., Ahn, K. S., Sung, B., & Aggarwal, B. B. (2008). Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis. Molecular Cancer Therapeutics, 7, 1604–1614.PubMedCrossRefGoogle Scholar
  148. 148.
    Shishodia, S., Majumdar, S., Banerjee, S., & Aggarwal, B. B. (2003). Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: Correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Research, 63, 4375–4383.PubMedGoogle Scholar
  149. 149.
    Chang, H. C., Chang, F. R., Wang, Y. C., Pan, M. R., Hung, W. C., & Wu, Y. C. (2007). A bioactive withanolide Tubocapsanolide A inhibits proliferation of human lung cancer cells via repressing Skp2 expression. Molecular Cancer Therapeutics, 6, 1572–1578.PubMedCrossRefGoogle Scholar
  150. 150.
    Brown, K. C., Witte, T. R., Hardman, W. E., Luo, H., Chen, Y. C., Carpenter, A. B., et al. (2010). Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway. PloS One, 5, e10243.PubMedCrossRefGoogle Scholar
  151. 151.
    Jiang, J., Ye, W., & Lin, Y. C. (2009). Gossypol inhibits the growth of MAT-LyLu prostate cancer cells by modulation of TGFbeta/Akt signaling. International Journal of Molecular Medicine, 24, 69–75.PubMedGoogle Scholar
  152. 152.
    Peterson, G., & Barnes, S. (1996). Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells. Cell Growth & Differentiation, 7, 1345–1351.Google Scholar
  153. 153.
    Peterson, G., & Barnes, S. (1993). Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. The Prostate, 22, 335–345.PubMedCrossRefGoogle Scholar
  154. 154.
    Constantinou, A., Kiguchi, K., & Huberman, E. (1990). Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Research, 50, 2618–2624.PubMedGoogle Scholar
  155. 155.
    Buckley, A. R., Buckley, D. J., Gout, P. W., Liang, H., Rao, Y. P., & Blake, M. J. (1993). Inhibition by genistein of prolactin-induced Nb2 lymphoma cell mitogenesis. Molecular and Cellular Endocrinology, 98, 17–25.PubMedCrossRefGoogle Scholar
  156. 156.
    Matsukawa, Y., Marui, N., Sakai, T., Satomi, Y., Yoshida, M., Matsumoto, K., et al. (1993). Genistein arrests cell cycle progression at G2-M. Cancer Research, 53, 1328–1331.PubMedGoogle Scholar
  157. 157.
    Pagliacci, M. C., Smacchia, M., Migliorati, G., Grignani, F., Riccardi, C., & Nicoletti, I. (1994). Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. European Journal of Cancer, 30A, 1675–1682.PubMedCrossRefGoogle Scholar
  158. 158.
    Casagrande, F., & Darbon, J. M. (2000). p21CIP1 is dispensable for the G2 arrest caused by genistein in human melanoma cells. Experimental Cell Research, 258, 101–108.PubMedCrossRefGoogle Scholar
  159. 159.
    Kuzumaki, T., Kobayashi, T., & Ishikawa, K. (1998). Genistein induces p21(Cip1/WAF1) expression and blocks the G1 to S phase transition in mouse fibroblast and melanoma cells. Biochemical and Biophysical Research Communications, 251, 291–295.PubMedCrossRefGoogle Scholar
  160. 160.
    Davis, J. N., Singh, B., Bhuiyan, M., & Sarkar, F. H. (1998). Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutrition and Cancer, 32, 123–131.PubMedCrossRefGoogle Scholar
  161. 161.
    Lian, F., Bhuiyan, M., Li, Y. W., Wall, N., Kraut, M., & Sarkar, F. H. (1998). Genistein-induced G2-M arrest, p21WAF1 upregulation, and apoptosis in a non-small-cell lung cancer cell line. Nutrition and Cancer, 31, 184–191.PubMedCrossRefGoogle Scholar
  162. 162.
    Li, Y., Upadhyay, S., Bhuiyan, M., & Sarkar, F. H. (1999). Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene, 18, 3166–3172.PubMedCrossRefGoogle Scholar
  163. 163.
    Alhasan, S. A., Pietrasczkiwicz, H., Alonso, M. D., Ensley, J., & Sarkar, F. H. (1999). Genistein-induced cell cycle arrest and apoptosis in a head and neck squamous cell carcinoma cell line. Nutrition and Cancer, 34, 12–19.PubMedCrossRefGoogle Scholar
  164. 164.
    Touny, L. H., & Banerjee, P. P. (2006). Identification of both Myt-1 and Wee-1 as necessary mediators of the p21-independent inactivation of the cdc-2/cyclin B1 complex and growth inhibition of TRAMP cancer cells by genistein. The Prostate, 66, 1542–1555.PubMedCrossRefGoogle Scholar
  165. 165.
    Sternlicht, M. D., & Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annual Review of Cell and Developmental Biology, 17, 463–516.PubMedCrossRefGoogle Scholar
  166. 166.
    Jiang, M. C., Liao, C. F., & Lee, P. H. (2001). Aspirin inhibits matrix metalloproteinase-2 activity, increases E-cadherin production, and inhibits in vitro invasion of tumor cells. Biochemical and Biophysical Research Communications, 282, 671–677.PubMedCrossRefGoogle Scholar
  167. 167.
    Aimes, R. T., & Quigley, J. P. (1995). Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. The Journal of Biological Chemistry, 270, 5872–5876.PubMedCrossRefGoogle Scholar
  168. 168.
    Kleiner, D. E., Jr., & Stetler-Stevenson, W. G. (1993). Structural biochemistry and activation of matrix metalloproteases. Current Opinion in Cell Biology, 5, 891–897.PubMedCrossRefGoogle Scholar
  169. 169.
    Lochter, A., & Bissell, M. J. (1999). An odyssey from breast to bone: Multi-step control of mammary metastases and osteolysis by matrix metalloproteinases. APMIS, 107, 128–136.PubMedCrossRefGoogle Scholar
  170. 170.
    Davidson, B., Goldberg, I., Liokumovich, P., Kopolovic, J., Gotlieb, W. H., Lerner-Geva, L., et al. (1998). Expression of metalloproteinases and their inhibitors in adenocarcinoma of the uterine cervix. International Journal of Gynecological Pathology, 17, 295–301.PubMedCrossRefGoogle Scholar
  171. 171.
    Kugler, A., Hemmerlein, B., Thelen, P., Kallerhoff, M., Radzun, H. J., & Ringert, R. H. (1998). Expression of metalloproteinase 2 and 9 and their inhibitors in renal cell carcinoma. Journal d'Urologie, 160, 1914–1918.CrossRefGoogle Scholar
  172. 172.
    Hashimoto, K., Kihira, Y., Matuo, Y., & Usui, T. (1998). Expression of matrix metalloproteinase-7 and tissue inhibitor of metalloproteinase-1 in human prostate. Journal d'Urologie, 160, 1872–1876.CrossRefGoogle Scholar
  173. 173.
    Sutinen, M., Kainulainen, T., Hurskainen, T., Vesterlund, E., Alexander, J. P., Overall, C. M., et al. (1998). Expression of matrix metalloproteinases (MMP-1 and -2) and their inhibitors (TIMP-1, -2 and -3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis. British Journal of Cancer, 77, 2239–2245.PubMedGoogle Scholar
  174. 174.
    Gonzalez-Avila, G., Iturria, C., Vadillo, F., Teran, L., Selman, M., & Perez-Tamayo, R. (1998). 72-kD (MMP-2) and 92-kD (MMP-9) type IV collagenase production and activity in different histologic types of lung cancer cells. Pathobiology, 66, 5–16.PubMedCrossRefGoogle Scholar
  175. 175.
    Nawrocki, B., Polette, M., Marchand, V., Monteau, M., Gillery, P., Tournier, J. M., et al. (1997). Expression of matrix metalloproteinases and their inhibitors in human bronchopulmonary carcinomas: Quantificative and morphological analyses. International Journal of Cancer, 72, 556–564.CrossRefGoogle Scholar
  176. 176.
    Bramhall, S. R. (1997). The matrix metalloproteinases and their inhibitors in pancreatic cancer. From molecular science to a clinical application. International Journal of Pancreatology, 21, 1–12.PubMedGoogle Scholar
  177. 177.
    Chapman, H. A., Riese, R. J., & Shi, G. P. (1997). Emerging roles for cysteine proteases in human biology. Annual Review of Physiology, 59, 63–88.PubMedCrossRefGoogle Scholar
  178. 178.
    Andreasen, P. A., Kjoller, L., Christensen, L., & Duffy, M. J. (1997). The urokinase-type plasminogen activator system in cancer metastasis: A review. International Journal of Cancer, 72, 1–22.CrossRefGoogle Scholar
  179. 179.
    Nerlov, C., Rorth, P., Blasi, F., & Johnsen, M. (1991). Essential AP-1 and PEA3 binding elements in the human urokinase enhancer display cell type-specific activity. Oncogene, 6, 1583–1592.PubMedGoogle Scholar
  180. 180.
    Lengyel, E., Gum, R., Stepp, E., Juarez, J., Wang, H., & Boyd, D. (1996). Regulation of urokinase-type plasminogen activator expression by an ERK1-dependent signaling pathway in a squamous cell carcinoma cell line. Journal of Cellular Biochemistry, 61, 430–443.PubMedCrossRefGoogle Scholar
  181. 181.
    Wang, Y. (2001). The role and regulation of urokinase-type plasminogen activator receptor gene expression in cancer invasion and metastasis. Medicinal Research Reviews, 21, 146–170.PubMedCrossRefGoogle Scholar
  182. 182.
    Mo, S. J., Son, E. W., Rhee, D. K., & Pyo, S. (2003). Modulation of TNF-alpha-induced ICAM-1 expression, NO and H2O2 production by alginate, allicin and ascorbic acid in human endothelial cells. Archives of Pharmacal Research, 26, 244–251.PubMedCrossRefGoogle Scholar
  183. 183.
    Chu, Q., Ling, M. T., Feng, H., Cheung, H. W., Tsao, S. W., Wang, X., et al. (2006). A novel anticancer effect of garlic derivatives: Inhibition of cancer cell invasion through restoration of E-cadherin expression. Carcinogenesis, 27, 2180–2189.PubMedCrossRefGoogle Scholar
  184. 184.
    Hwang, E. S., & Lee, H. J. (2006). Allyl isothiocyanate and its N-acetylcysteine conjugate suppress metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in SK-Hep 1 human hepatoma cells. Experimental Biology and Medicine (Maywood, NJ), 231, 421–430.Google Scholar
  185. 185.
    Way, T. D., & Lin, J. K. (2005). Role of HER2/HER3 co-receptor in breast carcinogenesis. Future Oncology, 1, 841–849.PubMedCrossRefGoogle Scholar
  186. 186.
    Piantelli, M., Rossi, C., Iezzi, M., La Sorda, R., Iacobelli, S., Alberti, S., et al. (2006). Flavonoids inhibit melanoma lung metastasis by impairing tumor cells endothelium interactions. Journal of Cellular Physiology, 207, 23–29.PubMedCrossRefGoogle Scholar
  187. 187.
    Tang, F., Wang, D., Duan, C., Huang, D., Wu, Y., Chen, Y., et al. (2009). Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting Rho kinase-mediated Ezrin phosphorylation at threonine 567. The Journal of Biological Chemistry, 284, 27456–27466.PubMedCrossRefGoogle Scholar
  188. 188.
    Zhang, L., Chen, W., & Li, X. (2008). A novel anticancer effect of butein: Inhibition of invasion through the ERK1/2 and NF-kappa B signaling pathways in bladder cancer cells. FEBS Letters, 582, 1821–1828.PubMedCrossRefGoogle Scholar
  189. 189.
    Pandey, M. K., Sandur, S. K., Sung, B., Sethi, G., Kunnumakkara, A. B., & Aggarwal, B. B. (2007). Butein, a tetrahydroxychalcone, inhibits nuclear factor (NF)-kappaB and NF-kappaB-regulated gene expression through direct inhibition of IkappaBalpha kinase beta on cysteine 179 residue. The Journal of Biological Chemistry, 282, 17340–17350.PubMedCrossRefGoogle Scholar
  190. 190.
    Park, W. H., Kim, S. H., & Kim, C. H. (2005). A new matrix metalloproteinase-9 inhibitor 3,4-dihydroxycinnamic acid (caffeic acid) from methanol extract of Euonymus alatus: Isolation and structure determination. Toxicology, 207, 383–390.PubMedCrossRefGoogle Scholar
  191. 191.
    Shin, D. H., Kim, O. H., Jun, H. S., & Kang, M. K. (2008). Inhibitory effect of capsaicin on B16-F10 melanoma cell migration via the phosphatidylinositol 3-kinase/Akt/Rac1 signal pathway. Experimental & Molecular Medicine, 40, 486–494.CrossRefGoogle Scholar
  192. 192.
    Huang, S. C., Ho, C. T., Lin-Shiau, S. Y., & Lin, J. K. (2005). Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochemical Pharmacology, 69, 221–232.PubMedCrossRefGoogle Scholar
  193. 193.
    Kozuki, Y., Miura, Y., & Yagasaki, K. (2000). Inhibitory effects of carotenoids on the invasion of rat ascites hepatoma cells in culture. Cancer Letters, 151, 111–115.PubMedCrossRefGoogle Scholar
  194. 194.
    Lee, S. J., Lee, K. W., Hur, H. J., Chun, J. Y., Kim, S. Y., & Lee, H. J. (2007). Phenolic phytochemicals derived from red pine (Pinus densiflora) inhibit the invasion and migration of SK-Hep-1 human hepatocellular carcinoma cells. Annals of the New York Academy of Sciences, 1095, 536–544.PubMedCrossRefGoogle Scholar
  195. 195.
