Cancer and Metastasis Reviews

, Volume 29, Issue 1, pp 73–93

Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer

  • Raj Chari
  • Kelsie L. Thu
  • Ian M. Wilson
  • William W. Lockwood
  • Kim M. Lonergan
  • Bradley P. Coe
  • Chad A. Malloff
  • Adi F. Gazdar
  • Stephen Lam
  • Cathie Garnis
  • Calum E. MacAulay
  • Carlos E. Alvarez
  • Wan L. Lam


Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and microRNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.


Integrative analysis Cancer genome Sequencing Microarray 



Comparative genomic hybridization


  1. 1.
    Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 20(2), 207–211.PubMedGoogle Scholar
  2. 2.
    Schrock, E., du Manoir, S., Veldman, T., Schoell, B., Wienberg, J., Ferguson-Smith, M. A., et al. (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273(5274), 494–497.PubMedGoogle Scholar
  3. 3.
    Drmanac, R., Sparks, A. B., Callow, M. J., Halpern, A. L., Burns, N. L., Kermani, B. G., et al. (2009). Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science, 327(5961), 78–81.PubMedGoogle Scholar
  4. 4.
    Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2009). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature.Google Scholar
  5. 5.
    Pleasance, E. D., Stephens, P. J., O’Meara, S., McBride, D. J., Meynert, A., Jones, D., et al. (2009). A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature.Google Scholar
  6. 6.
    Stephens, P. J., McBride, D. J., Lin, M. L., Varela, I., Pleasance, E. D., Simpson, J. T., et al. (2009). Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature, 462(7276), 1005–1010.PubMedGoogle Scholar
  7. 7.
    Chari, R., Coe, B. P., Wedseltoft, C., Benetti, M., Wilson, I. M., Vucic, E. A., et al. (2008). SIGMA2: a system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. BMC Bioinformatics, 9, 422.PubMedGoogle Scholar
  8. 8.
    von Eschenbach, A. C., & Buetow, K. (2007). Cancer informatics vision: caBIG. Cancer Informatics, 2, 22–24.Google Scholar
  9. 9.
    Conde, L., Montaner, D., Burguet-Castell, J., Tarraga, J., Medina, I., Al-Shahrour, F., et al. (2007). ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling. Nucleic Acids Research, 35(Web Server issue), W81–W85.PubMedGoogle Scholar
  10. 10.
    La Rosa, P., Viara, E., Hupe, P., Pierron, G., Liva, S., Neuvial, P., et al. (2006). VAMP: visualization and analysis of array-CGH, transcriptome and other molecular profiles. Bioinformatics, 22(17), 2066–2073.PubMedGoogle Scholar
  11. 11.
    Horn, T., Arziman, Z., Berger, J., & Boutros, M. (2007). GenomeRNAi: a database for cell-based RNAi phenotypes. Nucleic Acids Research, 35, D492–D497.PubMedGoogle Scholar
  12. 12.
    Gilsdorf, M., Horn, T., Arziman, Z., Pelz, O., Kiner, E., & Boutros, M. (2010). GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. Nucleic Acids Research, 38, D448–D452.PubMedGoogle Scholar
  13. 13.
    Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813.PubMedGoogle Scholar
  14. 14.
    Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315–322.PubMedGoogle Scholar
  15. 15.
    Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., Chen, K., et al. (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456(7218), 66–72.PubMedGoogle Scholar
  16. 16.
    Mardis, E. R., Ding, L., Dooling, D. J., Larson, D. E., McLellan, M. D., Chen, K., et al. (2009). Recurring mutations found by sequencing an acute myeloid leukemia genome. New England Journal of Medicine, 361(11), 1058–1066.PubMedGoogle Scholar
  17. 17.
    Wise, J. (2008). Consortium hopes to sequence genome of 1000 volunteers. BMJ, 336(7638), 237.PubMedGoogle Scholar
  18. 18.
    The Cancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.Google Scholar
  19. 19.
    Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449(7164), 851–861.PubMedGoogle Scholar
  20. 20.
    Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., et al. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454.PubMedGoogle Scholar
  21. 21.
    Wong, K. K., deLeeuw, R. J., Dosanjh, N. S., Kimm, L. R., Cheng, Z., Horsman, D. E., et al. (2007). A comprehensive analysis of common copy-number variations in the human genome. American Journal of Human Genetics, 80(1), 91–104.PubMedGoogle Scholar
  22. 22.
    Shames, D. S., Girard, L., Gao, B., Sato, M., Lewis, C. M., Shivapurkar, N., et al. (2006). A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Medicine, 3(12), e486.PubMedGoogle Scholar
  23. 23.
    Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMedGoogle Scholar
  24. 24.
    Root, D. E., Hacohen, N., Hahn, W. C., Lander, E. S., & Sabatini, D. M. (2006). Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods, 3(9), 715–719.PubMedGoogle Scholar
  25. 25.
    Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., et al. (2006). High-throughput DNA methylation profiling using universal bead arrays. Genome Research, 16(3), 383–393.PubMedGoogle Scholar
  26. 26.
    Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., et al. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37(8), 853–862.PubMedGoogle Scholar
  27. 27.
    International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437(7063), 1299–1320.Google Scholar
  28. 28.
    Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.PubMedGoogle Scholar
  29. 29.
    Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., et al. (2004). The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. British Journal of Cancer, 91(2), 355–358.PubMedGoogle Scholar
  30. 30.
    Paddison, P. J., Silva, J. M., Conklin, D. S., Schlabach, M., Li, M., Aruleba, S., et al. (2004). A resource for large-scale RNA-interference-based screens in mammals. Nature, 428(6981), 427–431.PubMedGoogle Scholar
  31. 31.
    Schlabach, M. R., Luo, J., Solimini, N. L., Hu, G., Xu, Q., Li, M. Z., et al. (2008). Cancer proliferation gene discovery through functional genomics. Science, 319(5863), 620–624.PubMedGoogle Scholar
  32. 32.
    Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., et al. (2004). A census of human cancer genes. Nature Reviews Cancer, 4(3), 177–183.PubMedGoogle Scholar
  33. 33.
    Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., et al. (2004). Detection of large-scale variation in the human genome. Nature Genetics, 36(9), 949–951.PubMedGoogle Scholar
  34. 34.
    Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305(5683), 525–528.PubMedGoogle Scholar
  35. 35.
    Ishkanian, A. S., Malloff, C. A., Watson, S. K., DeLeeuw, R. J., Chi, B., Coe, B. P., et al. (2004). A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genetics, 36(3), 299–303.PubMedGoogle Scholar
  36. 36.
    Bertone, P., Stolc, V., Royce, T. E., Rozowsky, J. S., Urban, A. E., Zhu, X., et al. (2004). Global identification of human transcribed sequences with genome tiling arrays. Science, 306(5705), 2242–2246.PubMedGoogle Scholar
  37. 37.
    Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., et al. (2002). The ensembl genome database project. Nucleic Acids Research, 30(1), 38–41.PubMedGoogle Scholar
  38. 38.
    Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., et al. (2002). The human genome browser at UCSC. Genome Research, 12(6), 996–1006.PubMedGoogle Scholar
  39. 39.
    Oliphant, A., Barker, D. L., Stuelpnagel, J. R., & Chee M. S. (2002). BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques, Suppl:56–58, 60–51.Google Scholar
  40. 40.
    Weinstein, I. B. (2002). Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science, 297(5578), 63–64.PubMedGoogle Scholar
  41. 41.
    Weinstein, I. B., & Joe, A. (2008). Oncogene addiction. Cancer Research, 68(9), 3077–3080. discussion 3080.PubMedGoogle Scholar
  42. 42.
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.PubMedGoogle Scholar
  43. 43.
    Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.PubMedGoogle Scholar
  44. 44.
    Riggins, G. J., & Strausberg, R. L. (2001). Genome and genetic resources from the cancer genome anatomy project. Human Molecular Genetics, 10(7), 663–667.PubMedGoogle Scholar
  45. 45.
    Strausberg, R. L., Buetow, K. H., Emmert-Buck, M. R., & Klausner, R. D. (2000). The cancer genome anatomy project: Building an annotated gene index. Trends in Genetics, 16(3), 103–106.PubMedGoogle Scholar
  46. 46.
    Bayani, J. M., & Squire, J. A. (2002). Applications of SKY in cancer cytogenetics. Cancer Investigation, 20(3), 373–386.PubMedGoogle Scholar
  47. 47.
    Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F., et al. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258(5083), 818–821.PubMedGoogle Scholar
  48. 48.
    Garnis, C., Buys, T. P., & Lam, W. L. (2004). Genetic alteration and gene expression modulation during cancer progression. Molecular Cancer, 3, 9.PubMedGoogle Scholar
  49. 49.
    Gebhart, E. (2005). Genomic imbalances in human leukemia and lymphoma detected by comparative genomic hybridization (Review). International Journal of Oncology, 27(3), 593–606.PubMedGoogle Scholar
  50. 50.
    Gebhart, E., & Liehr, T. (2000). Patterns of genomic imbalances in human solid tumors (Review). International Journal of Oncology, 16(2), 383–399.PubMedGoogle Scholar
  51. 51.
    Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Willson, J. K., Markowitz, S. D., et al. (1998). Mutations of mitotic checkpoint genes in human cancers. Nature, 392(6673), 300–303.PubMedGoogle Scholar
  52. 52.
    Fukasawa, K. (2005). Centrosome amplification, chromosome instability and cancer development. Cancer Letters, 230(1), 6–19.PubMedGoogle Scholar
  53. 53.
    Lingle, W. L., Lukasiewicz, K., & Salisbury, J. L. (2005). Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. Advances in Experimental Medicine and Biology, 570, 393–421.PubMedGoogle Scholar
  54. 54.
    Chin, K., de Solorzano, C. O., Knowles, D., Jones, A., Chou, W., Rodriguez, E. G., et al. (2004). In situ analyses of genome instability in breast cancer. Nature Genetics, 36(9), 984–988.PubMedGoogle Scholar
  55. 55.
    O’Hagan, R. C., Chang, S., Maser, R. S., Mohan, R., Artandi, S. E., Chin, L., et al. (2002). Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell, 2(2), 149–155.PubMedGoogle Scholar
  56. 56.
    Green, A. R. (1992). Transcription factors, translocations and haematological malignancies. Blood Reviews, 6(2), 118–124.PubMedGoogle Scholar
  57. 57.
    Rowley, J. D. (2008). Chromosomal translocations: revisited yet again. Blood, 112(6), 2183–2189.PubMedGoogle Scholar
  58. 58.
    Watson, S. K., deLeeuw, R. J., Horsman, D. E., Squire, J. A., & Lam, W. L. (2007). Cytogenetically balanced translocations are associated with focal copy number alterations. Human Genetics, 120(6), 795–805.PubMedGoogle Scholar
  59. 59.
    Brenner, J. C., & Chinnaiyan, A. M. (2009). Translocations in epithelial cancers. Biochimica et Biophysica Acta, 1796(2), 201–215.PubMedGoogle Scholar
  60. 60.
    Mani, R. S., Tomlins, S. A., Callahan, K., Ghosh, A., Nyati, M. K., Varambally, S., et al. (2009). Induced chromosomal proximity and gene fusions in prostate cancer. Science, 326(5957), 1230.PubMedGoogle Scholar
  61. 61.
    Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X. W., et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 310(5748), 644–648.PubMedGoogle Scholar
  62. 62.
    Dang, T. P., Gazdar, A. F., Virmani, A. K., Sepetavec, T., Hande, K. R., Minna, J. D., et al. (2000). Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. Journal of the National Cancer Institute, 92(16), 1355–1357.PubMedGoogle Scholar
  63. 63.
    Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153), 561–566.PubMedGoogle Scholar
  64. 64.
    Knutsen, T., Gobu, V., Knaus, R., Padilla-Nash, H., Augustus, M., Strausberg, R. L., et al. (2005). The interactive online SKY/M-FISH & CGH database and the Entrez cancer chromosomes search database: Linkage of chromosomal aberrations with the genome sequence. Genes, Chromosomes, and Cancer, 44(1), 52–64.PubMedGoogle Scholar
  65. 65.
    Kapushesky, M., Emam, I., Holloway, E., Kurnosov, P., Zorin, A., Malone, J., et al. (2010). Gene expression atlas at the European bioinformatics institute. Nucleic Acids Research, 38, D690–D698.PubMedGoogle Scholar
  66. 66.
    Li, L., Bum-Erdene, K., Baenziger, P. H., Rosen, J. J., Hemmert, J. R., Nellis, J. A., et al. (2010). BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome. Nucleic Acids Research, 38, D765–D773.PubMedGoogle Scholar
  67. 67.
    Forbes, S. A., Tang, G., Bindal, N., Bamford, S., Dawson, E., Cole, C., et al. (2010). COSMIC (the Catalogue of Somatic Mutations in Cancer): A resource to investigate acquired mutations in human cancer. Nucleic Acids Research, 38, D652–D657.PubMedGoogle Scholar
  68. 68.
    Kato, K., Yamashita, R., Matoba, R., Monden, M., Noguchi, S., Takagi, T., et al. (2005). Cancer gene expression database (CGED): A database for gene expression profiling with accompanying clinical information of human cancer tissues. Nucleic Acids Research, 33, D533–D536.PubMedGoogle Scholar
  69. 69.
    Li, H., He, Y., Ding, G., Wang, C., Xie, L., & Li, Y. (2010). dbDEPC: a database of differentially expressed proteins in human cancers. Nucleic Acids Research, 38, D658–D664.PubMedGoogle Scholar
  70. 70.
    Brooksbank, C., Cameron, G., & Thornton, J. (2010). The European Bioinformatics Institute’s data resources. Nucleic Acids Research, 38, D17–25.PubMedGoogle Scholar
  71. 71.
    Safran, M., Chalifa-Caspi, V., Shmueli, O., Olender, T., Lapidot, M., Rosen, N., et al. (2003). Human gene-centric databases at the Weizmann institute of science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Research, 31(1), 142–146.PubMedGoogle Scholar
  72. 72.
    Zhang, Y., Lv, J., Liu, H., Zhu, J., Su, J., Wu, Q., et al. (2010). HHMD: the human histone modification database. Nucleic Acids Research, 38, D149–D154.PubMedGoogle Scholar
  73. 73.
    Betel, D., Wilson, M., Gabow, A., Marks, D. S., & Sander, C. (2008). The resource: targets and expression. Nucleic Acids Research, 36, D149–D153.PubMedGoogle Scholar
  74. 74.
    Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., et al. (2009). miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Research, 37, D98–D104.PubMedGoogle Scholar
  75. 75.
    Wang, X. (2008). miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA, 14(6), 1012–1017.PubMedGoogle Scholar
  76. 76.
    Alexiou, P., Vergoulis, T., Gleditzsch, M., Prekas, G., Dalamagas, T., Megraw, M., et al. (2010). miRGen 2.0: A database of microRNA genomic information and regulation. Nucleic Acids Research, 38, D137–D141.PubMedGoogle Scholar
  77. 77.
    Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., Canese, K., et al. (2010). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 38, D5–D16.PubMedGoogle Scholar
  78. 78.
    Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., et al. (2009). NCBI GEO: Archive for high-throughput functional genomic data. Nucleic Acids Research, 37, D885–D890.PubMedGoogle Scholar
  79. 79.
    Rhodes, D. R., Kalyana-Sundaram, S., Mahavisno, V., Varambally, R., Yu, J., Briggs, B. B., et al. (2007). Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia, 9(2), 166–180.PubMedGoogle Scholar
  80. 80.
    Baudis, M. (2007). Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer, 7, 226.PubMedGoogle Scholar
  81. 81.
    Vizcaino, J. A., Cote, R., Reisinger, F., Barsnes, H., Foster, J. M., Rameseder, J., et al. (2010). The proteomics identifications database: 2010 update. Nucleic Acids Research, 38, D736–D742.PubMedGoogle Scholar
  82. 82.
    Ren, Y., Gong, W., Zhou, H., Wang, Y., Xiao, F., & Li, T. (2009). siRecords: A database of mammalian RNAi experiments and efficacies. Nucleic Acids Research, 37, D146–D149.PubMedGoogle Scholar
  83. 83.
    Chari, R., Lockwood, W. W., Coe, B. P., Chu, A., Macey, D., Thomson, A., et al. (2006). SIGMA: A system for integrative genomic microarray analysis of cancer genomes. BMC Genomics, 7, 324.PubMedGoogle Scholar
  84. 84.
    Rhead, B., Karolchik, D., Kuhn, R. M., Hinrichs, A. S., Zweig, A. S., Fujita, P. A., et al. (2010). The UCSC genome browser database: Update 2010. Nucleic Acids Research, 38, D613–D619.PubMedGoogle Scholar
  85. 85.
    Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34(4), 369–376.PubMedGoogle Scholar
  86. 86.
    Coe, B. P., Ylstra, B., Carvalho, B., Meijer, G. A., Macaulay, C., & Lam, W. L. (2007). Resolving the resolution of array CGH. Genomics, 89(5), 647–653.PubMedGoogle Scholar
  87. 87.
    Lockwood, W. W., Chari, R., Chi, B., & Lam, W. L. (2006). Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. European Journal of Human Genetics, 14(2), 139–148.PubMedGoogle Scholar
  88. 88.
    Pollack, J. R., Perou, C. M., Alizadeh, A. A., Eisen, M. B., Pergamenschikov, A., Williams, C. F., et al. (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics, 23(1), 41–46.PubMedGoogle Scholar
  89. 89.
    Almagro-Garcia, J., Manske, M., Carret, C., Campino, S., Auburn, S., Macinnis, B. L., et al. (2009). SnoopCGH: software for visualizing comparative genomic hybridization data. Bioinformatics, 25(20), 2732–2733.PubMedGoogle Scholar
  90. 90.
    Chari, R., Lockwood, W. W., & Lam, W. L. (2007). Computational methods for the analysis of array comparative genomic hybridization. Cancer Information, 2, 48–58.Google Scholar
  91. 91.
    Chi, B., DeLeeuw, R. J., Coe, B. P., MacAulay, C., & Lam, W. L. (2004). SeeGH—a software tool for visualization of whole genome array comparative genomic hybridization data. BMC Bioinformatics, 5, 13.PubMedGoogle Scholar
  92. 92.
    Chi, B., deLeeuw, R. J., Coe, B. P., Ng, R. T., MacAulay, C., & Lam, W. L. (2008). MD-SeeGH: A platform for integrative analysis of multi-dimensional genomic data. BMC Bioinformatics, 9, 243.PubMedGoogle Scholar
  93. 93.
    Venkatraman, E. S., & Olshen, A. B. (2007). A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics, 23(6), 657–663.PubMedGoogle Scholar
  94. 94.
    Bignell, G. R., Huang, J., Greshock, J., Watt, S., Butler, A., West, S., et al. (2004). High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Research, 14(2), 287–295.PubMedGoogle Scholar
  95. 95.
    Iacobucci, I., Storlazzi, C. T., Cilloni, D., Lonetti, A., Ottaviani, E., Soverini, S., et al. (2009). Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: On behalf of Gruppo Italiano Malattie Ematologiche dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood, 114(10), 2159–2167.PubMedGoogle Scholar
  96. 96.
    Niini, T., Lopez-Guerrero, J. A., Ninomiya, S., Guled, M., Hattinger, C. M., Michelacci, F., et al. (2009). Frequent deletion of CDKN2A and recurrent coamplification of KIT, PDGFRA, and KDR in fibrosarcoma of bone—an array comparative genomic hybridization study. Genes, Chromosomes, and Cancer, 49(2), 132–143.Google Scholar
  97. 97.
    Selzer, R. R., Richmond, T. A., Pofahl, N. J., Green, R. D., Eis, P. S., Nair, P., et al. (2005). Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes, Chromosomes, and Cancer, 44(3), 305–319.PubMedGoogle Scholar
  98. 98.
    Zhao, X., Li, C., Paez, J. G., Chin, K., Janne, P. A., Chen, T. H., et al. (2004). An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Research, 64(9), 3060–3071.PubMedGoogle Scholar
  99. 99.
    Wang, T. L., Maierhofer, C., Speicher, M. R., Lengauer, C., Vogelstein, B., Kinzler, K. W., et al. (2002). Digital karyotyping. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 16156–16161.PubMedGoogle Scholar
  100. 100.
    Tuzun, E., Sharp, A. J., Bailey, J. A., Kaul, R., Morrison, V. A., Pertz, L. M., et al. (2005). Fine-scale structural variation of the human genome. Nature Genetics, 37(7), 727–732.PubMedGoogle Scholar
  101. 101.
    Volik, S., Raphael, B. J., Huang, G., Stratton, M. R., Bignel, G., Murnane, J., et al. (2006). Decoding the fine-scale structure of a breast cancer genome and transcriptome. Genome Research, 16(3), 394–404.PubMedGoogle Scholar
  102. 102.
    Volik, S., Zhao, S., Chin, K., Brebner, J. H., Herndon, D. R., Tao, Q., et al. (2003). End-sequence profiling: Sequence-based analysis of aberrant genomes. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7696–7701.PubMedGoogle Scholar
  103. 103.
    McPherson, J. D. (2009). Next-generation gap. Nature Methods, 6(11 Suppl), S2–S5.PubMedGoogle Scholar
  104. 104.
    Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., et al. (2009). Personalized copy number and segmental duplication maps using next-generation sequencing. Nature Genetics, 41(10), 1061–1067.PubMedGoogle Scholar
  105. 105.
    Conrad, D. F., Andrews, T. D., Carter, N. P., Hurles, M. E., & Pritchard, J. K. (2006). A high-resolution survey of deletion polymorphism in the human genome. Nature Genetics, 38(1), 75–81.PubMedGoogle Scholar
  106. 106.
    Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., et al. (2009). Origins and functional impact of copy number variation in the human genome. Nature. doi:10.1038/nature08516
  107. 107.
    Fiegler, H., Redon, R., Andrews, D., Scott, C., Andrews, R., Carder, C., et al. (2006). Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Research, 16(12), 1566–1574.PubMedGoogle Scholar
  108. 108.
    Jakobsson, M., Scholz, S. W., Scheet, P., Gibbs, J. R., VanLiere, J. M., Fung, H. C., et al. (2008). Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 451(7181), 998–1003.PubMedGoogle Scholar
  109. 109.
    Kidd, J. M., Cooper, G. M., Donahue, W. F., Hayden, H. S., Sampas, N., Graves, T., et al. (2008). Mapping and sequencing of structural variation from eight human genomes. Nature, 453(7191), 56–64.PubMedGoogle Scholar
  110. 110.
    McCarroll, S. A., Kuruvilla, F. G., Korn, J. M., Cawley, S., Nemesh, J., Wysoker, A., et al. (2008). Integrated detection and population-genetic analysis of SNPs and copy number variation. Nature Genetics, 40(10), 1166–1174.PubMedGoogle Scholar
  111. 111.
    Shaikh, T. H., Gai, X., Perin, J. C., Glessner, J. T., Xie, H., Murphy, K., et al. (2009). High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Research, 19(9), 1682–1690.PubMedGoogle Scholar
  112. 112.
    Hastings, P. J., Ira, G., & Lupski, J. R. (2009). A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genetics, 5(1), e1000327.PubMedGoogle Scholar
  113. 113.
    Diskin, S. J., Hou, C., Glessner, J. T., Attiyeh, E. F., Laudenslager, M., Bosse, K., et al. (2009). Copy number variation at 1q21.1 associated with neuroblastoma. Nature, 459(7249), 987–991.PubMedGoogle Scholar
  114. 114.
    Lockwood, W. W., Chari, R., Coe, B. P., Girard, L., Macaulay, C., Lam, S., et al. (2008). DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene, 27(33), 4615–4624.PubMedGoogle Scholar
  115. 115.
    Myllykangas, S., Himberg, J., Bohling, T., Nagy, B., Hollmen, J., & Knuutila, S. (2006). DNA copy number amplification profiling of human neoplasms. Oncogene, 25(55), 7324–7332.PubMedGoogle Scholar
  116. 116.
    Teschendorff, A. E., & Caldas, C. (2009). The breast cancer somatic ‘muta-ome’: tackling the complexity. Breast Cancer Research, 11(2), 301.PubMedGoogle Scholar
  117. 117.
    Chin, S. F., Teschendorff, A. E., Marioni, J. C., Wang, Y., Barbosa-Morais, N. L., Thorne, N. P., et al. (2007). High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biology, 8(10), R215.PubMedGoogle Scholar
  118. 118.
    Coe, B. P., Lockwood, W. W., Girard, L., Chari, R., Macaulay, C., Lam, S., et al. (2006). Differential disruption of cell cycle pathways in small cell and non-small cell lung cancer. British Journal of Cancer, 94(12), 1927–1935.PubMedGoogle Scholar
  119. 119.
    Bass, A. J., Watanabe, H., Mermel, C. H., Yu, S., Perner, S., Verhaak, R. G., et al. (2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 41(11), 1238–1242.PubMedGoogle Scholar
  120. 120.
    Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436(7047), 117–122.PubMedGoogle Scholar
  121. 121.
    Weir, B. A., Woo, M. S., Getz, G., Perner, S., Ding, L., Beroukhim, R., et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature, 450(7171), 893–898.PubMedGoogle Scholar
  122. 122.
    Kwei, K. A., Kim, Y. H., Girard, L., Kao, J., Pacyna-Gengelbach, M., Salari, K., et al. (2008). Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene, 27(25), 3635–3640.PubMedGoogle Scholar
  123. 123.
    Plomin, R., Haworth, C. M., & Davis, O. S. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10(12), 872–878.PubMedGoogle Scholar
  124. 124.
    Savas, S., & Liu, G. (2009). Genetic variations as cancer prognostic markers: Review and update. Human Mutation, 30(10), 1369–1377.PubMedGoogle Scholar
  125. 125.
    Ansorge, W. J. (2009). Next-generation DNA sequencing techniques. New Biotechnology, 25(4), 195–203.PubMedGoogle Scholar
  126. 126.
    Shah, S. P., Kobel, M., Senz, J., Morin, R. D., Clarke, B. A., Wiegand, K. C., et al. (2009). Mutation of FOXL2 in granulosa-cell tumors of the ovary. New England Journal of Medicine, 360(26), 2719–2729.PubMedGoogle Scholar
  127. 127.
    Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.PubMedGoogle Scholar
  128. 128.
    Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458(7239), 719–724.PubMedGoogle Scholar
  129. 129.
    Cavenee, W. K., Hansen, M. F., Nordenskjold, M., Kock, E., Maumenee, I., Squire, J. A., et al. (1985). Genetic origin of mutations predisposing to retinoblastoma. Science, 228(4698), 501–503.PubMedGoogle Scholar
  130. 130.
    Knudson, A. G., Jr. (1971). Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America, 68(4), 820–823.PubMedGoogle Scholar
  131. 131.
    Benz, C. C., Fedele, V., Xu, F., Ylstra, B., Ginzinger, D., Yu, M., et al. (2006). Altered promoter usage characterizes monoallelic transcription arising with ERBB2 amplification in human breast cancers. Genes, Chromosomes, and Cancer, 45(11), 983–994.PubMedGoogle Scholar
  132. 132.
    LaFramboise, T., Weir, B. A., Zhao, X., Beroukhim, R., Li, C., Harrington, D., et al. (2005). Allele-specific amplification in cancer revealed by SNP array analysis. PLoS Comput Biol, 1(6), e65.PubMedGoogle Scholar
  133. 133.
    Melcher, R., Al-Taie, O., Kudlich, T., Hartmann, E., Maisch, S., Steinlein, C., et al. (2007). SNP-Array genotyping and spectral karyotyping reveal uniparental disomy as early mutational event in MSS- and MSI-colorectal cancer cell lines. Cytogenetic and Genome Research, 118(2–4), 214–221.PubMedGoogle Scholar
  134. 134.
    Nomura, M., Shigematsu, H., Li, L., Suzuki, M., Takahashi, T., Estess, P., et al. (2007). Polymorphisms, mutations, and amplification of the EGFR gene in non-small cell lung cancers. PLoS Medicine, 4(4), e125.PubMedGoogle Scholar
  135. 135.
    Sholl, L. M., Yeap, B. Y., Iafrate, A. J., Holmes-Tisch, A. J., Chou, Y. P., Wu, M. T., et al. (2009). Lung adenocarcinoma with EGFR amplification has distinct clinicopathologic and molecular features in never-smokers. Cancer Research, 69(21), 8341–8348.PubMedGoogle Scholar
  136. 136.
    Soh, J., Okumura, N., Lockwood, W. W., Yamamoto, H., Shigematsu, H., Zhang, W., et al. (2009). Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS ONE, 4(10), e7464.PubMedGoogle Scholar
  137. 137.
    Bacolod, M. D., Schemmann, G. S., Giardina, S. F., Paty, P., Notterman, D. A., & Barany, F. (2009). Emerging paradigms in cancer genetics: some important findings from high-density single nucleotide polymorphism array studies. Cancer Research, 69(3), 723–727.PubMedGoogle Scholar
  138. 138.
    Robinson, W. P. (2000). Mechanisms leading to uniparental disomy and their clinical consequences. Bioessays, 22(5), 452–459.PubMedGoogle Scholar
  139. 139.
    Tuna, M., Knuutila, S., & Mills, G. B. (2009). Uniparental disomy in cancer. Trends in Molecular Medicine, 15(3), 120–128.PubMedGoogle Scholar
  140. 140.
    Zhu, X., Dunn, J. M., Goddard, A. D., Squire, J. A., Becker, A., Phillips, R. A., et al. (1992). Mechanisms of loss of heterozygosity in retinoblastoma. Cytogenetics and Cell Genetics, 59(4), 248–252.PubMedGoogle Scholar
  141. 141.
    Gondek, L. P., Dunbar, A. J., Szpurka, H., McDevitt, M. A., & Maciejewski, J. P. (2007). SNP array karyotyping allows for the detection of uniparental disomy and cryptic chromosomal abnormalities in MDS/MPD-U and MPD. PLoS ONE, 2(11), e1225.PubMedGoogle Scholar
  142. 142.
    Tiu, R. V., Gondek, L. P., O’Keefe, C. L., Huh, J., Sekeres, M. A., Elson, P., et al. (2009). New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. Journal of Clinical Oncology, 27(31), 5219–5226.PubMedGoogle Scholar
  143. 143.
    Yamamoto, G., Nannya, Y., Kato, M., Sanada, M., Levine, R. L., Kawamata, N., et al. (2007). Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of affymetrix single-nucleotide-polymorphism genotyping microarrays. American Journal of Human Genetics, 81(1), 114–126.PubMedGoogle Scholar
  144. 144.
    Darbary, H. K., Dutt, S. S., Sait, S. J., Nowak, N. J., Heinaman, R. E., Stoler, D. L., et al. (2009). Uniparentalism in sporadic colorectal cancer is independent of imprint status, and coordinate for chromosomes 14 and 18. Cancer Genetics and Cytogenetics, 189(2), 77–86.PubMedGoogle Scholar
  145. 145.
    Grand, F. H., Hidalgo-Curtis, C. E., Ernst, T., Zoi, K., Zoi, C., McGuire, C., et al. (2009). Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood, 113(24), 6182–6192.PubMedGoogle Scholar
  146. 146.
    Gupta, M., Raghavan, M., Gale, R. E., Chelala, C., Allen, C., Molloy, G., et al. (2008). Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia. Genes, Chromosomes, and Cancer, 47(9), 729–739.PubMedGoogle Scholar
  147. 147.
    Kawamata, N., Ogawa, S., Gueller, S., Ross, S. H., Huynh, T., Chen, J., et al. (2009). Identified hidden genomic changes in mantle cell lymphoma using high-resolution single nucleotide polymorphism genomic array. Experimental Hematology, 37(8), 937–946.PubMedGoogle Scholar
  148. 148.
    Makishima, H., Cazzolli, H., Szpurka, H., Dunbar, A., Tiu, R., Huh, J., et al. (2009). Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. Journal of Clinical Oncology, 27(36), 6109–6116.PubMedGoogle Scholar
  149. 149.
    Walter, M. J., Payton, J. E., Ries, R. E., Shannon, W. D., Deshmukh, H., Zhao, Y., et al. (2009). Acquired copy number alterations in adult acute myeloid leukemia genomes. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12950–12955.PubMedGoogle Scholar
  150. 150.
    Yin, D., Ogawa, S., Kawamata, N., Tunici, P., Finocchiaro, G., Eoli, M., et al. (2009). High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res, 7(5), 665–677.PubMedGoogle Scholar
  151. 151.
    Purdie, K. J., Lambert, S. R., Teh, M. T., Chaplin, T., Molloy, G., Raghavan, M., et al. (2007). Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis. Genes, Chromosomes, and Cancer, 46(7), 661–669.PubMedGoogle Scholar
  152. 152.
    Akagi, T., Ito, T., Kato, M., Jin, Z., Cheng, Y., Kan, T., et al. (2009). Chromosomal abnormalities and novel disease-related regions in progression from Barrett’s esophagus to esophageal adenocarcinoma. International Journal of Cancer, 125(10), 2349–2359.Google Scholar
  153. 153.
    Andersen, C. L., Wiuf, C., Kruhoffer, M., Korsgaard, M., Laurberg, S., & Orntoft, T. F. (2007). Frequent occurrence of uniparental disomy in colorectal cancer. Carcinogenesis, 28(1), 38–48.PubMedGoogle Scholar
  154. 154.
    Kerkel, K., Spadola, A., Yuan, E., Kosek, J., Jiang, L., Hod, E., et al. (2008). Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature Genetics, 40(7), 904–908.PubMedGoogle Scholar
  155. 155.
    Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128(4), 683–692.PubMedGoogle Scholar
  156. 156.
    Esteller, M. (2008). Epigenetics in cancer. New England Journal of Medicine, 358(11), 1148–1159.PubMedGoogle Scholar
  157. 157.
    Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143), 433–440.PubMedGoogle Scholar
  158. 158.
    Vucic, E. A., Brown, C. J., & Lam, W. L. (2008). Epigenetics of cancer progression. Pharmacogenomics, 9(2), 215–234.PubMedGoogle Scholar
  159. 159.
    Feinberg, A. P., Gehrke, C. W., Kuo, K. C., & Ehrlich, M. (1988). Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Research, 48(5), 1159–1161.PubMedGoogle Scholar
  160. 160.
    Feinberg, A. P., & Tycko, B. (2004). The history of cancer epigenetics. Nature Reviews Cancer, 4(2), 143–153.PubMedGoogle Scholar
  161. 161.
    Lo, P. K., & Sukumar, S. (2008). Epigenomics and breast cancer. Pharmacogenomics, 9(12), 1879–1902.PubMedGoogle Scholar
  162. 162.
    Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B., & Issa, J. P. (1999). CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 96(15), 8681–8686.PubMedGoogle Scholar
  163. 163.
    Issa, J. P. (2004). CpG island methylator phenotype in cancer. Nature Reviews Cancer, 4(12), 988–993.PubMedGoogle Scholar
  164. 164.
    Tanemura, A., Terando, A. M., Sim, M. S., van Hoesel, A. Q., de Maat, M. F., Morton, D. L., et al. (2009). CpG island methylator phenotype predicts progression of malignant melanoma. Clinical Cancer Research, 15(5), 1801–1807.PubMedGoogle Scholar
  165. 165.
    Dai, Z., Lakshmanan, R. R., Zhu, W. G., Smiraglia, D. J., Rush, L. J., Fruhwald, M. C., et al. (2001). Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia, 3(4), 314–323.PubMedGoogle Scholar
  166. 166.
    Takai, D., Yagi, Y., Wakazono, K., Ohishi, N., Morita, Y., Sugimura, T., et al. (2001). Silencing of HTR1B and reduced expression of EDN1 in human lung cancers, revealed by methylation-sensitive representational difference analysis. Oncogene, 20(51), 7505–7513.PubMedGoogle Scholar
  167. 167.
    Hu, M., Yao, J., Cai, L., Bachman, K. E., van den Brule, F., Velculescu, V., et al. (2005). Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genetics, 37(8), 899–905.PubMedGoogle Scholar
  168. 168.
    Irizarry, R. A., Ladd-Acosta, C., Carvalho, B., Wu, H., Brandenburg, S. A., Jeddeloh, J. A., et al. (2008). Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Research, 18(5), 780–790.PubMedGoogle Scholar
  169. 169.
    Yan, P. S., Chen, C. M., Shi, H., Rahmatpanah, F., Wei, S. H., Caldwell, C. W., et al. (2001). Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Research, 61(23), 8375–8380.PubMedGoogle Scholar
  170. 170.
    Yamamoto, F., & Yamamoto, M. (2004). A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses. Mol Genet Genomics, 271(6), 678–686.PubMedGoogle Scholar
  171. 171.
    Omura, N., Li, C. P., Li, A., Hong, S. M., Walter, K., Jimeno, A., et al. (2008). Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther, 7(7), 1146–1156.PubMedGoogle Scholar
  172. 172.
    Trinh, B. N., Long, T. I., & Laird, P. W. (2001). DNA methylation analysis by MethyLight technology. Methods, 25(4), 456–462.PubMedGoogle Scholar
  173. 173.
    Fan, J. B., Gunderson, K. L., Bibikova, M., Yeakley, J. M., Chen, J., Wickham Garcia, E., et al. (2006). Illumina universal bead arrays. Methods in Enzymology, 410, 57–73.PubMedGoogle Scholar
  174. 174.
    Houshdaran, S., Cortessis, V. K., Siegmund, K., Yang, A., Laird, P. W., & Sokol, R. Z. (2007). Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE, 2(12), e1289.PubMedGoogle Scholar
  175. 175.
    Houseman, E. A., Christensen, B. C., Karagas, M. R., Wrensch, M. R., Nelson, H. H., Wiemels, J. L., et al. (2009). Copy number variation has little impact on bead-array-based measures of DNA methylation. Bioinformatics, 25(16), 1999–2005.PubMedGoogle Scholar
  176. 176.
    Breton, C. V., Byun, H. M., Wenten, M., Pan, F., Yang, A., & Gilliland, F. D. (2009). Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. American Journal of Respiratory and Critical Care Medicine, 180(5), 462–467.PubMedGoogle Scholar
  177. 177.
    Taylor, K. H., Pena-Hernandez, K. E., Davis, J. W., Arthur, G. L., Duff, D. J., Shi, H., et al. (2007). Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Research, 67(6), 2617–2625.PubMedGoogle Scholar
  178. 178.
    Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M., et al. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 39(4), 457–466.PubMedGoogle Scholar
  179. 179.
    Rauch, T., & Pfeifer, G. P. (2005). Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Laboratory Investigation, 85(9), 1172–1180.PubMedGoogle Scholar
  180. 180.
    Jacinto, F. V., Ballestar, E., Ropero, S., & Esteller, M. (2007). Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Research, 67(24), 11481–11486.PubMedGoogle Scholar
  181. 181.
    Ballestar, E., Paz, M. F., Valle, L., Wei, S., Fraga, M. F., Espada, J., et al. (2003). Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO Journal, 22(23), 6335–6345.PubMedGoogle Scholar
  182. 182.
    Serre, D., Lee, B. H., & Ting, A. H. (2009). MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Research. doi:10.1093/nar/gkp992.
  183. 183.
    Down, T. A., Rakyan, V. K., Turner, D. J., Flicek, P., Li, H., Kulesha, E., et al. (2008). A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotechnology, 26(7), 779–785.PubMedGoogle Scholar
  184. 184.
    Thu, K. L., Pikor, L. A., Kennett, J. Y., Alvarez, C. E., & Lam, W. L. (2009). Methylation analysis by DNA immunoprecipitation. Journal of Cellular Physiology, 222(3), 522–531.Google Scholar
  185. 185.
    Pelizzola, M., Koga, Y., Urban, A. E., Krauthammer, M., Weissman, S., Halaban, R., et al. (2008). MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Research, 18(10), 1652–1659.PubMedGoogle Scholar
  186. 186.
    Yamashita, S., Hosoya, K., Gyobu, K., Takeshima, H., & Ushijima, T. (2009). Development of a novel output value for quantitative assessment in methylated DNA immunoprecipitation-CpG island microarray analysis. DNA Research, 16(5), 275–286.PubMedGoogle Scholar
  187. 187.
    Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., et al. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41(2), 178–186.PubMedGoogle Scholar
  188. 188.
    Lorincz, M. C., Dickerson, D. R., Schmitt, M., & Groudine, M. (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural & Molecular Biology, 11(11), 1068–1075.Google Scholar
  189. 189.
    Frigola, J., Song, J., Stirzaker, C., Hinshelwood, R. A., Peinado, M. A., & Clark, S. J. (2006). Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nature Genetics, 38(5), 540–549.PubMedGoogle Scholar
  190. 190.
    Zhong, S., Fields, C. R., Su, N., Pan, Y. X., & Robertson, K. D. (2007). Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene, 26(18), 2621–2634.PubMedGoogle Scholar
  191. 191.
    Lister, R., & Ecker, J. R. (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Research, 19(6), 959–966.PubMedGoogle Scholar
  192. 192.
    Byun, H. M., Siegmund, K. D., Pan, F., Weisenberger, D. J., Kanel, G., Laird, P. W., et al. (2009). Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Human Molecular Genetics, 18(24), 4808–4817.PubMedGoogle Scholar
  193. 193.
    Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10604–10609.PubMedGoogle Scholar
  194. 194.
    Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E. M., Antosiewicz-Bourget, J., et al. (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnology, 27(4), 353–360.PubMedGoogle Scholar
  195. 195.
    Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., et al. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics, 24(2), 132–138.PubMedGoogle Scholar
  196. 196.
    Gama-Sosa, M. A., Midgett, R. M., Slagel, V. A., Githens, S., Kuo, K. C., Gehrke, C. W., et al. (1983). Tissue-specific differences in DNA methylation in various mammals. Biochimica et Biophysica Acta, 740(2), 212–219.PubMedGoogle Scholar
  197. 197.
    Richardson, B. (2003). Impact of aging on DNA methylation. Ageing Research Reviews, 2(3), 245–261.PubMedGoogle Scholar
  198. 198.
    Eckhardt, F., Beck, S., Gut, I. G., & Berlin, K. (2004). Future potential of the human epigenome project. Expert Review of Molecular Diagnostics, 4(5), 609–618.PubMedGoogle Scholar
  199. 199.
    Kohda, M., Hoshiya, H., Katoh, M., Tanaka, I., Masuda, R., Takemura, T., et al. (2001). Frequent loss of imprinting of IGF2 and MEST in lung adenocarcinoma. Molecular Carcinogenesis, 31(4), 184–191.PubMedGoogle Scholar
  200. 200.
    Kondo, M., Suzuki, H., Ueda, R., Osada, H., Takagi, K., & Takahashi, T. (1995). Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene, 10(6), 1193–1198.PubMedGoogle Scholar
  201. 201.
    Rainier, S., Johnson, L. A., Dobry, C. J., Ping, A. J., Grundy, P. E., & Feinberg, A. P. (1993). Relaxation of imprinted genes in human cancer. Nature, 362(6422), 747–749.PubMedGoogle Scholar
  202. 202.
    Pal, N., Wadey, R. B., Buckle, B., Yeomans, E., Pritchard, J., & Cowell, J. K. (1990). Preferential loss of maternal alleles in sporadic Wilms’ tumour. Oncogene, 5(11), 1665–1668.PubMedGoogle Scholar
  203. 203.
    Schroeder, W. T., Chao, L. Y., Dao, D. D., Strong, L. C., Pathak, S., Riccardi, V., et al. (1987). Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. American Journal of Human Genetics, 40(5), 413–420.PubMedGoogle Scholar
  204. 204.
    Scrable, H., Cavenee, W., Ghavimi, F., Lovell, M., Morgan, K., & Sapienza, C. (1989). A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proceedings of the National Academy of Sciences of the United States of America, 86(19), 7480–7484.PubMedGoogle Scholar
  205. 205.
    Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300(5618), 489–492.PubMedGoogle Scholar
  206. 206.
    Rizwana, R., & Hahn, P. J. (1999). CpG methylation reduces genomic instability. Journal of Cell Science, 112(Pt 24), 4513–4519.PubMedGoogle Scholar
  207. 207.
    Daskalos, A., Nikolaidis, G., Xinarianos, G., Savvari, P., Cassidy, A., Zakopoulou, R., et al. (2009). Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. International Journal of Cancer, 124(1), 81–87.Google Scholar
  208. 208.
    Walsh, C. P., Chaillet, J. R., & Bestor, T. H. (1998). Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genetics, 20(2), 116–117.PubMedGoogle Scholar
  209. 209.
    Chalitchagorn, K., Shuangshoti, S., Hourpai, N., Kongruttanachok, N., Tangkijvanich, P., Thong-ngam, D., et al. (2004). Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene, 23(54), 8841–8846.PubMedGoogle Scholar
  210. 210.
    Rauch, T. A., Zhong, X., Wu, X., Wang, M., Kernstine, K. H., Wang, Z., et al. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(1), 252–257.PubMedGoogle Scholar
  211. 211.
    Groudine, M., Eisenman, R., & Weintraub, H. (1981). Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature, 292(5821), 311–317.PubMedGoogle Scholar
  212. 212.
    Wilson, I. M., Davies, J. J., Weber, M., Brown, C. J., Alvarez, C. E., MacAulay, C., et al. (2006). Epigenomics: mapping the methylome. Cell Cycle, 5(2), 155–158.PubMedGoogle Scholar
  213. 213.
    Cadieux, B., Ching, T. T., VandenBerg, S. R., & Costello, J. F. (2006). Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Research, 66(17), 8469–8476.PubMedGoogle Scholar
  214. 214.
    Zabarovsky, E. R., Lerman, M. I., & Minna, J. D. (2002). Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene, 21(45), 6915–6935.PubMedGoogle Scholar
  215. 215.
    Belinsky, S. A., Palmisano, W. A., Gilliland, F. D., Crooks, L. A., Divine, K. K., Winters, S. A., et al. (2002). Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Research, 62(8), 2370–2377.PubMedGoogle Scholar
  216. 216.
    Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., et al. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Research, 60(21), 5954–5958.PubMedGoogle Scholar
  217. 217.
    Belinsky, S. A. (2004). Gene-promoter hypermethylation as a biomarker in lung cancer. Nature Reviews Cancer, 4(9), 707–717.PubMedGoogle Scholar
  218. 218.
    Tessema, M., Willink, R., Do, K., Yu, Y. Y., Yu, W., Machida, E. O., et al. (2008). Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Research, 68(6), 1707–1714.PubMedGoogle Scholar
  219. 219.
    Heintzman, N. D., Hon, G. C., Hawkins, R. D., Kheradpour, P., Stark, A., Harp, L. F., et al. (2009). Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature, 459(7243), 108–112.PubMedGoogle Scholar
  220. 220.
    Komashko, V. M., Acevedo, L. G., Squazzo, S. L., Iyengar, S. S., Rabinovich, A., O’Geen, H., et al. (2008). Using ChIP-chip technology to reveal common principles of transcriptional repression in normal and cancer cells. Genome Research, 18(4), 521–532.PubMedGoogle Scholar
  221. 221.
    Ke, X. S., Qu, Y., Rostad, K., Li, W. C., Lin, B., Halvorsen, O. J., et al. (2009). Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS ONE, 4(3), e4687.PubMedGoogle Scholar
  222. 222.
    Kondo, Y., Shen, L., Cheng, A. S., Ahmed, S., Boumber, Y., Charo, C., et al. (2008). Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nature Genetics, 40(6), 741–750.PubMedGoogle Scholar
  223. 223.
    Yu, J., Rhodes, D. R., Tomlins, S. A., Cao, X., Chen, G., Mehra, R., et al. (2007). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Research, 67(22), 10657–10663.PubMedGoogle Scholar
  224. 224.
    Wu, J., Wang, S. H., Potter, D., Liu, J. C., Smith, L. T., Wu, Y. Z., et al. (2007). Diverse histone modifications on histone 3 lysine 9 and their relation to DNA methylation in specifying gene silencing. BMC Genomics, 8, 131.PubMedGoogle Scholar
  225. 225.
    Krivtsov, A. V., Feng, Z., Lemieux, M. E., Faber, J., Vempati, S., Sinha, A. U., et al. (2008). H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell, 14(5), 355–368.PubMedGoogle Scholar
  226. 226.
    Lin, B., Wang, J., Hong, X., Yan, X., Hwang, D., Cho, J. H., et al. (2009). Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor. PLoS ONE, 4(8), e6589.PubMedGoogle Scholar
  227. 227.
    Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., et al. (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462(7269), 58–64.PubMedGoogle Scholar
  228. 228.
    Coe, B. P., Chari, R., Lockwood, W. W., & Lam, W. L. (2008). Evolving strategies for global gene expression analysis of cancer. Journal of Cellular Physiology, 217(3), 590–597.PubMedGoogle Scholar
  229. 229.
    Liang, P., & Pardee, A. B. (2003). Analysing differential gene expression in cancer. Nature Reviews Cancer, 3(11), 869–876.PubMedGoogle Scholar
  230. 230.
    Nevins, J. R., & Potti, A. (2007). Mining gene expression profiles: Expression signatures as cancer phenotypes. Nature Reviews Genetics, 8(8), 601–609.PubMedGoogle Scholar
  231. 231.
    Pollack, J. R., Sorlie, T., Perou, C. M., Rees, C. A., Jeffrey, S. S., Lonning, P. E., et al. (2002). Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12963–12968.PubMedGoogle Scholar
  232. 232.
    Heidenblad, M., Lindgren, D., Veltman, J. A., Jonson, T., Mahlamaki, E. H., Gorunova, L., et al. (2005). Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene, 24(10), 1794–1801.PubMedGoogle Scholar
  233. 233.
    Hyman, E., Kauraniemi, P., Hautaniemi, S., Wolf, M., Mousses, S., Rozenblum, E., et al. (2002). Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Research, 62(21), 6240–6245.PubMedGoogle Scholar
  234. 234.
    Wolf, M., Mousses, S., Hautaniemi, S., Karhu, R., Huusko, P., Allinen, M., et al. (2004). High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: Impact of copy number on gene expression. Neoplasia, 6(3), 240–247.PubMedGoogle Scholar
  235. 235.
    Adelaide, J., Finetti, P., Bekhouche, I., Repellini, L., Geneix, J., Sircoulomb, F., et al. (2007). Integrated profiling of basal and luminal breast cancers. Cancer Research, 67(24), 11565–11575.PubMedGoogle Scholar
  236. 236.
    Broet, P., Camilleri-Broet, S., Zhang, S., Alifano, M., Bangarusamy, D., Battistella, M., et al. (2009). Prediction of clinical outcome in multiple lung cancer cohorts by integrative genomics: Implications for chemotherapy selection. Cancer Research, 69(3), 1055–1062.PubMedGoogle Scholar
  237. 237.
    Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo, W. L., et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 10(6), 529–541.PubMedGoogle Scholar
  238. 238.
    Natrajan, R., Weigelt, B., Mackay, A., Geyer, F. C., Grigoriadis, A., Tan, D. S., et al. (2009). An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Research and Treatment. doi:s00280-009-1073-y/s10549-009-0501-3.
  239. 239.
    Deng, S., Calin, G. A., Croce, C. M., Coukos, G., & Zhang, L. (2008). Mechanisms of microRNA deregulation in human cancer. Cell Cycle, 7(17), 2643–2646.PubMedGoogle Scholar
  240. 240.
    Kuo, K. T., Guan, B., Feng, Y., Mao, T. L., Chen, X., Jinawath, N., et al. (2009). Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes in low-grade and high-grade carcinomas. Cancer Research, 69(9), 4036–4042.PubMedGoogle Scholar
  241. 241.
    Lionetti, M., Agnelli, L., Mosca, L., Fabris, S., Andronache, A., Todoerti, K., et al. (2009). Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes, Chromosomes, and Cancer, 48(6), 521–531.PubMedGoogle Scholar
  242. 242.
    Starczynowski, D. T., Kuchenbauer, F., Argiropoulos, B., Sung, S., Morin, R., Muranyi, A., et al. (2009). Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Natural Medicines, 16, 49–58.Google Scholar
  243. 243.
    Zhang, L., Volinia, S., Bonome, T., Calin, G. A., Greshock, J., Yang, N., et al. (2008). Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 7004–7009.PubMedGoogle Scholar
  244. 244.
    Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6(11), 857–866.PubMedGoogle Scholar
  245. 245.
    Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—the micro steering wheel of tumour metastases. Nature Reviews Cancer, 9(4), 293–302.PubMedGoogle Scholar
  246. 246.
    Wolf, N. G., Farver, C., Abdul-Karim, F. W., & Schwartz, S. (2003). Analysis of microsatellite instability and X-inactivation in ovarian borderline tumors lacking numerical abnormalities by comparative genomic hybridization. Cancer Genetics and Cytogenetics, 145(2), 133–138.PubMedGoogle Scholar
  247. 247.
    Olson, P., Lu, J., Zhang, H., Shai, A., Chun, M. G., Wang, Y., et al. (2009). MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes and Development, 23(18), 2152–2165.PubMedGoogle Scholar
  248. 248.
    Garzon, R., Calin, G. A., & Croce, C. M. (2009). MicroRNAs in cancer. Annual Review of Medicine, 60, 167–179.PubMedGoogle Scholar
  249. 249.
    Lujambio, A., & Esteller, M. (2009). How epigenetics can explain human metastasis: A new role for microRNAs. Cell Cycle, 8(3), 377–382.PubMedGoogle Scholar
  250. 250.
    Iorio, M. V., Visone, R., Di Leva, G., Donati, V., Petrocca, F., Casalini, P., et al. (2007). MicroRNA signatures in human ovarian cancer. Cancer Research, 67(18), 8699–8707.PubMedGoogle Scholar
  251. 251.
    Lujambio, A., & Esteller, M. (2007). CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle, 6(12), 1455–1459.PubMedGoogle Scholar
  252. 252.
    Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67(4), 1424–1429.PubMedGoogle Scholar
  253. 253.
    Guil, S., & Esteller, M. (2009). DNA methylomes, histone codes and miRNAs: Tying it all together. International Journal of Biochemistry and Cell Biology, 41(1), 87–95.PubMedGoogle Scholar
  254. 254.
    Sadikovic, B., Yoshimoto, M., Chilton-MacNeill, S., Thorner, P., Squire, J. A., & Zielenska, M. (2009). Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Human Molecular Genetics, 18(11), 1962–1975.PubMedGoogle Scholar
  255. 255.
    Adamovic, T., Trosso, F., Roshani, L., Andersson, L., Petersen, G., Rajaei, S., et al. (2005). Oncogene amplification in the proximal part of chromosome 6 in rat endometrial adenocarcinoma as revealed by combined BAC/PAC FISH, chromosome painting, zoo-FISH, and allelotyping. Genes, Chromosomes, and Cancer, 44(2), 139–153.PubMedGoogle Scholar
  256. 256.
    Ferrandina, G., Mey, V., Nannizzi, S., Ricciardi, S., Petrillo, M., Ferlini, C., et al. (2009). Expression of nucleoside transporters, deoxycitidine kinase, ribonucleotide reductase regulatory subunits, and gemcitabine catabolic enzymes in primary ovarian cancer. Cancer Chemotherapy and Pharmacology. doi:s00280-009-1073-y/s00280-009-1073-y.
  257. 257.
    Fernandez-Ranvier, G. G., Weng, J., Yeh, R. F., Khanafshar, E., Suh, I., Barker, C., et al. (2008). Identification of biomarkers of adrenocortical carcinoma using genomewide gene expression profiling. Archives of Surgery, 143(9), 841–846. discussion 846.PubMedGoogle Scholar
  258. 258.
    Segditsas, S., Sieber, O., Deheragoda, M., East, P., Rowan, A., Jeffery, R., et al. (2008). Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice. Human Molecular Genetics, 17(24), 3864–3875.PubMedGoogle Scholar
  259. 259.
    Joshi, M. D., Ahmad, R., Yin, L., Raina, D., Rajabi, H., Bubley, G., et al. (2009). MUC1 oncoprotein is a druggable target in human prostate cancer cells. Molecular Cancer Therapeutics, 8(11), 3056–3065.PubMedGoogle Scholar
  260. 260.
    Khodarev, N. N., Pitroda, S. P., Beckett, M. A., MacDermed, D. M., Huang, L., Kufe, D. W., et al. (2009). MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Research, 69(7), 2833–2837.PubMedGoogle Scholar
  261. 261.
    Senapati, S., Das, S., & Batra, S. K. (2009). Mucin-interacting proteins: from function to therapeutics. Trends in Biochemical Sciences.Google Scholar
  262. 262.
    Buys, T. P., Aviel-Ronen, S., Waddell, T. K., Lam, W. L., & Tsao, M. S. (2009). Defining genomic alteration boundaries for a combined small cell and non-small cell lung carcinoma. Journal of Thoracic Oncology, 4(2), 227–239.PubMedGoogle Scholar
  263. 263.
    Brommesson, S., Jonsson, G., Strand, C., Grabau, D., Malmstrom, P., Ringner, M., et al. (2008). Tiling array-CGH for the assessment of genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs. BMC Clinical Pathology, 8, 6.PubMedGoogle Scholar
  264. 264.
    Kawanishi, H., Takahashi, T., Ito, M., Matsui, Y., Watanabe, J., Ito, N., et al. (2007). Genetic analysis of multifocal superficial urothelial cancers by array-based comparative genomic hybridisation. British Journal of Cancer, 97(2), 260–266.PubMedGoogle Scholar
  265. 265.
    Mhawech-Fauceglia, P., Rai, H., Nowak, N., Cheney, R. T., Rodabaugh, K., Lele, S., et al. (2008). The use of array-based comparative genomic hybridization (a-CGH) to distinguish metastatic from primary synchronous carcinomas of the ovary and the uterus. Histopathology, 53(4), 490–495.PubMedGoogle Scholar
  266. 266.
    Nakano, H., Soda, H., Nakamura, Y., Uchida, K., Takasu, M., Nakatomi, K., et al. (2007). Different epidermal growth factor receptor gene mutations in a patient with 2 synchronous lung cancers. Clinical Lung Cancer, 8(9), 562–564.PubMedGoogle Scholar
  267. 267.
    Ryoo, B. Y., Na, I. I., Yang, S. H., Koh, J. S., Kim, C. H., & Lee, J. C. (2006). Synchronous multiple primary lung cancers with different response to gefitinib. Lung Cancer, 53(2), 245–248.PubMedGoogle Scholar
  268. 268.
    Speel, E. J., van de Wouw, A. J., Claessen, S. M., Haesevoets, A., Hopman, A. H., van der Wurff, A. A., et al. (2008). Molecular evidence for a clonal relationship between multiple lesions in patients with unknown primary adenocarcinoma. International Journal of Cancer, 123(6), 1292–1300.Google Scholar
  269. 269.
    Wa, C. V., DeVries, S., Chen, Y. Y., Waldman, F. M., & Hwang, E. S. (2005). Clinical application of array-based comparative genomic hybridization to define the relationship between multiple synchronous tumors. Modern Pathology, 18(4), 591–597.PubMedGoogle Scholar
  270. 270.
    Agelopoulos, K., Tidow, N., Korsching, E., Voss, R., Hinrichs, B., Brandt, B., et al. (2003). Molecular cytogenetic investigations of synchronous bilateral breast cancer. Journal of Clinical Pathology, 56(9), 660–665.PubMedGoogle Scholar
  271. 271.
    Whitehurst, A. W., Bodemann, B. O., Cardenas, J., Ferguson, D., Girard, L., Peyton, M., et al. (2007). Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature, 446(7137), 815–819.PubMedGoogle Scholar
  272. 272.
    Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, I. F., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462(7269), 108–112.PubMedGoogle Scholar
  273. 273.
    Berns, K., Hijmans, E. M., Mullenders, J., Brummelkamp, T. R., Velds, A., Heimerikx, M., et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 428(6981), 431–437.PubMedGoogle Scholar
  274. 274.
    Gobeil, S., Zhu, X., Doillon, C. J., & Green, M. R. (2008). A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes and Development, 22(21), 2932–2940.PubMedGoogle Scholar
  275. 275.
    Luo, B., Cheung, H. W., Subramanian, A., Sharifnia, T., Okamoto, M., Yang, X., et al. (2008). Highly parallel identification of essential genes in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20380–20385.PubMedGoogle Scholar
  276. 276.
    Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137(5), 835–848.PubMedGoogle Scholar
  277. 277.
    Moffat, J., Grueneberg, D. A., Yang, X., Kim, S. Y., Kloepfer, A. M., Hinkle, G., et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell, 124(6), 1283–1298.PubMedGoogle Scholar
  278. 278.
    Scholl, C., Frohling, S., Dunn, I. F., Schinzel, A. C., Barbie, D. A., Kim, S. Y., et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell, 137(5), 821–834.PubMedGoogle Scholar
  279. 279.
    Silva, J. M., Marran, K., Parker, J. S., Silva, J., Golding, M., Schlabach, M. R., et al. (2008). Profiling essential genes in human mammary cells by multiplex RNAi screening. Science, 319(5863), 617–620.PubMedGoogle Scholar
  280. 280.
    Apweiler, R., Aslanidis, C., Deufel, T., Gerstner, A., Hansen, J., Hochstrasser, D., et al. (2009). Approaching clinical proteomics: current state and future fields of application in cellular proteomics. Cytometry A, 75(10), 816–832.PubMedGoogle Scholar
  281. 281.
    Apweiler, R., Aslanidis, C., Deufel, T., Gerstner, A., Hansen, J., Hochstrasser, D., et al. (2009). Approaching clinical proteomics: Current state and future fields of application in fluid proteomics. Clinical Chemistry and Laboratory Medicine, 47(6), 724–744.PubMedGoogle Scholar
  282. 282.
    Peng, X. Q., Wang, F., Geng, X., & Zhang, W. M. (2009). Current advances in tumor proteomics and candidate biomarkers for hepatic cancer. Expert Review of Proteomics, 6(5), 551–561.PubMedGoogle Scholar
  283. 283.
    Tainsky, M. A. (2009). Genomic and proteomic biomarkers for cancer: A multitude of opportunities. Biochimica et Biophysica Acta, 1796(2), 176–193.PubMedGoogle Scholar
  284. 284.
    Zamo, A., & Cecconi, D. (2009). Proteomic analysis of lymphoid and haematopoietic neoplasms: There’s more than biomarker discovery. J Proteomics.Google Scholar
  285. 285.
    Griffin, J. L., & Kauppinen, R. A. (2007). A metabolomics perspective of human brain tumours. FEBS Journal, 274(5), 1132–1139.PubMedGoogle Scholar
  286. 286.
    Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research, 15(2), 431–440.PubMedGoogle Scholar
  287. 287.
    Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910–914.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Raj Chari
    • 1
  • Kelsie L. Thu
    • 1
    • 2
  • Ian M. Wilson
    • 1
  • William W. Lockwood
    • 1
  • Kim M. Lonergan
    • 1
  • Bradley P. Coe
    • 1
  • Chad A. Malloff
    • 1
  • Adi F. Gazdar
    • 3
  • Stephen Lam
    • 4
  • Cathie Garnis
    • 1
  • Calum E. MacAulay
    • 4
  • Carlos E. Alvarez
    • 5
    • 6
  • Wan L. Lam
    • 1
    • 2
  1. 1.Genetics Unit - Department of Integrative OncologyBritish Columbia Cancer Research CentreVancouverCanada
  2. 2.Interdisciplinary Oncology ProgramUniversity of British ColumbiaVancouverCanada
  3. 3.Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical CenterDallasUSA
  4. 4.Imaging Unit - Department of Integrative OncologyBritish Columbia Cancer Research CentreVancouverCanada
  5. 5.Center for Molecular and Human GeneticsThe Research Institute at Nationwide Children’s HospitalColumbusUSA
  6. 6.Department of PediatricsThe Ohio State University College of MedicineColumbusUSA

Personalised recommendations