Cancer and Metastasis Reviews

, Volume 29, Issue 3, pp 383–394 | Cite as

The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer

  • Fazlul H. SarkarEmail author
  • Yiwei Li
  • Zhiwei Wang
  • Dejuan Kong


Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3′-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies.


Wnt Hedgehog Nutraceutical 



The authors’ work cited in this review article was funded by grants from the National Cancer Institute, NIH (5R01CA083695, 2R01CA108535, 5R01CA131151, 3R01CA131151-02S109, and 1R01CA132794 awarded to FHS), and a sub-contract award to FHS from the University of Texas MD Anderson Cancer Center through SPORE grant (5P20-CA101936, 3P20CA101936-05S109) on pancreatic cancer awarded to James Abbruzzese. We also thank Puschelberg and Guido foundations for their generous contribution to support our research.


  1. 1.
    Jemal, A., Siegel, R., Ward, E., et al. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59, 225–249.CrossRefGoogle Scholar
  2. 2.
    Woll, P. S., Morris, J. K., Painschab, M. S., et al. (2008). Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood, 111, 122–131.PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi-Yanaga, F., & Kahn, M. (2010). Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clinical Cancer Research, 16, 3153–3162.PubMedCrossRefGoogle Scholar
  4. 4.
    Merchant, A., Joseph, G., Wang, Q., et al. (2010). Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors. Blood, 115, 2391–2396.PubMedCrossRefGoogle Scholar
  5. 5.
    Varnat, F., Duquet, A., Malerba, M., et al. (2009). Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Molecular Medicine, 1, 338–351.PubMedCrossRefGoogle Scholar
  6. 6.
    Syn, W. K., Jung, Y., Omenetti, A., et al. (2009). Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology, 137, 1478–1488.PubMedCrossRefGoogle Scholar
  7. 7.
    Malizia, A. P., Lacey, N., Walls, D., et al. (2009). CUX1/Wnt signaling regulates epithelial mesenchymal transition in EBV infected epithelial cells. Experimental Cell Research, 315, 1819–1831.PubMedCrossRefGoogle Scholar
  8. 8.
    American Cancer Society. (2009). Cancer facts & figures 2009. Atlanta: American Cancer Society Inc.Google Scholar
  9. 9.
    Surh, Y. J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature Reviews. Cancer, 3, 768–780.PubMedCrossRefGoogle Scholar
  10. 10.
    Khan, N., Afaq, F., & Mukhtar, H. (2007). Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis, 28, 233–239.PubMedCrossRefGoogle Scholar
  11. 11.
    Lamartiniere, C. A., Cotroneo, M. S., Fritz, W. A., et al. (2002). Genistein chemoprevention: timing and mechanisms of action in murine mammary and prostate. The Journal of Nutrition, 132, 552S–558S.PubMedGoogle Scholar
  12. 12.
    Li, Y., & Sarkar, F. H. (2002). Gene expression profiles of genistein-treated PC3 prostate cancer cells. The Journal of Nutrition, 132, 3623–3631.PubMedGoogle Scholar
  13. 13.
    Li, Y., Li, X., & Sarkar, F. H. (2003). Gene expression profiles of I3C-and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. The Journal of Nutrition, 133, 1011–1019.PubMedGoogle Scholar
  14. 14.
    Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., et al. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20, 7597–7609.PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta, S., Hussain, T., & Mukhtar, H. (2003). Molecular pathway for (−)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Archives of Biochemistry and Biophysics, 410, 177–185.PubMedCrossRefGoogle Scholar
  16. 16.
    Angers, S., & Moon, R. T. (2009). Proximal events in Wnt signal transduction. Nature Reviews Molecular Cell Biology, 10, 468–477.PubMedGoogle Scholar
  17. 17.
    Behrens, J. (2000). Control of beta-catenin signaling in tumor development. Annals of the New York Academy of Sciences, 910, 21–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Peifer, M., & Polakis, P. (2000). Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science, 287, 1606–1609.PubMedCrossRefGoogle Scholar
  19. 19.
    Taipale, J., & Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411, 349–354.PubMedCrossRefGoogle Scholar
  20. 20.
    Verras, M., & Sun, Z. (2006). Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Letters, 237, 22–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434, 843–850.PubMedCrossRefGoogle Scholar
  22. 22.
    Clevers, H. (2004). Wnt breakers in colon cancer. Cancer Cell, 5, 5–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Vermeulen, L., De Sousa, E. M. F., van der Heijden, M., et al. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 12, 468–476.PubMedCrossRefGoogle Scholar
  24. 24.
    Cronauer, M. V., Schulz, W. A., Ackermann, R., et al. (2005). Effects of WNT/beta-catenin pathway activation on signaling through T-cell factor and androgen receptor in prostate cancer cell lines. International Journal of Oncology, 26, 1033–1040.PubMedGoogle Scholar
  25. 25.
    Chesire, D. R., Ewing, C. M., Gage, W. R., et al. (2002). In vitro evidence for complex modes of nuclear beta-catenin signaling during prostate growth and tumorigenesis. Oncogene, 21, 2679–2694.PubMedCrossRefGoogle Scholar
  26. 26.
    Barker, N., & Clevers, H. (2006). Mining the Wnt pathway for cancer therapeutics. Nature Reviews Drug Discovery, 5, 997–1014.PubMedCrossRefGoogle Scholar
  27. 27.
    Dihlmann, S., & von Knebel, D. M. (2005). Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics. International Journal of Cancer, 113, 515–524.CrossRefGoogle Scholar
  28. 28.
    Gritli-Linde, A., Bei, M., Maas, R., et al. (2002). Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development, 129, 5323–5337.PubMedCrossRefGoogle Scholar
  29. 29.
    Yang, L., Xie, G., Fan, Q., et al. (2010). Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene, 29, 469–481.PubMedCrossRefGoogle Scholar
  30. 30.
    Varjosalo, M., & Taipale, J. (2008). Hedgehog: functions and mechanisms. Genes & Development, 22, 2454–2472.CrossRefGoogle Scholar
  31. 31.
    Medina, V., Calvo, M. B., Diaz-Prado, S., et al. (2009). Hedgehog signalling as a target in cancer stem cells. Clinical & Translational Oncology, 11, 199–207.CrossRefGoogle Scholar
  32. 32.
    Vezina, C. M., & Bushman, A. W. (2007). Hedgehog signaling in prostate growth and benign prostate hyperplasia. Current Urology Reports, 8, 275–280.PubMedCrossRefGoogle Scholar
  33. 33.
    Anton Aparicio, L. M., Garcia, C. R., Cassinello, E. J., et al. (2007). Prostate cancer and Hedgehog signalling pathway. Clinical & Translational Oncology, 9, 420–428.CrossRefGoogle Scholar
  34. 34.
    Choi, S. S., Omenetti, A., Witek, R. P., et al. (2009). Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. American Journal of Physiology. Gastrointestinal and Liver Physiology, 297, G1093–G1106.PubMedCrossRefGoogle Scholar
  35. 35.
    Isohata, N., Aoyagi, K., Mabuchi, T., et al. (2009). Hedgehog and epithelial-mesenchymal transition signaling in normal and malignant epithelial cells of the esophagus. International Journal of Cancer, 125, 1212–1221.CrossRefGoogle Scholar
  36. 36.
    Ohta, H., Aoyagi, K., Fukaya, M., et al. (2009). Cross talk between hedgehog and epithelial-mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers. British Journal of Cancer, 100, 389–398.PubMedCrossRefGoogle Scholar
  37. 37.
    Omenetti, A., Porrello, A., Jung, Y., et al. (2008). Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. The Journal of Clinical Investigation, 118, 3331–3342.PubMedGoogle Scholar
  38. 38.
    Kalderon, D. (2002). Similarities between the Hedgehog and Wnt signaling pathways. Trends in Cell Biology, 12, 523–531.PubMedCrossRefGoogle Scholar
  39. 39.
    Huelsken, J., & Birchmeier, W. (2001). New aspects of Wnt signaling pathways in higher vertebrates. Current Opinion in Genetics & Development, 11, 547–553.CrossRefGoogle Scholar
  40. 40.
    Ingham, P. W., & McMahon, A. P. (2001). Hedgehog signaling in animal development: paradigms and principles. Genes & Development, 15, 3059–3087.CrossRefGoogle Scholar
  41. 41.
    Price, M. A., & Kalderon, D. (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell, 108, 823–835.PubMedCrossRefGoogle Scholar
  42. 42.
    Day, T. F., & Yang, Y. (2008). Wnt and hedgehog signaling pathways in bone development. The Journal of Bone and Joint Surgery. American Volume, 90(Suppl 1), 19–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Cohen, M. M., Jr. (2003). The hedgehog signaling network. American Journal of Medical Genetics. Part A, 123A, 5–28.PubMedCrossRefGoogle Scholar
  44. 44.
    Yang, S. H., Andl, T., Grachtchouk, V., et al. (2008). Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/beta3-catenin signaling. Nature Genetics, 40, 1130–1135.PubMedCrossRefGoogle Scholar
  45. 45.
    Adlercreutz, H., Honjo, H., Higashi, A., et al. (1991). Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. The American Journal of Clinical Nutrition, 54, 1093–1100.PubMedGoogle Scholar
  46. 46.
    Adlercreutz, H., Markkanen, H., & Watanabe, S. (1993). Plasma concentrations of phyto-oestrogens in Japanese men. Lancet, 342, 1209–1210.PubMedCrossRefGoogle Scholar
  47. 47.
    Hebert, J. R., Hurley, T. G., Olendzki, B. C., et al. (1998). Nutritional and socioeconomic factors in relation to prostate cancer mortality: a cross-national study. Journal of the National Cancer Institute, 90, 1637–1647.PubMedCrossRefGoogle Scholar
  48. 48.
    Jacobsen, B. K., Knutsen, S. F., & Fraser, G. E. (1998). Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes & Control, 9, 553–557.CrossRefGoogle Scholar
  49. 49.
    Sarkar, F. H., Li, Y., Wang, Z., et al. (2010). Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs. Current Pharmaceutical Design, 16(16), 1801–1812.PubMedCrossRefGoogle Scholar
  50. 50.
    Li, Y., Wang, Z., Kong, D., et al. (2008). Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. The Journal of Biological Chemistry, 283, 27707–27716.PubMedCrossRefGoogle Scholar
  51. 51.
    Su, Y., & Simmen, R. C. (2009). Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells. Carcinogenesis, 30, 331–339.PubMedCrossRefGoogle Scholar
  52. 52.
    Su, Y., Simmen, F. A., Xiao, R., et al. (2007). Expression profiling of rat mammary epithelial cells reveals candidate signaling pathways in dietary protection from mammary tumors. Physiological Genomics, 30, 8–16.PubMedCrossRefGoogle Scholar
  53. 53.
    Wagner, J., & Lehmann, L. (2006). Estrogens modulate the gene expression of Wnt-7a in cultured endometrial adenocarcinoma cells. Molecular Nutrition & Food Research, 50, 368–372.CrossRefGoogle Scholar
  54. 54.
    Kuang, H. B., Miao, C. L., Guo, W. X., et al. (2009). Dickkopf-1 enhances migration of HEK293 cell by beta-catenin/E-cadherin degradation. Frontiers in Bioscience, 14, 2212–2220.PubMedCrossRefGoogle Scholar
  55. 55.
    Slusarz, A., Shenouda, N. S., Sakla, M. S., et al. (2010). Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Research, 70, 3382–3390.PubMedCrossRefGoogle Scholar
  56. 56.
    Miquel, J., Bernd, A., Sempere, J. M., et al. (2002). The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review. Archives of Gerontology and Geriatrics, 34, 37–46.PubMedCrossRefGoogle Scholar
  57. 57.
    Banerjee, M., Tripathi, L. M., Srivastava, V. M., et al. (2003). Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacology and Immunotoxicology, 25, 213–224.PubMedCrossRefGoogle Scholar
  58. 58.
    Ryu, M. J., Cho, M., Song, J. Y., et al. (2008). Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochemical and Biophysical Research Communications, 377, 1304–1308.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang, Z., Desmoulin, S., Banerjee, S., et al. (2008). Synergistic effects of multiple natural products in pancreatic cancer cells. Life Sciences, 83, 293–300.PubMedCrossRefGoogle Scholar
  60. 60.
    Kakarala, M., Brenner, D. E., Korkaya, H., et al. (2009). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785.PubMedCrossRefGoogle Scholar
  61. 61.
    Prasad, C. P., Rath, G., Mathur, S., et al. (2009). Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/beta-catenin signaling 14. Chem-Biol Interact, 181, 263–271.PubMedCrossRefGoogle Scholar
  62. 62.
    Jaiswal, A. S., Marlow, B. P., Gupta, N., et al. (2002). Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene, 21, 8414–8427.PubMedCrossRefGoogle Scholar
  63. 63.
    Leow, P. C., Tian, Q., Ong, Z. Y., et al. (2009). Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/beta-catenin antagonists against human osteosarcoma cells 9. Investigational New Drugs. doi: 10.1007/s10637-009-9311-z.
  64. 64.
    Shin, H. W., Park, S. Y., Lee, K. B., et al. (2009). Down-regulation of Wnt signaling during apoptosis of human hepatic stellate cells 16. Hepatogastroenterology, 56, 208–212.PubMedGoogle Scholar
  65. 65.
    Aggarwal, B. B. (2010). Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals 2. Annual Review of Nutrition, 30, 173–199.PubMedCrossRefGoogle Scholar
  66. 66.
    Ahn, J., Lee, H., Kim, S., et al. (2010). Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling 3. American Journal of Physiology. Cell Physiology, 298, C1510–C1516.PubMedCrossRefGoogle Scholar
  67. 67.
    Elamin, M. H., Shinwari, Z., Hendrayani, S. F., et al. (2010). Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Molecular Carcinogenesis, 49, 302–314.PubMedGoogle Scholar
  68. 68.
    Padhye, S., Chavan, D., Pandey, S., et al. (2010). Perspectives on chemopreventive and therapeutic potential of curcumin analogs in medicinal chemistry. Mini Reviews in Medicinal Chemistry, 10, 372–387.PubMedCrossRefGoogle Scholar
  69. 69.
    Jian, L., Lee, A. H., & Binns, C. W. (2007). Tea and lycopene protect against prostate cancer. Asia Pacific Journal of Clinical Nutrition, 16(Suppl 1), 453–457.PubMedGoogle Scholar
  70. 70.
    Kurahashi, N., Sasazuki, S., Iwasaki, M., et al. (2008). Green tea consumption and prostate cancer risk in Japanese men: a prospective study. American Journal of Epidemiology, 167, 71–77.PubMedCrossRefGoogle Scholar
  71. 71.
    Khan, N., Adhami, V. M., & Mukhtar, H. (2009). Review: green tea polyphenols in chemoprevention of prostate cancer: preclinical and clinical studies. Nutrition and Cancer, 61, 836–841.PubMedCrossRefGoogle Scholar
  72. 72.
    Dashwood, W. M., Orner, G. A., & Dashwood, R. H. (2002). Inhibition of beta-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): minor contribution of H(2)O(2) at physiologically relevant EGCG concentrations. Biochemical and Biophysical Research Communications, 296, 584–588.PubMedCrossRefGoogle Scholar
  73. 73.
    Gao, Z., Xu, Z., Hung, M. S., et al. (2009). Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells 15. Anticancer Research, 29, 2025–2030.PubMedGoogle Scholar
  74. 74.
    Pahlke, G., Ngiewih, Y., Kern, M., et al. (2006). Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. Journal of Agricultural and Food Chemistry, 54, 7075–7082.PubMedCrossRefGoogle Scholar
  75. 75.
    Mount, J. G., Muzylak, M., Allen, S., et al. (2006). Evidence that the canonical Wnt signalling pathway regulates deer antler regeneration. Developmental Dynamics, 235, 1390–1399.PubMedCrossRefGoogle Scholar
  76. 76.
    Bose, M., Hao, X., Ju, J., et al. (2007). Inhibition of tumorigenesis in ApcMin/+ mice by a combination of (−)-epigallocatechin-3-gallate and fish oil. Journal of Agricultural and Food Chemistry, 55, 7695–7700.PubMedCrossRefGoogle Scholar
  77. 77.
    Liu, L., Lai, C. Q., Nie, L., et al. (2008). The modulation of endothelial cell gene expression by green tea polyphenol-EGCG. Molecular Nutrition & Food Research, 52, 1182–1192.CrossRefGoogle Scholar
  78. 78.
    Kim, J., Zhang, X., Rieger-Christ, K. M., et al. (2006). Suppression of Wnt signaling by the green tea compound (−)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. The Journal of Biological Chemistry, 281, 10865–10875.PubMedCrossRefGoogle Scholar
  79. 79.
    Tang, G. Q., Yan, T. Q., Guo, W., et al. (2010). (−)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells. Journal of Cancer Research and Clinical Oncology, 136, 1179–1185.PubMedCrossRefGoogle Scholar
  80. 80.
    Vanamala, J., Reddivari, L., Radhakrishnan, S., et al. (2010). Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways 1. BMC Cancer, 10, 238.PubMedCrossRefGoogle Scholar
  81. 81.
    Hope, C., Planutis, K., Planutiene, M., et al. (2008). Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Molecular Nutrition & Food Research, 52(Suppl 1), S52–S61.Google Scholar
  82. 82.
    Roccaro, A. M., Leleu, X., Sacco, A., et al. (2008). Resveratrol exerts antiproliferative activity and induces apoptosis in Waldenstrom's macroglobulinemia. Clinical Cancer Research, 14, 1849–1858.PubMedCrossRefGoogle Scholar
  83. 83.
    Cho, S. W., Her, S. J., Sun, H. J., et al. (2008). Differential effects of secreted frizzled-related proteins (sFRPs) on osteoblastic differentiation of mouse mesenchymal cells and apoptosis of osteoblasts. Biochemical and Biophysical Research Communications, 367, 399–405.PubMedCrossRefGoogle Scholar
  84. 84.
    Cho, S. W., Yang, J. Y., Sun, H. J., et al. (2009). Wnt inhibitory factor (WIF)-1 inhibits osteoblastic differentiation in mouse embryonic mesenchymal cells. Bone, 44, 1069–1077.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhou, H., Shang, L., Li, X., et al. (2009). Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells 12. Experimental Cell Research, 315, 2953–2962.PubMedCrossRefGoogle Scholar
  86. 86.
    Higdon, J. V., Delage, B., Williams, D. E., et al. (2007). Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacological Research, 55, 224–236.PubMedCrossRefGoogle Scholar
  87. 87.
    Nho, C. W., & Jeffery, E. (2004). Crambene, a bioactive nitrile derived from glucosinolate hydrolysis, acts via the antioxidant response element to upregulate quinone reductase alone or synergistically with indole-3-carbinol. Toxicology and Applied Pharmacology, 198, 40–48.PubMedCrossRefGoogle Scholar
  88. 88.
    Benabadji, S. H., Wen, R., Zheng, J. B., et al. (2004). Anticarcinogenic and antioxidant activity of diindolylmethane derivatives. Acta Pharmacologica Sinica, 25, 666–671.PubMedGoogle Scholar
  89. 89.
    Fares, F., Azzam, N., Appel, B., et al. (2010). The potential efficacy of 3, 3'-diindolylmethane in prevention of prostate cancer development. European Journal of Cancer Prevention, 19, 199–203.PubMedCrossRefGoogle Scholar
  90. 90.
    Li, Y., Wang, Z., Kong, D., et al. (2007). Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3, 3'-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. The Journal of Biological Chemistry, 282, 21542–21550.PubMedCrossRefGoogle Scholar
  91. 91.
    Li, Y., Zhang, T., Korkaya, H., et al. (2010). Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research, 16, 2580–2590.PubMedCrossRefGoogle Scholar
  92. 92.
    Giovannucci, E., Rimm, E. B., Liu, Y., et al. (2002). A prospective study of tomato products, lycopene, and prostate cancer risk. Journal of the National Cancer Institute, 94, 391–398.PubMedGoogle Scholar
  93. 93.
    Lu, Q. Y., Hung, J. C., Heber, D., et al. (2001). Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiology, Biomarkers & Prevention, 10, 749–756.Google Scholar
  94. 94.
    Gann, P. H., Ma, J., Giovannucci, E., et al. (1999). Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Research, 59, 1225–1230.PubMedGoogle Scholar
  95. 95.
    Limpens, J., van Weerden, W. M., Kramer, K., et al. (2004). Re: Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. Journal of the National Cancer Institute, 96, 554–555.PubMedGoogle Scholar
  96. 96.
    Kucuk, O., Sarkar, F. H., Sakr, W., et al. (2001). Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiology, Biomarkers & Prevention, 10, 861–868.Google Scholar
  97. 97.
    Kucuk, O., Sarkar, F. H., Djuric, Z., et al. (2002). Effects of lycopene supplementation in patients with localized prostate cancer. Experimental Biology Medicine (Maywood), 227, 881–885.Google Scholar
  98. 98.
    Wertz, K. (2009). Lycopene effects contributing to prostate health 4. Nutrition and Cancer, 61, 775–783.PubMedCrossRefGoogle Scholar
  99. 99.
    Garland, C. F., Garland, F. C., Gorham, E. D., et al. (2006). The role of vitamin D in cancer prevention. American Journal of Public Health, 96, 252–261.PubMedCrossRefGoogle Scholar
  100. 100.
    Ahn, J., Albanes, D., Peters, U., et al. (2007). Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiology, Biomarkers & Prevention, 16, 2623–2630.CrossRefGoogle Scholar
  101. 101.
    Pike, J. W., Meyer, M. B., Martowicz, M. L., et al. (2010). Emerging regulatory paradigms for control of gene expression by 1, 25-dihydroxyvitamin D(3). Journal of Steroid Biochemistry and Molecular Biology, 121(1–2), 130–135.PubMedCrossRefGoogle Scholar
  102. 102.
    Kovalenko, P. L., Zhang, Z., Cui, M., et al. (2010). 1, 25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC Genomics, 11, 26.PubMedCrossRefGoogle Scholar
  103. 103.
    Egan, J. B., Thompson, P. A., Vitanov, M. V., et al. (2010). Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells. Molecular Carcinogenesis, 49, 337–352.PubMedGoogle Scholar
  104. 104.
    Kaler, P., Augenlicht, L., & Klampfer, L. (2009). Macrophage-derived IL-1beta stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene, 28, 3892–3902.PubMedCrossRefGoogle Scholar
  105. 105.
    Aguilera, O., Pena, C., Garcia, J. M., et al. (2007). The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha, 25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis, 28, 1877–1884.PubMedCrossRefGoogle Scholar
  106. 106.
    Larriba, M. J., Valle, N., Palmer, H. G., et al. (2007). The inhibition of Wnt/beta-catenin signalling by 1alpha, 25-dihydroxyvitamin D3 is abrogated by Snail1 in human colon cancer cells. Endocrine-Related Cancer, 14, 141–151.PubMedCrossRefGoogle Scholar
  107. 107.
    Bijlsma, M. F., Peppelenbosch, M. P., & Spek, C. A. (2008). (Pro-)vitamin D as treatment option for hedgehog-related malignancies. Medical Hypotheses, 70, 202–203.PubMedCrossRefGoogle Scholar
  108. 108.
    Tang, J. Y., So, P. L., & Epstein, E. H., Jr. (2007). Novel Hedgehog pathway targets against basal cell carcinoma. Toxicology and Applied Pharmacology, 224, 257–264.PubMedCrossRefGoogle Scholar
  109. 109.
    Bruggemann, L. W., Queiroz, K. C., Zamani, K., et al. (2010). Assessing the efficacy of the hedgehog pathway inhibitor vitamin D3 in a murine xenograft model for pancreatic cancer. Cancer Biology and Therapy, 10, 78–88.Google Scholar
  110. 110.
    Gianduzzo, T. R., Holmes, E. G., Tinggi, U., et al. (2003). Prostatic and peripheral blood selenium levels after oral supplementation. Journal d'Urologie, 170, 870–873.CrossRefGoogle Scholar
  111. 111.
    Kipp, A., Banning, A., van Schothorst, E. M., et al. (2009). Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon. Molecular Nutrition & Food Research, 53, 1561–1572.CrossRefGoogle Scholar
  112. 112.
    Suh, Y., Afaq, F., Johnson, J. J., et al. (2009). A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-kappaB-signaling pathways. Carcinogenesis, 30, 300–307.PubMedCrossRefGoogle Scholar
  113. 113.
    Bi, X., Zhao, Y., Fang, W., et al. (2009). Anticancer activity of Panax notoginseng extract 20(S)-25-OCH3-PPD: Targetting beta-catenin signalling. Clinical and Experimental Pharmacology & Physiology, 36, 1074–1078.CrossRefGoogle Scholar
  114. 114.
    Murillo, G., Peng, X., Torres, K. E., et al. (2009). Deguelin inhibits growth of breast cancer cells by modulating the expression of key members of the Wnt signaling pathway 7. Cancer Prevention Research (Phila Pa), 2, 942–950.Google Scholar
  115. 115.
    Vanamala, J., Glagolenko, A., Yang, P., et al. (2008). Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPARdelta/PGE2 and elevation of PGE3. Carcinogenesis, 29, 790–796.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Fazlul H. Sarkar
    • 1
    Email author
  • Yiwei Li
    • 1
  • Zhiwei Wang
    • 1
  • Dejuan Kong
    • 1
  1. 1.Department of Pathology, Barbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA

Personalised recommendations