    Zhu, H., Liu, X. W., Cai, T. Y., Cao, J., Tu, C. X., Lu, W., et al. (2010). Celastrol acts as a potent anti-metastatic agent targeting {beta}1 integrin and inhibiting cell–ECM adhesion, partially via the p38 MAPK pathway. Journal of Pharmacology and Experimental Therapeutics, 334, 489–499.PubMedCrossRefGoogle Scholar
  196. 196.
    Xiang, M., Qian, Z. Y., Zhou, C. H., Liu, J., & Li, W. N. (2006). Crocetin inhibits leukocyte adherence to vascular endothelial cells induced by AGEs. Journal of Ethnopharmacology, 107, 25–31.PubMedCrossRefGoogle Scholar
  197. 197.
    Lin, H. J., Su, C. C., Lu, H. F., Yang, J. S., Hsu, S. C., Ip, S. W., et al. (2010). Curcumin blocks migration and invasion of mouse-rat hybrid retina ganglion cells (N18) through the inhibition of MMP-2, -9, FAK, Rho A and Rock-1 gene expression. Oncology Reports, 23, 665–670.PubMedCrossRefGoogle Scholar
  198. 198.
    Mitra, A., Chakrabarti, J., Banerji, A., Chatterjee, A., & Das, B. R. (2006). Curcumin, a potential inhibitor of MMP-2 in human laryngeal squamous carcinoma cells HEp2. Journal of Environmental Pathology, Toxicology and Oncology, 25, 679–690.PubMedGoogle Scholar
  199. 199.
    Thejass, P., & Kuttan, G. (2007). Antiangiogenic activity of diallyl sulfide (DAS). International Immunopharmacology, 7, 295–305.PubMedCrossRefGoogle Scholar
  200. 200.
    Hsu, E. L., Chen, N., Westbrook, A., Wang, F., Zhang, R., Taylor, R. T., et al. (2008). CXCR4 and CXCL12 down-regulation: A novel mechanism for the chemoprotection of 3,3′-diindolylmethane for breast and ovarian cancers. Cancer Letters, 265, 113–123.PubMedCrossRefGoogle Scholar
  201. 201.
    Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMedCrossRefGoogle Scholar
  202. 202.
    Vayalil, P. K., & Katiyar, S. K. (2004). Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-jun and NF-kappaB in human prostate carcinoma DU-145 cells. The Prostate, 59, 33–42.PubMedCrossRefGoogle Scholar
  203. 203.
    Yang, J., Wei, D., & Liu, J. (2005). Repressions of MMP-9 expression and NF-kappa B localization are involved in inhibition of lung carcinoma 95-D cell invasion by (−)-epigallocatechin-3-gallate. Biomedicine & Pharmacotherapy, 59, 98–103.CrossRefGoogle Scholar
  204. 204.
    Liao, Y. C., Shih, Y. W., Chao, C. H., Lee, X. Y., & Chiang, T. A. (2009). Involvement of the ERK signaling pathway in fisetin reduces invasion and migration in the human lung cancer cell line A549. Journal of Agricultural and Food Chemistry, 57, 8933–8941.PubMedCrossRefGoogle Scholar
  205. 205.
    Tan, M., Yao, J., & Yu, D. (1997). Overexpression of the c-erbB-2 gene enhanced intrinsic metastasis potential in human breast cancer cells without increasing their transformation abilities. Cancer Research, 57, 1199–1205.PubMedGoogle Scholar
  206. 206.
    Li, Y., Bhuiyan, M., Alhasan, S., Senderowicz, A. M., & Sarkar, F. H. (2000). Induction of apoptosis and inhibition of c-erbB-2 in breast cancer cells by flavopiridol. Clinical Cancer Research, 6, 223–229.PubMedGoogle Scholar
  207. 207.
    Jiang, J., Grieb, B., Thyagarajan, A., & Sliva, D. (2008). Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-kappaB signaling. International Journal of Molecular Medicine, 21, 577–584.PubMedGoogle Scholar
  208. 208.
    Valachovicova, T., Slivova, V., Bergman, H., Shuherk, J., & Sliva, D. (2004). Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. International Journal of Oncology, 25, 1389–1395.PubMedGoogle Scholar
  209. 209.
    Lee, H. S., Seo, E. Y., Kang, N. E., & Kim, W. K. (2008). [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. The Journal of Nutritional Biochemistry, 19, 313–319.PubMedCrossRefGoogle Scholar
  210. 210.
    Meng, Q., Qi, M., Chen, D. Z., Yuan, R., Goldberg, I. D., Rosen, E. M., et al. (2000). Suppression of breast cancer invasion and migration by indole-3-carbinol: Associated with up-regulation of BRCA1 and E-cadherin/catenin complexes. Journal of Molecular Medicine, 78, 155–165.PubMedCrossRefGoogle Scholar
  211. 211.
    Huang, C. S., Shih, M. K., Chuang, C. H., & Hu, M. L. (2005). Lycopene inhibits cell migration and invasion and upregulates Nm23-H1 in a highly invasive hepatocarcinoma, SK-Hep-1 cells. The Journal of Nutrition, 135, 2119–2123.PubMedGoogle Scholar
  212. 212.
    Ko, C. H., Shen, S. C., Lee, T. J., & Chen, Y. C. (2005). Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Molecular Cancer Therapeutics, 4, 281–290.PubMedGoogle Scholar
  213. 213.
    Pradeep, C. R., & Kuttan, G. (2004). Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. International Immunopharmacology, 4, 1795–1803.PubMedCrossRefGoogle Scholar
  214. 214.
    Vijayababu, M. R., Arunkumar, A., Kanagaraj, P., Venkataraman, P., Krishnamoorthy, G., & Arunakaran, J. (2006). Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Molecular and Cellular Biochemistry, 287, 109–116.PubMedCrossRefGoogle Scholar
  215. 215.
    Liu, P. L., Tsai, J. R., Charles, A. L., Hwang, J. J., Chou, S. H., Ping, Y. H., et al. (2010). Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases. Molecular Nutrition and Food Research, 54, S196–S204.PubMedCrossRefGoogle Scholar
  216. 216.
    Chen, P. N., Hsieh, Y. S., Chiang, C. L., Chiou, H. L., Yang, S. F., & Chu, S. C. (2006). Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. Journal of Dental Research, 85, 220–225.PubMedCrossRefGoogle Scholar
  217. 217.
    Chu, S. C., Chiou, H. L., Chen, P. N., Yang, S. F., & Hsieh, Y. S. (2004). Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Molecular Carcinogenesis, 40, 143–149.PubMedCrossRefGoogle Scholar
  218. 218.
    Lee, S. O., Jeong, Y. J., Im, H. G., Kim, C. H., Chang, Y. C., & Lee, I. S. (2007). Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biochemical and Biophysical Research Communications, 354, 165–171.PubMedCrossRefGoogle Scholar
  219. 219.
    Thejass, P., & Kuttan, G. (2006). Antimetastatic activity of sulforaphane. Life Sciences, 78, 3043–3050.PubMedCrossRefGoogle Scholar
  220. 220.
    Liu, H. K., Wang, Q., Li, Y., Sun, W. G., Liu, J. R., Yang, Y. M., et al. (2010). Inhibitory effects of gamma-tocotrienol on invasion and metastasis of human gastric adenocarcinoma SGC-7901 cells. The Journal of Nutritional Biochemistry, 21, 206–213.PubMedCrossRefGoogle Scholar
  221. 221.
    Huang, H. C., Huang, C. Y., Lin-Shiau, S. Y., & Lin, J. K. (2009). Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma invasion through suppressing the association ZIP/p62 with PKC-zeta and downregulating the MMP-9 expression. Molecular Carcinogenesis, 48, 517–531.PubMedCrossRefGoogle Scholar
  222. 222.
    Sung, B., Jhurani, S., Ahn, K. S., Mastuo, Y., Yi, T., Guha, S., et al. (2008). Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Research, 68, 8938–8944.PubMedCrossRefGoogle Scholar
  223. 223.
    Takada, Y., Murakami, A., & Aggarwal, B. B. (2005). Zerumbone abolishes NF-kappaB and IkappaBalpha kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene, 24, 6957–6969.PubMedCrossRefGoogle Scholar
  224. 224.
    Folkman, J. (2007). Angiogenesis: An organizing principle for drug discovery? Nature Reviews. Drug Discovery, 6, 273–286.PubMedCrossRefGoogle Scholar
  225. 225.
    Fan, T. P., Yeh, J. C., Leung, K. W., Yue, P. Y., & Wong, R. N. (2006). Angiogenesis: From plants to blood vessels. Trends in Pharmacological Sciences, 27, 297–309.PubMedCrossRefGoogle Scholar
  226. 226.
    Gordon, M. S., Mendelson, D. S., & Kato, G. (2010). Tumor angiogenesis and novel antiangiogenic strategies. International Journal of Cancer, 126, 1777–1787.Google Scholar
  227. 227.
    Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. The New England Journal of Medicine, 285, 1182–1186.PubMedCrossRefGoogle Scholar
  228. 228.
    Mousa, A. S., & Mousa, S. A. (2005). Anti-angiogenesis efficacy of the garlic ingredient alliin and antioxidants: Role of nitric oxide and p53. Nutrition and Cancer, 53, 104–110.PubMedCrossRefGoogle Scholar
  229. 229.
    Thejass, P., & Kuttan, G. (2007). Allyl isothiocyanate (AITC) and phenyl isothiocyanate (PITC) inhibit tumour-specific angiogenesis by downregulating nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha) production. Nitric Oxide, 16, 247–257.PubMedCrossRefGoogle Scholar
  230. 230.
