Cancer and Metastasis Reviews

, Volume 29, Issue 1, pp 37–48

Epidermal growth factor receptor inhibition in lung cancer: the evolving role of individualized therapy

Article

Abstract

Non-small cell lung cancer (NSCLC) is the major cause of cancer-related deaths in the USA and worldwide. Most patients present with advanced disease, and treatment options for these patients are generally limited to platinum-based chemotherapy and a few targeted therapies. Targeted agents currently in use for NSCLC inhibit oncogenic receptor tyrosine kinase pathways, such as the epidermal growth factor receptor (EGFR) pathway. While current EGFR-targeted agents, including erlotinib and gefitinib, may result in dramatic responses, they demonstrate efficacy in only a fraction of patients, and resistance to these agents frequently develops. In order to select patients most likely to benefit from blockade of EGFR pathways, investigators have focused on identifying molecular correlates of response to anti-EGFR therapy. New strategies to minimize the risk of resistance to EGFR inhibition have been employed in the development of next-generation EGFR tyrosine kinase inhibitors, such as PF00299804 and BIBW 2992; these include irreversibility of target binding, inhibition of multiple EGFR family receptors, and/or simultaneous inhibition of EGFR and other oncogenic pathways.

Keywords

Epidermal growth factor receptor NSCLC Targeted therapy Resistance 

References

  1. 1.
    World Health Organization. (2008). Fact sheet no. 310: the top ten causes of death. November 2008. http://www.who.int/mediacentre/factsheets/fs310_2008.pdf. Accessed 8 Oct 2009.
  2. 2.
    American Cancer Society. (2009). Cancer facts & figures, 2009. Atlanta, GA: American Cancer Society, Inc.Google Scholar
  3. 3.
    National Comprehensive Cancer Network. (2009). NCCN Clinical Practice Guidelines in Oncology™: Non-Small Cell Lung Cancer V.1.2010. http://www.nccn.org/professionals/physician_gls/PDF/nscl.pdf. Accessed 15 Dec 2009.
  4. 4.
    Breathnach, O. S., Freidlin, B., Conley, B., Green, M. R., Johnson, D. H., Gandara, D. R., et al. (2001). Twenty-two years of phase III trials for patients with advanced non-small-cell lung cancer: sobering results. Journal of Clinical Oncology, 19(6), 1734–1742.PubMedGoogle Scholar
  5. 5.
    Carney, D. N. (2002). Lung cancer—time to move on from chemotherapy. New England Journal of Medicine, 346(2), 126–128.CrossRefPubMedGoogle Scholar
  6. 6.
    Johnson, D. H., Fehrenbacher, L., Novotny, W. F., Herbst, R. S., Nemunaitis, J. J., Jablons, D. M., et al. (2004). Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. Journal of Clinical Oncology, 22(11), 2184–2191.CrossRefPubMedGoogle Scholar
  7. 7.
    Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., et al. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. New England Journal of Medicine, 355(24), 2542–2550.CrossRefPubMedGoogle Scholar
  8. 8.
    Sibilia, M., Kroismayr, R., Lichtenberger, B. M., Natarajan, A., Hecking, M., & Holcmann, M. (2007). The epidermal growth factor receptor: from development to tumorigenesis. Differentiation, 75(9), 770–787.CrossRefPubMedGoogle Scholar
  9. 9.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Hirsch, F. R., Varella-Garcia, M., & Cappuzzo, F. (2009). Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene, 28(Suppl 1), S32–S37.CrossRefPubMedGoogle Scholar
  11. 11.
    Hirsch, F. R., Scagliotti, G. V., Langer, C. J., Varella-Garcia, M., & Franklin, W. A. (2003). Epidermal growth factor family of receptors in preneoplasia and lung cancer: perspectives for targeted therapies. Lung Cancer, 41(Suppl 1), S29–S42.CrossRefPubMedGoogle Scholar
  12. 12.
    Gazdar, A. F. (2009). Personalized medicine and inhibition of EGFR signaling in lung cancer. New England Journal of Medicine, 361(10), 1018–1020.CrossRefPubMedGoogle Scholar
  13. 13.
    Grandal, M. V., & Madshus, I. H. (2008). Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis. Journal of Cellular and Molecular Medicine, 12(5A), 1527–1534.CrossRefPubMedGoogle Scholar
  14. 14.
    Herbst, R. S., Heymach, J. V., & Lippman, S. M. (2008). Lung cancer. New England Journal of Medicine, 359(13), 1367–1380.CrossRefPubMedGoogle Scholar
  15. 15.
    Ciardiello, F., & Tortora, G. (2008). EGFR antagonists in cancer treatment. New England Journal of Medicine, 358(11), 1160–1174.CrossRefPubMedGoogle Scholar
  16. 16.
    Laskin, J. J., & Sandler, A. B. (2004). Epidermal growth factor receptor: a promising target in solid tumours. Cancer Treatment Reviews, 30(1), 1–17.CrossRefPubMedGoogle Scholar
  17. 17.
    Ho, C., & Laskin, J. (2009). EGFR-directed therapies to treat non-small-cell lung cancer. Expert Opinion on Investigational Drugs, 18(8), 1133–1145.CrossRefPubMedGoogle Scholar
  18. 18.
    Solomon, B., Varella-Garcia, M., & Camidge, D. R. (2009). ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. Journal of Thoracic Oncology, 4(12), 1450–1454.PubMedGoogle Scholar
  19. 19.
    Milano, A., De Iaffaioli, R. V., & Caponigro, F. (2007). Downstream intracellular effectors of epidermal growth factor receptor as targets for anticancer therapy. Expert Opinion on Therapeutic Targets, 11(6), 771–782.CrossRefPubMedGoogle Scholar
  20. 20.
    Quesnelle, K. M., Boehm, A. L., & Grandis, J. R. (2007). STAT-mediated EGFR signaling in cancer. Journal of Cellular Biochemistry, 102(2), 311–319.CrossRefPubMedGoogle Scholar
  21. 21.
    Silva, C. M. (2004). Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene, 23(48), 8017–8023.CrossRefPubMedGoogle Scholar
  22. 22.
    Modi, S., & Seidman, A. D. (2002). An update on epidermal growth factor receptor inhibitors. Current Oncology Reports, 4(1), 47–55.CrossRefPubMedGoogle Scholar
  23. 23.
    Hirsch, F. R., Varella-Garcia, M., Bunn, P. A., Jr., Di Maria, M. V., Veve, R., Bremmes, R. M., et al. (2003). Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. Journal of Clinical Oncology, 21(20), 3798–3807.CrossRefPubMedGoogle Scholar
  24. 24.
    Ohsaki, Y., Tanno, S., Fujita, Y., Toyoshima, E., Fujiuchi, S., Nishigaki, Y., et al. (2000). Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncology Reports, 7(3), 603–607.PubMedGoogle Scholar
  25. 25.
    John, T., Liu, G., & Tsao, M. S. (2009). Overview of molecular testing in non-small-cell lung cancer: mutational analysis, gene copy number, protein expression and other biomarkers of EGFR for the prediction of response to tyrosine kinase inhibitors. Oncogene, 28(Suppl 1), S14–S23.CrossRefPubMedGoogle Scholar
  26. 26.
    Eberhard, D. A., Giaccone, G., & Johnson, B. E. (2008). Biomarkers of response to epidermal growth factor receptor inhibitors in Non-Small-Cell Lung Cancer Working Group: standardization for use in the clinical trial setting. Journal of Clinical Oncology, 26(6), 983–994.CrossRefPubMedGoogle Scholar
  27. 27.
    Hirsch, F. R., Varella-Garcia, M., Bunn, P. A., Jr., Franklin, W. A., Dziadziuszko, R., Thatcher, N., et al. (2006). Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. Journal of Clinical Oncology, 24(31), 5034–5042.CrossRefPubMedGoogle Scholar
  28. 28.
    Parra, H. S., Cavina, R., Latteri, F., Zucali, P. A., Campagnoli, E., Morenghi, E., et al. (2004). Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib ('Iressa', ZD1839) in non–small-cell lung cancer. British Journal of Cancer, 91(2), 208–212.PubMedGoogle Scholar
  29. 29.
    Perez-Soler, R., Chachoua, A., Hammond, L. A., Rowinsky, E. K., Huberman, M., Karp, D., et al. (2004). Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. Journal of Clinical Oncology, 22(16), 3238–3247.CrossRefPubMedGoogle Scholar
  30. 30.
    Tsao, M. S., Sakurada, A., Cutz, J. C., Zhu, C. Q., Kamel-Reid, S., Squire, J., et al. (2005). Erlotinib in lung cancer—molecular and clinical predictors of outcome. New England Journal of Medicine, 353(2), 133–144.CrossRefPubMedGoogle Scholar
  31. 31.
    Rego, R. L., Foster, N. R., Smyrk, T. C., Le, M., O'Connell, M. J., Sargent, D. J., et al. (2010). Prognostic effect of activated EGFR expression in human colon carcinomas: comparison with EGFR status. British Journal of Cancer, 102, 165–172.CrossRefPubMedGoogle Scholar
  32. 32.
    Isola, J., Tanner, M., Forsyth, A., Cooke, T. G., Watters, A. D., & Bartlett, J. M. (2004). Interlaboratory comparison of HER-2 oncogene amplification as detected by chromogenic and fluorescence in situ hybridization. Clinical Cancer Research, 10(14), 4793–4798.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhu, C. Q., da Cunha, S. G., Ding, K., Sakurada, A., Cutz, J. C., Liu, N., et al. (2008). Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. Journal of Clinical Oncology, 26(26), 4268–4275.CrossRefPubMedGoogle Scholar
  34. 34.
    Hirsch, F. R., Herbst, R. S., Olsen, C., Chansky, K., Crowley, J., Kelly, K., et al. (2008). Increased EGFR gene copy number detected by fluorescent in situ hybridization predicts outcome in non-small-cell lung cancer patients treated with cetuximab and chemotherapy. Journal of Clinical Oncology, 26(20), 3351–3357.CrossRefPubMedGoogle Scholar
  35. 35.
    Hirsch, F. R., Varella-Garcia, M., Cappuzzo, F., McCoy, J., Bemis, L., Xavier, A. C., et al. (2007). Combination of EGFR gene copy number and protein expression predicts outcome for advanced non-small-cell lung cancer patients treated with gefitinib. Annals of Oncology, 18(4), 752–760.CrossRefPubMedGoogle Scholar
  36. 36.
    Dziadziuszko, R., Witta, S. E., Cappuzzo, F., Park, S., Tanaka, K., Danenberg, P. V., et al. (2006). Epidermal growth factor receptor messenger RNA expression, gene dosage, and gefitinib sensitivity in non-small cell lung cancer. Clinical Cancer Research, 12(10), 3078–3084.CrossRefPubMedGoogle Scholar
  37. 37.
    Gandhi, J., Zhang, J., Xie, Y., Soh, J., Shigematsu, H., Zhang, W., et al. (2009). Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines. PLoS ONE, 4(2), e4576.CrossRefPubMedGoogle Scholar
  38. 38.
    Bell, D. W., Lynch, T. J., Haserlat, S. M., Harris, P. L., Okimoto, R. A., Brannigan, B. W., et al. (2005). Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. Journal of Clinical Oncology, 23(31), 8081–8092.CrossRefPubMedGoogle Scholar
  39. 39.
    Dziadziuszko, R., Holm, B., Skov, B. G., Osterlind, K., Sellers, M. V., Franklin, W. A., et al. (2007). Epidermal growth factor receptor gene copy number and protein level are not associated with outcome of non-small-cell lung cancer patients treated with chemotherapy. Annals of Oncology, 18(3), 447–452.CrossRefPubMedGoogle Scholar
  40. 40.
    Takano, T., Ohe, Y., Sakamoto, H., Tsuta, K., Matsuno, Y., Tateishi, U., et al. (2005). Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. Journal of Clinical Oncology, 23(28), 6829–6837.CrossRefPubMedGoogle Scholar
  41. 41.
    Gazdar, A. F. (2009). Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene, 28(Suppl 1), S24–S31.CrossRefPubMedGoogle Scholar
  42. 42.
    Costa, D. B., Kobayashi, S., Tenen, D. G., & Huberman, M. S. (2007). Pooled analysis of the prospective trials of gefitinib monotherapy for EGFR-mutant non-small cell lung cancers. Lung Cancer, 58(1), 95–103.CrossRefPubMedGoogle Scholar
  43. 43.
    Inoue, A., Suzuki, T., Fukuhara, T., Maemondo, M., Kimura, Y., Morikawa, N., et al. (2006). Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. Journal of Clinical Oncology, 24(21), 3340–3346.CrossRefPubMedGoogle Scholar
  44. 44.
    Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129–2139.CrossRefPubMedGoogle Scholar
  45. 45.
    Miller, V. A., Riely, G. J., Zakowski, M. F., Li, A. R., Patel, J. D., Heelan, R. T., et al. (2008). Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. Journal of Clinical Oncology, 26(9), 1472–1478.CrossRefPubMedGoogle Scholar
  46. 46.
    Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500.CrossRefPubMedGoogle Scholar
  47. 47.
    Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., et al. (2004). EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13306–13311.CrossRefPubMedGoogle Scholar
  48. 48.
    Sequist, L. V., Martins, R. G., Spigel, D., Grunberg, S. M., Spira, A., Janne, P. A., et al. (2008). First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. Journal of Clinical Oncology, 26(15), 2442–2449.CrossRefPubMedGoogle Scholar
  49. 49.
    Tamura, K., Okamoto, I., Kashii, T., Negoro, S., Hirashima, T., Kudoh, S., et al. (2008). Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403). British Journal of Cancer, 98(5), 907–914.CrossRefPubMedGoogle Scholar
  50. 50.
    Taron, M., Ichinose, Y., Rosell, R., Mok, T., Massuti, B., Zamora, L., et al. (2005). Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas. Clinical Cancer Research, 11(16), 5878–5885.CrossRefPubMedGoogle Scholar
  51. 51.
    Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., et al. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. New England Journal of Medicine, 361(10), 947–957.CrossRefPubMedGoogle Scholar
  52. 52.
    Rosell, R., Moran, T., Queralt, C., Porta, R., Cardenal, F., Camps, C., et al. (2009). Screening for epidermal growth factor receptor mutations in lung cancer. New England Journal of Medicine, 361(10), 958–967.CrossRefPubMedGoogle Scholar
  53. 53.
    Greulich, H., Chen, T. H., Feng, W., Janne, P. A., Alvarez, J. V., Zappaterra, M., et al. (2005). Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Medicine, 2(11), e313.CrossRefPubMedGoogle Scholar
  54. 54.
    Molina-Vila, M. A., Bertran-Alamillo, J., Reguart, N., Taron, M., Castella, E., Llatjos, M., et al. (2008). A sensitive method for detecting EGFR mutations in non-small cell lung cancer samples with few tumor cells. Journal of Thoracic Oncology, 3(11), 1224–1235.CrossRefPubMedGoogle Scholar
  55. 55.
    DxS Diagnostic Innovations. (2009). DxS EGFR mutation test kit: for the detection of 29 mutations in the epidermal growth factor receptor (EGFR) gene. Instructions for use. Product codes: EG-03 and EG-04. Instructions Version: RU001b. Date of Revision: July 2009. http://www.dxsdiagnostics.com/Site/PDF/CMP/RUO-EGFR29/IFU-EGFR29-RUO-US.pdf. Accessed 28 Dec 2009.
  56. 56.
    Mack, P. C., Holland, W. S., Burich, R. A., Sangha, R., Solis, L. J., Li, Y., et al. (2009). EGFR mutations detected in plasma are associated with patient outcomes in erlotinib plus docetaxel-treated non-small cell lung cancer. Journal of Thoracic Oncology, 4(12), 1466–1472.PubMedGoogle Scholar
  57. 57.
    Zhang, X., & Chang, A. (2008). Molecular predictors of EGFR-TKI sensitivity in advanced non-small cell lung cancer. International Journal of Medical Sciences, 5(4), 209–217.PubMedGoogle Scholar
  58. 58.
    Ladanyi, M., & Pao, W. (2008). Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Modern Pathology, 21(Suppl 2), S16–S22.CrossRefPubMedGoogle Scholar
  59. 59.
    Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer, 5(5), 341–354.CrossRefPubMedGoogle Scholar
  60. 60.
    Mendelsohn, J., & Baselga, J. (2003). Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. Journal of Clinical Oncology, 21(14), 2787–2799.CrossRefPubMedGoogle Scholar
  61. 61.
    Kelly, K., Chansky, K., Gaspar, L. E., Albain, K. S., Jett, J., Ung, Y. C., et al. (2008). Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. Journal of Clinical Oncology, 26(15), 2450–2456.CrossRefPubMedGoogle Scholar
  62. 62.
    Gatzemeier, U., Pluzanska, A., Szczesna, A., Kaukel, E., Roubec, J., De Rosa, F., et al. (2007). Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. Journal of Clinical Oncology, 25(12), 1545–1552.CrossRefPubMedGoogle Scholar
  63. 63.
    Pirker, R., Pereira, J. R., Szczesna, A., von Pawel, J., Krzakowski, M., Ramlau, R., et al. (2009). Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet, 373(9674), 1525–1531.CrossRefPubMedGoogle Scholar
  64. 64.
    Merck KGaA. (2009). News release. November 19, 2009. CHMP opinion for erbitux in advanced non-small cell lung cancer. http://news.merck.de/N/0/95F233DCB18F57F1C1257673003661FC/$File/CHMP_neg_En.pdf. Accessed 15 Dec 2009.
  65. 65.
    Thatcher, N., Chang, A., Parikh, P., Rodrigues, P. J., Ciuleanu, T., von Pawel J., et al. (2005). Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet, 366(9496), 1527–1537.CrossRefPubMedGoogle Scholar
  66. 66.
    Shepherd, F. A., Rodrigues, P. J., Ciuleanu, T., Tan, E. H., Hirsh, V., Thongprasert, S., et al. (2005). Erlotinib in previously treated non-small-cell lung cancer. New England Journal of Medicine, 353(2), 123–132.CrossRefPubMedGoogle Scholar
  67. 67.
    Tarceva® (erlotinib) tablets, oral [package insert]. Melville, NY: OSI Pharmaceuticals Inc. (2009).Google Scholar
  68. 68.
    Kobayashi, S., Boggon, T. J., Dayaram, T., Janne, P. A., Kocher, O., Meyerson, M., et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 352(8), 786–792.CrossRefPubMedGoogle Scholar
  69. 69.
    Kosaka, T., Yatabe, Y., Endoh, H., Yoshida, K., Hida, T., Tsuboi, M., et al. (2006). Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clinical Cancer Research, 12(19), 5764–5769.CrossRefPubMedGoogle Scholar
  70. 70.
    Pao, W., Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, M. F., et al. (2005). Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Medicine, 2(3), e73.CrossRefPubMedGoogle Scholar
  71. 71.
    Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., et al. (2005). Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. Journal of Clinical Oncology, 23(25), 5900–5909.CrossRefPubMedGoogle Scholar
  72. 72.
    Pao, W., Wang, T. Y., Riely, G. J., Miller, V. A., Pan, Q., Ladanyi, M., et al. (2005). KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Medicine, 2(1), e17.CrossRefPubMedGoogle Scholar
  73. 73.
    Balak, M. N., Gong, Y., Riely, G. J., Somwar, R., Li, A. R., Zakowski, M. F., et al. (2006). Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clinical Cancer Research, 12(21), 6494–6501.CrossRefPubMedGoogle Scholar
  74. 74.
    Suda, K., Onozato, R., Yatabe, Y., & Mitsudomi, T. (2009). EGFR T790M mutation: a double role in lung cancer cell survival? Journal of Thoracic Oncology, 4(1), 1–4.PubMedGoogle Scholar
  75. 75.
    Maheswaran, S., Sequist, L. V., Nagrath, S., Ulkus, L., Brannigan, B., Collura, C. V., et al. (2008). Detection of mutations in EGFR in circulating lung-cancer cells. New England Journal of Medicine, 359(4), 366–377.CrossRefPubMedGoogle Scholar
  76. 76.
    Bean, J., Brennan, C., Shih, J. Y., Riely, G., Viale, A., Wang, L., et al. (2007). MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20932–20937.CrossRefPubMedGoogle Scholar
  77. 77.
    Aita, M., Fasola, G., Defferrari, C., Brianti, A., Bello, M. G., Follador, A., et al. (2008). Targeting the VEGF pathway: antiangiogenic strategies in the treatment of non-small cell lung cancer. Critical Reviews in Oncology/Hematology, 68(3), 183–196.CrossRefPubMedGoogle Scholar
  78. 78.
    Alvarez, R. H., Kantarjian, H. M., & Cortes, J. E. (2006). Biology of platelet-derived growth factor and its involvement in disease. Mayo Clinic Proceedings, 81(9), 1241–1257.CrossRefPubMedGoogle Scholar
  79. 79.
    Guix, M., Faber, A. C., Wang, S. E., Olivares, M. G., Song, Y., Qu, S., et al. (2008). Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. Journal of Clinical Investigation, 118(7), 2609–2619.PubMedGoogle Scholar
  80. 80.
    Kono, S. A., Marshall, M. E., Ware, K. E., & Heasley, L. E. (2009). The fibroblast growth factor receptor signaling pathway as a mediator of intrinsic resistance to EGFR-specific tyrosine kinase inhibitors in non-small cell lung cancer. Drug Resistance Updates, 12(4–5), 95–102.CrossRefPubMedGoogle Scholar
  81. 81.
    Kwak, E. L., Sordella, R., Bell, D. W., Godin-Heymann, N., Okimoto, R. A., Brannigan, B. W., et al. (2005). Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7665–7670.CrossRefPubMedGoogle Scholar
  82. 82.
    Burris, H. A., III. (2009). Shortcomings of current therapies for non-small-cell lung cancer: unmet medical needs. Oncogene, 28(Suppl 1), S4–S13.CrossRefPubMedGoogle Scholar
  83. 83.
    Britten, C. D. (2004). Targeting ErbB receptor signaling: a pan-ErbB approach to cancer. Molecular Cancer Therapeutics, 3(10), 1335–1342.PubMedGoogle Scholar
  84. 84.
    Yang, C.-H., Shih, J.-Y., Su, W.-C., Hsia, T.-C., Ho, C.-L., Dudek, A. Z., et al. (2009). BIBW 2992, a novel irreversible EGFR/HER2 tyrosine kinase inhibitor, in chemonaïve patients with adenocarcinoma of the lung and activating EGFR mutations (LUX-Lung 2). Journal of Thoracic Oncology, 4(9 suppl 1), S294–S295. Abstract A3.3.Google Scholar
  85. 85.
    Xu, H., Yu, Y., Marciniak, D., Rishi, A. K., Sarkar, F. H., Kucuk, O., et al. (2005). Epidermal growth factor receptor (EGFR)-related protein inhibits multiple members of the EGFR family in colon and breast cancer cells. Molecular Cancer Therapeutics, 4(3), 435–442.PubMedGoogle Scholar
  86. 86.
    Ye, D., Mendelsohn, J., & Fan, Z. (1999). Augmentation of a humanized anti-HER2 mAb 4D5 induced growth inhibition by a human-mouse chimeric anti-EGF receptor mAb C225. Oncogene, 18(3), 731–738.CrossRefPubMedGoogle Scholar
  87. 87.
    Shih, J.-Y., Yang, C.-H., Su, W.-C., Hsia, T.-C., Tsia, C.-M., Chen, Y.-M., et al. (2009). A phase II study of BIBW 2992, a novel irreversible dual EGFR and HER2 TKI, in patients with adenocarcinoma of the lung and activating EGFR mutations after failure of one line of chemotherapy (LUX-Lung 2). Journal of Clinical Oncology, 27(suppl), 15S. Abstract 8013.Google Scholar
  88. 88.
    Eskens, F. A., Mom, C. H., Planting, A. S., Gietema, J. A., Amelsberg, A., Huisman, H., et al. (2008). A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours. British Journal of Cancer, 98(1), 80–85.CrossRefPubMedGoogle Scholar
  89. 89.
    Yang, C.-H., Shih, J.-Y., Su, W.-C., Hsia, T.-C., Ho, C.-L., Dudek, A. Z., et al. BIBW 2992, a novel irreversible EGFR/HER2 tyrosine kinase inhibitor, in chemonaïve patients with adenocarcinoma of the lung and activating EGFR mutations (LUX-Lung 2). Oral presentation at: 13th World Conference on Lung Cancer of the International Association for the Study of Lung Cancer; July 31-August 4, 2009; San Francisco, CA.Google Scholar
  90. 90.
    Shih, J.-Y., Yang, C.-H., Su, W.-C., Hsia, T.-C., Tsai, C.-M., Chen, Y.-M., et al. A phase II study of BIBW 2992, a novel irreversible dual EGFR and HER2 TKI, in patients with adenocarcinoma of the lung and activating EGFR mutations after failure of one line of chemotherapy (LUX-Lung 2). Poster presented at: 45th Annual Meeting of the American Society of Clinical Oncology; May 29-June 2, 2009; Orlando, FL.Google Scholar
  91. 91.
    Yang, C.-H., Hirsh, V., Cadranel, J., Chen, Y.-M., Park, K., Kim, S.-W., et al. Phase IIb/III double-blind randomized trial of BIBW 2992, an irreversible, dual inhibitor of EGFR (HER1) and HER2 + BSC versus placebo + BSC in patients with non-small cell lung cancer failing 1-2 lines of chemotherapy and erlotinib or gefitinib (LUX-Lung 1): a preliminary report. Poster presented at: 45th Annual Meeting of the American Society of Clinical Oncology; May 29-June 2, 2009; Orlando, FL.Google Scholar
  92. 92.
    Janne, P. A., Reckamp, K., Koczywas, M., Camidge, D. R., Engelman, J. A., Khuri, F., et al. (2009). A phase 2 trial of PF-00299804 (PF299), an oral irreversible HER tyrosine kinase inhibitor (TKI), in patients (pts) with advanced NSCLC after failure of prior chemotherapy and erlotinib: preliminary efficacy and safety results. Journal of Thoracic Oncology, 4(9 suppl 1), S293–S294. Abstract A3.1.Google Scholar
  93. 93.
    Natale, R. B., Thongprasert, S., Greco, F. A., et al. (2009). Vandetanib versus erlotinib in patients with advanced non-small cell lung cancer (NSCLC) after failure of at least one prior cytotoxic chemotherapy: a randomized, double-blind phase III trial (ZEST). Journal of Clinical Oncology, 27 (suppl), Abstract 8009.Google Scholar
  94. 94.
    De Boer, R., Arrieta, O., Gottfried, M., et al. (2009). Vandetanib plus pemetrexed versus pemetrexed as second-line therapy in patients with advanced non-small cell lung cancer (NSCLC): a randomized, double-blind phase III trial (ZEAL). Journal of Clinical Oncology, 27(suppl), 409s Abstract 8010.Google Scholar
  95. 95.
    Herbst, R. S., Sun, Y., Korfee, S., et al. (2009). Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advance non-small cell lung cancer (NSCLC): a randomized, double-blind phase III trial (ZODIAC). Journal of Clinical Oncology, 27(suppl), 807s Abstract CRA8003.Google Scholar
  96. 96.
    Bahleda, R., Soria, J. C., Harbison, C. T., et al. (2009). Tumor regression and pharmacodynamic (PD) biomarker validation in non-small cell lung cancer (NSCLC) patients treated with the ErbB/VEGFR inhibitor BMS-690514. Journal of Clinical Oncology, 27(suppl), 431s Abstract 8098.Google Scholar
  97. 97.
    Shannon, A. M., Telfer, B. A., Smith, P. D., Babur, M., Logie, A., Wilkinson, R. W., et al. (2009). The mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) enhances the radiation responsiveness of lung and colorectal tumor xenografts. Clinical Cancer Research, 15(21), 6619–6629.CrossRefPubMedGoogle Scholar
  98. 98.
    Friday, B. B., Yu, C., Dy, G. K., Smith, P. D., Wang, L., Thibodeau, S. N., et al. (2008). BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Research, 68(15), 6145–6153.CrossRefPubMedGoogle Scholar
  99. 99.
    Barrett, S. D., Bridges, A. J., Dudley, D. T., Saltiel, A. R., Fergus, J. H., Flamme, C. M., et al. (2008). The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorganic & Medicinal Chemistry Letters, 18(24), 6501–6504.CrossRefGoogle Scholar
  100. 100.
    Gridelli, C., Maione, P., & Rossi, A. (2008). The potential role of mTOR inhibitors in non-small cell lung cancer. The Oncologist, 13(2), 139–147.CrossRefPubMedGoogle Scholar
  101. 101.
    Mita, M. M., Mita, A. C., Chu, Q. S., Rowinsky, E. K., Fetterly, G. J., Goldston, M., et al. (2008). Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. Journal of Clinical Oncology, 26(3), 361–367.CrossRefPubMedGoogle Scholar
  102. 102.
    Wu, P., Liu, T., & Hu, Y. (2009). PI3K inhibitors for cancer therapy: what has been achieved so far? Current Medicinal Chemistry, 16(8), 916–930.CrossRefPubMedGoogle Scholar
  103. 103.
    Oh, Y., Herbst, R. S., Burris, H., Cleverly, A., Musib, L., Lahn, M., et al. (2008). Enzastaurin, an oral serine/threonine kinase inhibitor, as second- or third-line therapy of non-small-cell lung cancer. Journal of Clinical Oncology, 26(7), 1135–1141.CrossRefPubMedGoogle Scholar
  104. 104.
    Villalona-Calero, M. A., Ritch, P., Figueroa, J. A., Otterson, G. A., Belt, R., Dow, E., et al. (2004). A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clinical Cancer Research, 10(18 Pt 1), 6086–6093.CrossRefPubMedGoogle Scholar
  105. 105.
    Baselga, J., Rojo, F., Dumez, H. (2005). Phase I study of AEE788, a novel multitargeted inhibitor of ErbB and VEGF receptor family tyrosine kinases: a pharmacokinetic (PK)-pharmacodynamic (PD) study to identify the optimal therapeutic dose regimen. Journal of Clinical Oncology, 23. Abstract 3028.Google Scholar
  106. 106.
    Rizvi, N. A., Kris, M. G., Miller, V. A. (2008). Activity of XL647 in clinically selected NSCLC patients (pts) enriched for the presence of EGFR mutations: results from phase 2. Journal of Clinical Oncology, 26. Abstract 8053.Google Scholar
  107. 107.
    Yoshimura, N., Kudoh, S., Kimura, T., Mitsuoka, S., Matsuura, K., Hirata, K., et al. (2006). EKB-569, a new irreversible epidermal growth factor receptor tyrosine kinase inhibitor, with clinical activity in patients with non-small cell lung cancer with acquired resistance to gefitinib. Lung Cancer, 51(3), 363–368.CrossRefPubMedGoogle Scholar
  108. 108.
    Suzuki, T., Fujii, A., Ohya, J., Amano, Y., Kitano, Y., Abe, D., et al. (2007). Pharmacological characterization of MP-412 (AV-412), a dual epidermal growth factor receptor and ErbB2 tyrosine kinase inhibitor. Cancer Science, 98(12), 1977–1984.CrossRefPubMedGoogle Scholar
  109. 109.
    Gratacap, M. P., Martin, V., Valera, M. C., Allart, S., Garcia, C., Sie, P., et al. (2009). The new tyrosine-kinase inhibitor and anti-cancer drug dasatinib reversibly affects platelet activation in vitro and in vivo. Blood, 114(9), 1884–1892.CrossRefPubMedGoogle Scholar
  110. 110.
    Natale, R. B., Bodkin, D., Govindan, R., Sleckman, B. G., Rizvi, N. A., Capo, A., et al. (2009). Vandetanib versus gefitinib in patients with advanced non-small-cell lung cancer: results from a two-part, double-blind, randomized phase II study. Journal of Clinical Oncology, 27(15), 2523–2529.CrossRefPubMedGoogle Scholar
  111. 111.
    Pirker, R., Szczesna, A., von Pawel, J., et al. (2008). FLEX: a randomized, multicenter, phase III study of cetuximab in combination with cisplatin/vinorelbine (CV) versus CV alone in the first-line treatment of patients with advanced non-small cell lung cancer (NSCLC). Proceedings of the American Society of Clinical Oncology, 26. Abstract 3.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Hamon Center for Therapeutic Oncology Research and Department of PathologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations