Cancer and Metastasis Reviews

, Volume 29, Issue 1, pp 49–60 | Cite as

Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation

Article

Abstract

KRAS and epidermal growth factor receptor (EGFR) are the two most frequently mutated proto-oncogenes in adenocarcinoma of the lung. The occurrence of these two oncogenic mutations is mutually exclusive, and they exhibit many contrasting characteristics such as clinical background, pathological features of patients harboring each mutation, and prognostic or predictive implications. Lung cancers harboring the EGFR mutations are remarkably sensitive to EGFR tyrosine kinase inhibitors such as gefitinib or erlotinib. This discovery has dramatically changed the clinical treatment of lung cancer in that it almost doubled the duration of survival for lung cancer patients with an EGFR mutation. In this review, we describe the features of KRAS mutations in lung cancer and contrast these with the features of EGFR mutations. Recent strategies to combat lung cancer harboring KRAS mutations are also reviewed.

Keywords

Lung cancer Oncogene addiction Targeted therapy Personalized medicine 

References

  1. 1.
    Shih, C., Padhy, L. C., Murray, M., & Weinberg, R. A. (1981). Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature, 290, 261–264.CrossRefPubMedGoogle Scholar
  2. 2.
    Perucho, M., Goldfarb, M., Shimizu, K., Lama, C., Fogh, J., & Wigler, M. (1981). Human-tumor-derived cell lines contain common and different transforming genes. Cell, 27, 467–476.CrossRefPubMedGoogle Scholar
  3. 3.
    Krontiris, T. G., & Cooper, G. M. (1981). Transforming activity of human tumor DNAs. Proceedings of the National Academy of Sciences of the United States of America, 78, 1181–1184.CrossRefPubMedGoogle Scholar
  4. 4.
    Der, C. J., Krontiris, T. G., & Cooper, G. M. (1982). Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proceedings of the National Academy of Sciences of the United States of America, 79, 3637–3640.CrossRefPubMedGoogle Scholar
  5. 5.
    Goldfarb, M., Shimizu, K., Perucho, M., & Wigler, M. (1982). Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature, 296, 404–409.CrossRefPubMedGoogle Scholar
  6. 6.
    Parada, L. F., Tabin, C. J., Shih, C., & Weinberg, R. A. (1982). Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature, 297, 474–478.CrossRefPubMedGoogle Scholar
  7. 7.
    Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., et al. (1982). Mechanism of activation of a human oncogene. Nature, 300, 143–149.CrossRefPubMedGoogle Scholar
  8. 8.
    Reddy, E. P., Reynolds, R. K., Santos, E., & Barbacid, M. (1982). A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature, 300, 149–152.CrossRefPubMedGoogle Scholar
  9. 9.
    Taparowsky, E., Suard, Y., Fasano, O., Shimizu, K., Goldfarb, M., & Wigler, M. (1982). Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature, 300, 762–765.CrossRefPubMedGoogle Scholar
  10. 10.
    Bos, J. (1988). The ras gene family and human carcinogenesis. Mutation Research, 195, 255–271.PubMedGoogle Scholar
  11. 11.
    Shimizu, K., Goldfarb, M., Suard, Y., Perucho, M., Li, Y., Kamata, T., et al. (1983). Three human transforming genes are related to the viral ras oncogenes. Proceedings of the National Academy of Sciences of the United States of America, 80, 2112–2116.CrossRefPubMedGoogle Scholar
  12. 12.
    Hall, A., Marshall, C. J., Spurr, N. K., & Weiss, R. A. (1983). Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature, 303, 396–400.CrossRefPubMedGoogle Scholar
  13. 13.
    DeClue, J. E., Papageorge, A. G., Fletcher, J. A., Diehl, S. R., Ratner, N., Vass, W. C., et al. (1992). Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell, 69, 265–273.CrossRefPubMedGoogle Scholar
  14. 14.
    Trahey, M., & McCormick, F. (1987). A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science, 1987(238), 542–545.CrossRefGoogle Scholar
  15. 15.
    Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L., & Lowy, D. R. (1984). Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. The EMBO Journal, 3, 2581–2585.PubMedGoogle Scholar
  16. 16.
    Casey, P. J., Solski, P. A., Der, C. J., & Buss, J. E. (1989). p21ras is modified by a farnesyl isoprenoid. Proceedings of the National Academy of Sciences of the United States of America, 86, 8323–8327.CrossRefPubMedGoogle Scholar
  17. 17.
    Schaber, M. D., O'Hara, M. B., Garsky, V. M., Mosser, S. C., Bergstrom, J. D., Moores, S. L., et al. (1990). Polyisoprenylation of Ras in vitro by a farnesyl-protein transferase. The Journal of Biological Chemistry, 265, 14701–14704.PubMedGoogle Scholar
  18. 18.
    Hancock, J. F., Paterson, H., & Marshall, C. J. (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell, 63, 133–139.CrossRefPubMedGoogle Scholar
  19. 19.
    Patek, C. E., Arends, M. J., Wallace, W. A., Luo, F., Hagan, S., Brownstein, D. G., et al. (2008). Mutationally activated K-ras 4A and 4B both mediate lung carcinogenesis. Experimental Cell Research, 314, 1105–1114.CrossRefPubMedGoogle Scholar
  20. 20.
    To, M. D., Wong, C. E., Karnezis, A. N., Del Rosario, R., Di Lauro, R., & Balmain, A. (2008). Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nature Genetics, 40, 1240–1244.CrossRefPubMedGoogle Scholar
  21. 21.
    Newbold, R. F., & Overell, R. W. (1983). Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature, 304, 648–651.CrossRefPubMedGoogle Scholar
  22. 22.
    Land, H., Parada, L. F., & Weinberg, R. A. (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, 304, 596–602.CrossRefPubMedGoogle Scholar
  23. 23.
    Ruley, H. E. (1983). Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature, 304, 602–606.CrossRefPubMedGoogle Scholar
  24. 24.
    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88, 593–602.CrossRefPubMedGoogle Scholar
  25. 25.
    Karnoub, A. E., & Weinberg, R. A. (2008). Ras oncogenes: split personalities. Nature Reviews Molecular Cell Biology, 9, 517–531.CrossRefPubMedGoogle Scholar
  26. 26.
    Sun, P., Yoshizuka, N., New, L., Moser, B. A., Li, Y., Liao, R., et al. (2007). PRAK is essential for ras-induced senescence and tumor suppression. Cell, 128, 295–308.CrossRefPubMedGoogle Scholar
  27. 27.
    Tuveson, D. A., Shaw, A. T., Willis, N. A., Silver, D. P., Jackson, E. L., Chang, S., et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell, 5, 375–387.CrossRefPubMedGoogle Scholar
  28. 28.
    Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., et al. (2005). Tumour biology: senescence in premalignant tumours. Nature, 436, 642.CrossRefPubMedGoogle Scholar
  29. 29.
    Santos, E., Martin-Zanca, D., Reddy, E. P., Pierotti, M. A., Della Porta, G., & Barbacid, M. (1984). Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science, 223, 661–664.CrossRefPubMedGoogle Scholar
  30. 30.
    Rodenhuis, S., van de Wetering, M. L., Mooi, W. J., Evers, S. G., van Zandwijk, N., & Bos, J. L. (1987). Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. The New England Journal of Medicine, 317, 929–935.PubMedGoogle Scholar
  31. 31.
    Mitsudomi, T., Viallet, J., Linnoila, R. I., Mulshine, J. L., Minna, J. D., & Gazdar, A. F. (1991). Mutations of ras genes distinguish a subset of non-small cell lung cancer cell lines from small cell lung cancer cell lines. Oncogene, 6, 1353–1362.PubMedGoogle Scholar
  32. 32.
    Shigematsu, H., Takahashi, T., Nomura, M., Majmudar, K., Suzuki, M., Lee, H., et al. (2005). Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Research, 65, 1642–1646.CrossRefPubMedGoogle Scholar
  33. 33.
    Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I., et al. (2005). Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute, 97, 339–346.PubMedGoogle Scholar
  34. 34.
    Slebos, R. J., Hruban, R. H., Dalesio, O., Mooi, W. J., Offerhaus, G. J., & Rodenhuis, S. (1991). Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. Journal of the National Cancer Institute, 83, 1024–1027.CrossRefPubMedGoogle Scholar
  35. 35.
    Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T., & Mitsudomi, T. (2004). Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Research, 64, 8919–8923.CrossRefPubMedGoogle Scholar
  36. 36.
    Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455, 1069–1075.CrossRefPubMedGoogle Scholar
  37. 37.
    Gealy, R., Zhang, L., Siegfried, J. M., Luketich, J. D., & Keohavong, P. (1999). Comparison of mutations in the p53 and K-ras genes in lung carcinomas from smoking and nonsmoking women. Cancer Epidemiology, Biomarkers & Prevention, 8, 297–302.Google Scholar
  38. 38.
    Vahakangas, K. H., Bennett, W. P., Castren, K., Welsh, J. A., Khan, M. A., Blomeke, B., et al. (2001). p53 and K-ras mutations in lung cancers from former and never-smoking women. Cancer Research, 61, 4350–4356.PubMedGoogle Scholar
  39. 39.
    Riely, G. J., Kris, M. G., Rosenbaum, D., Marks, J., Li, A., Chitale, D. A., et al. (2008). Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clinical Cancer Research, 14, 5731–5734.CrossRefPubMedGoogle Scholar
  40. 40.
    Bos, J. L. (1989). ras oncogenes in human cancer: a review. Cancer Research, 49, 4682–4689.PubMedGoogle Scholar
  41. 41.
    Weir, B. A., Woo, M. S., Getz, G., Perner, S., Ding, L., Beroukhim, R., et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature, 450, 893–898.CrossRefPubMedGoogle Scholar
  42. 42.
    Kendall, J., Liu, Q., Bakleh, A., Krasnitz, A., Nguyen, K. C., Lakshmi, B., et al. (2007). Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 104, 16663–16668.CrossRefPubMedGoogle Scholar
  43. 43.
    Soh, J., Okumura, N., Lockwood, W. W., Yamamoto, H., Shigematsu, H., Zhang, W., et al. (2009). Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One, 4, e7464.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang, Z., Wang, Y., Vikis, H. G., Johnson, L., Liu, G., Li, J., et al. (2001). Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nature Genetics, 29, 25–33.CrossRefPubMedGoogle Scholar
  45. 45.
    Diaz, R., Lue, J., Mathews, J., Yoon, A., Ahn, D., Garcia-Espana, A., et al. (2005). Inhibition of Ras oncogenic activity by Ras protooncogenes. International Journal of Cancer, 113, 241–248.CrossRefGoogle Scholar
  46. 46.
    To, M. D., Perez-Losada, J., Mao, J. H., Hsu, J., Jacks, T., & Balmain, A. (2006). A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice. Nature Genetics, 38, 926–930.CrossRefPubMedGoogle Scholar
  47. 47.
    Kobayashi, T., Tsuda, H., Noguchi, M., Hirohashi, S., Shimosato, Y., Goya, T., et al. (1990). Association of point mutation in c-Ki-ras oncogene in lung adenocarcinoma with particular reference to cytologic subtypes. Cancer, 66, 289–294.CrossRefPubMedGoogle Scholar
  48. 48.
    Tsuchiya, E., Furuta, R., Wada, N., Nakagawa, K., Ishikawa, Y., Kawabuchi, B., et al. (1995). High K-ras mutation rates in goblet-cell-type adenocarcinomas of the lungs. Journal of Cancer Research and Clinical Oncology, 121, 577–581.CrossRefPubMedGoogle Scholar
  49. 49.
    Marchetti, A., Buttitta, F., Pellegrini, S., Chella, A., Bertacca, G., Filardo, A., et al. (1996). Bronchioloalveolar lung carcinomas: K-ras mutations are constant events in the mucinous subtype. The Journal of Pathology, 179, 254–259.CrossRefPubMedGoogle Scholar
  50. 50.
    Yatabe, Y., Koga, T., Mitsudomi, T., & Takahashi, T. (2004). CK20 expression, CDX2 expression, K-ras mutation, and goblet cell morphology in a subset of lung adenocarcinomas. The Journal of Pathology, 203, 645–652.CrossRefPubMedGoogle Scholar
  51. 51.
    Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304, 1497–1500.CrossRefPubMedGoogle Scholar
  52. 52.
    Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England Journal of Medicine, 350, 2129–2139.CrossRefPubMedGoogle Scholar
  53. 53.
    Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., et al. (2004). EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America, 101, 13306–13311.CrossRefPubMedGoogle Scholar
  54. 54.
    Mitsudomi, T., & Yatabe, Y. (2007). Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Science, 98, 1817–1824.CrossRefPubMedGoogle Scholar
  55. 55.
    Leidner, R. S., Fu, P., Clifford, B., Hamdan, A., Jin, C., Eisenberg, R., et al. (2009). Genetic abnormalities of the EGFR pathway in African American patients with non-small-cell lung cancer. Journal of Clinical Oncology, 27, 5620–5626.CrossRefPubMedGoogle Scholar
  56. 56.
    Matsuo, K., Ito, H., Yatabe, Y., Hiraki, A., Hirose, K., Wakai, K., et al. (2007). Risk factors differ for non-small-cell lung cancers with and without EGFR mutation: assessment of smoking and sex by a case-control study in Japanese. Cancer Science, 98, 96–101.CrossRefPubMedGoogle Scholar
  57. 57.
    Slebos, R. J., Kibbelaar, R. E., Dalesio, O., Kooistra, A., Stam, J., Meijer, C. J., et al. (1990). K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. The New England Journal of Medicine, 323, 561–565.PubMedCrossRefGoogle Scholar
  58. 58.
    Mascaux, C., Iannino, N., Martin, B., Paesmans, M., Berghmans, T., Dusart, M., et al. (2005). The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. British Journal of Cancer, 92, 131–139.CrossRefPubMedGoogle Scholar
  59. 59.
    Kosaka, T., Yatabe, Y., Onozato, R., Kuwano, H., & Mitsudomi, T. (2009). Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. Journal of Thoracic Oncology, 4, 22–29.PubMedGoogle Scholar
  60. 60.
    Fukuoka, M., Yano, S., Giaccone, G., Tamura, T., Nakagawa, K., Douillard, J. Y., et al. (2003). Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. Journal of Clinical Oncology, 21, 2237–2246.CrossRefPubMedGoogle Scholar
  61. 61.
    Kris, M. G., Natale, R. B., Herbst, R. S., Lynch, T. J., Jr., Prager, D., Belani, C. P., et al. (2003). Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. The Journal of the American Medical Association, 290, 2149–2158.CrossRefGoogle Scholar
  62. 62.
    Sordella, R., Bell, D. W., Haber, D. A., & Settleman, J. (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 305, 1163–1167.CrossRefPubMedGoogle Scholar
  63. 63.
    Mitsudomi, T., Kosaka, T., Endoh, H., Horio, Y., Hida, T., Mori, S., et al. (2005). Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. Journal of Clinical Oncology, 23, 2513–2520.CrossRefPubMedGoogle Scholar
  64. 64.
    Takano, T., Fukui, T., Ohe, Y., Tsuta, K., Yamamoto, S., Nokihara, H., et al. (2008). EGFR mutations predict survival benefit from gefitinib in patients with advanced lung adenocarcinoma: a historical comparison of patients treated before and after gefitinib approval in Japan. Journal of Clinical Oncology, 26, 5589–5595.CrossRefPubMedGoogle Scholar
  65. 65.
    Cappuzzo, F., Hirsch, F. R., Rossi, E., Bartolini, S., Ceresoli, G. L., Bemis, L., et al. (2005). Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. Journal of the National Cancer Institute, 97, 643–655.PubMedCrossRefGoogle Scholar
  66. 66.
    Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., et al. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. The New England Journal of Medicine, 361, 947–957.CrossRefPubMedGoogle Scholar
  67. 67.
    Kobayashi, K., Inoue, A., Maemondo, M., Sugawara, S., Isobe, H., Oizumi, S., et al. (2009). First-line gefitinib versus first-line chemotherapy by carboplatin (CBDCA) plus paclitaxel (TXL) in non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations: a phase III study (002) by North East Japan Gefitinib Study Group. Journal of Clinical Oncology, 27, 15s (suppl; abstr 8016).CrossRefGoogle Scholar
  68. 68.
    Tsurutani, J., Mitsudomi, T., Mori, S., Okamoto, I., Nozaki, K., Tada, H., et al. (2009). A phase III, first-line trial of gefitinib versus cisplatin plus docetaxel for patients with advanced or recurrent non-small cell lungcancer (NSCLC) harboring activating mutation of the epidermal growthfactor receptor (EGFR) gene: a preliminary results of WJTOG 3405. European Journal of Cancer, 7(Suppl), 505(abstr O-9002).Google Scholar
  69. 69.
    Pao, W., Wang, T. Y., Riely, G. J., Miller, V. A., Pan, Q., Ladanyi, M., et al. (2005). KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Medicine, 2, e17.CrossRefPubMedGoogle Scholar
  70. 70.
    Murray, S., Dahabreh, I. J., Linardou, H., Manoloukos, M., Bafaloukos, D., & Kosmidis, P. (2008). Somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor and tyrosine kinase inhibitor response to TKIs in non-small cell lung cancer: an analytical database. Journal of Thoracic Oncology, 3, 832–839.CrossRefPubMedGoogle Scholar
  71. 71.
    Jackman, D. M., Miller, V. A., Cioffredi, L. A., Yeap, B. Y., Janne, P. A., Riely, G. J., et al. (2009). Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clinical Cancer Research, 15, 5267–5273.CrossRefPubMedGoogle Scholar
  72. 72.
    O'Byrne, K. J., Bondarenko, I., Barrios, C., Eschbach, C., Martens, U., Hotko, Y., et al. (2009). Molecular and clinical predictors of outcome for cetuximab in non-small cell lung cancer (NSCLC): Data from the FLEX study. Journal of Clinical Oncology, 27, 15s (suppl; abstr 8007).CrossRefGoogle Scholar
  73. 73.
    Lynch, T. J., Patel, T., Dreisbach, L., McCleod, M., Heim, W. J., Robert, H., et al. (2007). A randomized multicenter phase III study of cetuximab in combination with taxane/carboplatin versus taxane/carboplatin alone as first-line treatment for patients with advanced/metastatic non-small cell lung cancer. Journal of Thoracic Oncology, 2, s340.CrossRefGoogle Scholar
  74. 74.
    Cutsem, E.V., Lang, I., D'haens, G., Moiseyenko, V., Zaluski J., Folprecht G., et al. (2008). KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. Journal of Clinical Oncology, 26, abstr 2.Google Scholar
  75. 75.
    Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer, 3, 11–22.CrossRefPubMedGoogle Scholar
  76. 76.
    Weinstein, I. B., & Joe, A. (2008). Oncogene addiction. Cancer Research, 68, 3077–80. discussion 80.CrossRefPubMedGoogle Scholar
  77. 77.
    Singh, A., Greninger, P., Rhodes, D., Koopman, L., Violette, S., Bardeesy, N., et al. (2009). A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell, 15, 489–500.CrossRefPubMedGoogle Scholar
  78. 78.
    Horiguchi, K., Shirakihara, T., Nakano, A., Imamura, T., Miyazono, K., & Saitoh, M. (2009). Role of Ras signaling in the induction of snail by transforming growth factor-beta. The Journal of Biological Chemistry, 284, 245–253.CrossRefPubMedGoogle Scholar
  79. 79.
    Gupta, S., Ramjaun, A. R., Haiko, P., Wang, Y., Warne, P. H., Nicke, B., et al. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell, 129, 957–968.CrossRefPubMedGoogle Scholar
  80. 80.
    Yang, Y., Iwanaga, K., Raso, M. G., Wislez, M., Hanna, A. E., Wieder, E. D., et al. (2008). Phosphatidylinositol 3-kinase mediates bronchioalveolar stem cell expansion in mouse models of oncogenic K-ras-induced lung cancer. PLoS One, 3, e2220.CrossRefPubMedGoogle Scholar
  81. 81.
    Engelman, J. A., Chen, L., Tan, X., Crosby, K., Guimaraes, A. R., Upadhyay, R., et al. (2008). Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Medicine, 14, 1351–1356.CrossRefPubMedGoogle Scholar
  82. 82.
    Wee, S., Jagani, Z., Xiang, K. X., Loo, A., Dorsch, M., Yao, Y. M., et al. (2009). PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Research, 69, 4286–4293.CrossRefPubMedGoogle Scholar
  83. 83.
    Sos, M. L., Michel, K., Zander, T., Weiss, J., Frommolt, P., Peifer, M., et al. (2009). Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. The Journal of Clinical Investigation, 119, 1727–1740.CrossRefPubMedGoogle Scholar
  84. 84.
    Scholl, C., Frohling, S., Dunn, I. F., Schinzel, A. C., Barbie, D. A., Kim, S. Y., et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell, 137, 821–834.CrossRefPubMedGoogle Scholar
  85. 85.
    Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137, 835–848.CrossRefPubMedGoogle Scholar
  86. 86.
    Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, I. F., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462, 108–112.CrossRefPubMedGoogle Scholar
  87. 87.
    Chien, Y., Kim, S., Bumeister, R., Loo, Y. M., Kwon, S. W., Johnson, C. L., et al. (2006). RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell, 127, 157–170.CrossRefPubMedGoogle Scholar
  88. 88.
    Meylan, E., Dooley, A. L., Feldser, D. M., Shen, L., Turk, E., Ouyang, C., et al. (2009). Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature, 462, 104–107.CrossRefPubMedGoogle Scholar
  89. 89.
    Shimamura, T., Ji, H., Minami, Y., Thomas, R. K., Lowell, A. M., Shah, K., et al. (2006). Non-small-cell lung cancer and Ba/F3 transformed cells harboring the ERBB2 G776insV_G/C mutation are sensitive to the dual-specific epidermal growth factor receptor and ERBB2 inhibitor HKI-272. Cancer Research, 66, 6487–6491.CrossRefPubMedGoogle Scholar
  90. 90.
    Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448, 561–566.CrossRefPubMedGoogle Scholar
  91. 91.
    Koivunen, J. P., Mermel, C., Zejnullahu, K., Murphy, C., Lifshits, E., Holmes, A. J., et al. (2008). EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clinical Cancer Research, 14, 4275–4283.CrossRefPubMedGoogle Scholar
  92. 92.
    Morita, S., Okamoto, I., Kobayashi, K., Yamazaki, K., Asahina, H., Inoue, A., et al. (2009). Combined Survival Analysis of Prospective Clinical Trials of Gefitinib for Non-Small Cell Lung Cancer with EGFR Mutations. Clinical Cancer Research, 15, 4493–4498.CrossRefPubMedGoogle Scholar
  93. 93.
    Kim, E. S., Hirsh, V., Mok, T., Socinski, M. A., Gervais, R., Wu, Y. L., et al. (2008). Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet, 372, 1809–1818.CrossRefPubMedGoogle Scholar
  94. 94.
    Maruyama, R., Nishiwaki, Y., Tamura, T., Yamamoto, N., Tsuboi, M., Nakagawa, K., et al. (2008). Phase III study, V-15-32, of gefitinib versus docetaxel in previously treated Japanese patients with non-small-cell lung cancer. Journal of Clinical Oncology, 26, 4244–4252.CrossRefPubMedGoogle Scholar
  95. 95.
    Lee, J. C., Vivanco, I., Beroukhim, R., Huang, J. H., Feng, W. L., DeBiasi, R. M., et al. (2006). Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Medicine, 3, e485.CrossRefPubMedGoogle Scholar
  96. 96.
    Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer, 5, 341–354.CrossRefPubMedGoogle Scholar
  97. 97.
    Mitin, N., Rossman, K. L., & Der, C. J. (2005). Signaling interplay in Ras superfamily function. Current Biology, 15, R563–574.CrossRefPubMedGoogle Scholar
  98. 98.
    Repasky, G. A., Chenette, E. J., & Der, C. J. (2004). Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends in Cell Biology, 14, 639–647.CrossRefPubMedGoogle Scholar
  99. 99.
    Schubbert, S., Shannon, K., & Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer, 7, 295–308.CrossRefPubMedGoogle Scholar
  100. 100.
    Downward, J. (2009). Cancer: A tumour gene's fatal flaws. Nature, 462, 44–45.CrossRefPubMedGoogle Scholar
  101. 101.
    Tam, I. Y., Chung, L. P., Suen, W. S., Wang, E., Wong, M. C., Ho, K. K., et al. (2006). Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clinical Cancer Research, 12, 1647–1653.CrossRefPubMedGoogle Scholar
  102. 102.
    Rudin, C. M., Avila-Tang, E., Harris, C. C., Herman, J. G., Hirsch, F. R., Pao, W., et al. (2009). Lung cancer in never smokers: molecular profiles and therapeutic implications. Clinical Cancer Research, 15, 5646–5661.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kenichi Suda
    • 1
  • Kenji Tomizawa
    • 1
  • Tetsuya Mitsudomi
    • 1
  1. 1.Department of Thoracic SurgeryAichi Cancer Center HospitalChikusa-kuJapan

Personalised recommendations