    Kumar, A., D'Souza, S. S., Tickoo, S., Salimath, B. P., & Singh, H. B. (2009). Antiangiogenic and proapoptotic activities of allyl isothiocyanate inhibit ascites tumor growth in vivo. Integrative Cancer Therapies, 8, 75–87.PubMedCrossRefGoogle Scholar
  231. 231.
    Fang, J., Zhou, Q., Liu, L. Z., Xia, C., Hu, X., Shi, X., et al. (2007). Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis, 28, 858–864.PubMedCrossRefGoogle Scholar
  232. 232.
    Jung, J. E., Kim, H. S., Lee, C. S., Park, D. H., Kim, Y. N., Lee, M. J., et al. (2007). Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. Carcinogenesis, 28, 1780–1787.PubMedCrossRefGoogle Scholar
  233. 233.
    Min, J. K., Han, K. Y., Kim, E. C., Kim, Y. M., Lee, S. W., Kim, O. H., et al. (2004). Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Research, 64, 644–651.PubMedCrossRefGoogle Scholar
  234. 234.
    Okamoto, T., Yamagishi, S., Inagaki, Y., Amano, S., Koga, K., Abe, R., et al. (2002). Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. The FASEB Journal, 16, 1928–1930.PubMedGoogle Scholar
  235. 235.
    Conney, A. H. (2003). Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: The Seventh DeWitt S. Goodman Lecture. Cancer research, 63, 7005–7031.PubMedGoogle Scholar
  236. 236.
    Sartippour, M. R., Heber, D., Henning, S., Elashoff, D., Elashoff, R., Rubio, R., et al. (2004). cDNA microarray analysis of endothelial cells in response to green tea reveals a suppressive phenotype. International Journal of Oncology, 25, 193–202.PubMedGoogle Scholar
  237. 237.
    Sartippour, M. R., Heber, D., Zhang, L., Beatty, P., Elashoff, D., Elashoff, R., et al. (2002). Inhibition of fibroblast growth factors by green tea. International Journal of Oncology, 21, 487–491.PubMedGoogle Scholar
  238. 238.
    Trompezinski, S., Denis, A., Schmitt, D., & Viac, J. (2003). Comparative effects of polyphenols from green tea (EGCG) and soybean (genistein) on VEGF and IL-8 release from normal human keratinocytes stimulated with the proinflammatory cytokine TNFalpha. Archives for Dermatological Research, 295, 112–116.CrossRefGoogle Scholar
  239. 239.
    Jung, Y. D., Kim, M. S., Shin, B. A., Chay, K. O., Ahn, B. W., Liu, W., et al. (2001). EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. British Journal of Cancer, 84, 844–850.PubMedCrossRefGoogle Scholar
  240. 240.
    Tang, F. Y., Chiang, E. P., & Shih, C. J. (2007). Green tea catechin inhibits ephrin-A1-mediated cell migration and angiogenesis of human umbilical vein endothelial cells. The Journal of Nutritional Biochemistry, 18, 391–399.PubMedCrossRefGoogle Scholar
  241. 241.
    Newcomb, E. W., Ali, M. A., Schnee, T., Lan, L., Lukyanov, Y., Fowkes, M., et al. (2005). Flavopiridol downregulates hypoxia-mediated hypoxia-inducible factor-1alpha expression in human glioma cells by a proteasome-independent pathway: Implications for in vivo therapy. Neuro Oncol, 7, 225–235.PubMedCrossRefGoogle Scholar
  242. 242.
    Yi, T., Yi, Z., Cho, S. G., Luo, J., Pandey, M. K., Aggarwal, B. B., et al. (2008). Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Research, 68, 1843–1850.PubMedCrossRefGoogle Scholar
  243. 243.
    Sasamura, H., Takahashi, A., Miyao, N., Yanase, M., Masumori, N., Kitamura, H., et al. (2002). Inhibitory effect on expression of angiogenic factors by antiangiogenic agents in renal cell carcinoma. British Journal of Cancer, 86, 768–773.PubMedCrossRefGoogle Scholar
  244. 244.
    Sarkar, F. H., & Li, Y. (2003). Soy isoflavones and cancer prevention. Cancer Invest, 21, 744–757.PubMedCrossRefGoogle Scholar
  245. 245.
    Ruiz, P. A., & Haller, D. (2006). Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappaB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. The Journal of Nutrition, 136, 664–671.PubMedGoogle Scholar
  246. 246.
    Gille, J. (2006). Antiangiogenic cancer therapies get their act together: Current developments and future prospects of growth factor- and growth factor receptor-targeted approaches. Experimental Dermatology, 15, 175–186.PubMedCrossRefGoogle Scholar
  247. 247.
    Kim, E. C., Min, J. K., Kim, T. Y., Lee, S. J., Yang, H. O., Han, S., et al. (2005). [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochemical and Biophysical Research Communications, 335, 300–308.PubMedCrossRefGoogle Scholar
  248. 248.
    Bagli, E., Stefaniotou, M., Morbidelli, L., Ziche, M., Psillas, K., Murphy, C., et al. (2004). Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; Inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3′-kinase activity. Cancer Research, 64, 7936–7946.PubMedCrossRefGoogle Scholar
  249. 249.
    Loutrari, H., Hatziapostolou, M., Skouridou, V., Papadimitriou, E., Roussos, C., Kolisis, F. N., et al. (2004). Perillyl alcohol is an angiogenesis inhibitor. The Journal of Pharmacology and Experimental Therapeutics, 311, 568–575.PubMedCrossRefGoogle Scholar
  250. 250.
    Anso, E., Zuazo, A., Irigoyen, M., Urdaci, M. C., Rouzaut, A., & Martinez-Irujo, J. J. (2010). Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism. Biochemical Pharmacology, 79, 1600–1609.PubMedCrossRefGoogle Scholar
  251. 251.
    Brakenhielm, E., Cao, R., & Cao, Y. (2001). Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. The FASEB Journal, 15, 1798–1800.PubMedGoogle Scholar
  252. 252.
    Huang, S. S., & Zheng, R. L. (2006). Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Letters, 239, 271–280.PubMedCrossRefGoogle Scholar
  253. 253.
    Basini, G., Bussolati, S., Santini, S. E., & Grasselli, F. (2007). Sanguinarine inhibits VEGF-induced angiogenesis in a fibrin gel matrix. BioFactors (Oxford, England), 29, 11–18.Google Scholar
  254. 254.
    Singh, R. P., Raina, K., Sharma, G., & Agarwal, R. (2008). Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial–mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clinical Cancer Research, 14, 7773–7780.PubMedCrossRefGoogle Scholar
  255. 255.
    Xu, C., Shen, G., Chen, C., Gelinas, C., & Kong, A. N. (2005). Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene, 24, 4486–4495.PubMedCrossRefGoogle Scholar
  256. 256.
    Davis, R., Singh, K. P., Kurzrock, R., & Shankar, S. (2009). Sulforaphane inhibits angiogenesis through activation of FOXO transcription factors. Oncology Reports, 22, 1473–1478.PubMedGoogle Scholar
  257. 257.
    Avramis, I. A., Kwock, R., & Avramis, V. I. (2001). Taxotere and vincristine inhibit the secretion of the angiogenesis inducing vascular endothelial growth factor (VEGF) by wild-type and drug-resistant human leukemia T-cell lines. Anticancer Research, 21, 2281–2286.PubMedGoogle Scholar
  258. 258.
    Bi, S., Liu, J. R., Li, Y., Wang, Q., Liu, H. K., Yan, Y. G., et al. (2010). Gamma-tocotrienol modulates the paracrine secretion of VEGF induced by cobalt(II) chloride via ERK signaling pathway in gastric adenocarcinoma SGC-7901 cell line. Toxicology, 274, 27–33.PubMedCrossRefGoogle Scholar
  259. 259.
    Kanjoormana, M., & Kuttan, G. (2010). Antiangiogenic activity of ursolic acid. Integrative Cancer Therapies, 9, 224–235.PubMedCrossRefGoogle Scholar
  260. 260.
    Lirdprapamongkol, K., Kramb, J. P., Suthiphongchai, T., Surarit, R., Srisomsap, C., Dannhardt, G., et al. (2009). Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. Journal of Agricultural and Food Chemistry, 57, 3055–3063.PubMedCrossRefGoogle Scholar
  261. 261.
    Kaltschmidt, B., Kaltschmidt, C., Hofmann, T. G., Hehner, S. P., Droge, W., & Schmitz, M. L. (2000). The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. European Journal of Biochemistry, 267, 3828–3835.PubMedCrossRefGoogle Scholar
  262. 262.
    Hsieh, C. Y., Santell, R. C., Haslam, S. Z., & Helferich, W. G. (1998). Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Research, 58, 3833–3838.PubMedGoogle Scholar
  263. 263.
    Allred, C. D., Ju, Y. H., Allred, K. F., Chang, J., & Helferich, W. G. (2001). Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis, 22, 1667–1673.PubMedCrossRefGoogle Scholar
  264. 264.
    Hulka, B. S. (1996). Epidemiology of susceptibility to breast cancer. Progress in Clinical and Biological Research, 395, 159–174.PubMedGoogle Scholar
  265. 265.
    Messina, M., McCaskill-Stevens, W., & Lampe, J. W. (2006). Addressing the soy and breast cancer relationship: Review, commentary, and workshop proceedings. Journal of the National Cancer Institute, 98, 1275–1284.PubMedCrossRefGoogle Scholar
  266. 266.
    Kim, Y. I. (2007). Folate and colorectal cancer: An evidence-based critical review. Molecular Nutrition & Food Research, 51, 267–292.CrossRefGoogle Scholar
  267. 267.
    Bernard, D., Monte, D., Vandenbunder, B., & Abbadie, C. (2002). The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD. Oncogene, 21, 4392–4402.PubMedCrossRefGoogle Scholar
  268. 268.
    Sheehy, A. M., & Schlissel, M. S. (1999). Overexpression of RelA causes G1 arrest and apoptosis in a pro-B cell line. The Journal of Biological Chemistry, 274, 8708–8716.PubMedCrossRefGoogle Scholar
  269. 269.
    Kasinski, A. L., Du, Y., Thomas, S. L., Zhao, J., Sun, S. Y., Khuri, F. R., et al. (2008). Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Molecular Pharmacology, 74, 654–661.PubMedCrossRefGoogle Scholar
  270. 270.
    Chen, C. C., Chow, M. P., Huang, W. C., Lin, Y. C., & Chang, Y. J. (2004). Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: Structure–activity relationships. Molecular Pharmacology, 66, 683–693.PubMedCrossRefGoogle Scholar
  271. 271.
    Pandey, M. K., Sung, B., Kunnumakkara, A. B., Sethi, G., Chaturvedi, M. M., & Aggarwal, B. B. (2008). Berberine modifies cysteine 179 of IkappaBalpha kinase, suppresses nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis. Cancer Research, 68, 5370–5379.PubMedCrossRefGoogle Scholar
  272. 272.
    Slivova, V., Zaloga, G., DeMichele, S. J., Mukerji, P., Huang, Y. S., Siddiqui, R., et al. (2005). Green tea polyphenols modulate secretion of urokinase plasminogen activator (uPA) and inhibit invasive behavior of breast cancer cells. Nutrition and Cancer, 52, 66–73.PubMedCrossRefGoogle Scholar
  273. 273.
    Sung, B., Pandey, M. K., & Aggarwal, B. B. (2007). Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Molecular Pharmacology, 71, 1703–1714.PubMedCrossRefGoogle Scholar
  274. 274.
    Li, Y., Tanaka, K., Li, X., Okada, T., Nakamura, T., Takasaki, M., et al. (2007). Cyclin-dependent kinase inhibitor, flavopiridol, induces apoptosis and inhibits tumor growth in drug-resistant osteosarcoma and Ewing's family tumor cells. International Journal of Cancer, 121, 1212–1218.CrossRefGoogle Scholar
  275. 275.
    Chen, C.S., Lee, C.H., Hsieh, C.D., Ho, C.T., Pan, M.H., Huang, C.S., et al. (2010). Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins. Breast Cancer Research and Treatment, in pressGoogle Scholar
  276. 276.
    Liu, M., Luo, X.J., Liao, F., Lei, X.F., & Dong, W.G. (2010). Noscapine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo. Cancer Chemotherapy and Pharmacology, in pressGoogle Scholar
  277. 277.
    Shan, B. E., Wang, M. X., & Li, R. Q. (2009). Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/beta-catenin signaling pathway. Cancer Investigation, 27, 604–612.PubMedCrossRefGoogle Scholar
  278. 278.
    al-Harbi, M. M., Qureshi, S., Raza, M., Ahmed, M. M., Giangreco, A. B., & Shah, A. H. (1995). Influence of anethole treatment on the tumour induced by Ehrlich ascites carcinoma cells in paw of Swiss albino mice. European Journal of Cancer Prevention, 4, 307–318.PubMedCrossRefGoogle Scholar
  279. 279.
    Choi, Y. H., Choi, W. Y., Hong, S. H., Kim, S. O., Kim, G. Y., Lee, W. H., et al. (2009). Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDA-MB-231 human breast carcinoma cells. Chemico-Biological Interaction, 179, 185–191.CrossRefGoogle Scholar
  280. 280.
    Cha, H. J., Park, M. T., Chung, H. Y., Kim, N. D., Sato, H., Seiki, M., et al. (1998). Ursolic acid-induced down-regulation of MMP-9 gene is mediated through the nuclear translocation of glucocorticoid receptor in HT1080 human fibrosarcoma cells. Oncogene, 16, 771–778.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Subash C. Gupta
    • 1
  • Ji Hye Kim
    • 1
  • Sahdeo Prasad
    • 1
  • Bharat B. Aggarwal
    • 1
    Email author
  1. 1.Cytokine Research Laboratory, Department of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations