Cancer and Metastasis Reviews

, 28:369 | Cite as

MicroRNA function in cancer: oncogene or a tumor suppressor?

  • Sylvia K. Shenouda
  • Suresh K. Alahari


MicroRNAs (miRNAs) are small noncoding, double-stranded RNA molecules that can mediate the expression of target genes with complementary sequences. About 5,300 human genes have been implicated as targets for miRNAs, making them one of the most abundant classes of regulatory genes in humans. MiRNAs recognize their target mRNAs based on sequence complementarity and act on them to cause the inhibition of protein translation by degradation of mRNA. Besides contributing to development and normal function, microRNAs have functions in various human diseases. Given the importance of miRNAs in regulating cellular differentiation and proliferation, it is not surprising that their misregulation is linked to cancer. In cancer, miRNAs function as regulatory molecules, acting as oncogenes or tumor suppressors. Amplification or overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to tumor formation by stimulating proliferation, angiogenesis, and invasion; i.e., they act as oncogenes. Similarly, miRNAs can down-regulate different proteins with oncogenic activity; i.e., they act as tumor suppressors. This review will highlight the recent discoveries regarding miRNAs and their importance in cancer.


MicroRNAs Caenorhabditis elegans Pri-microRNA Ubiquitin-proteosome pathway Dicer EZH2 



We apologize to all researchers whose work could not be cited in this review as a result of space constraints. This work was supported by NIH RO1 CA 115706, Susan Komen BCTR 0600278, and funds from the Louisiana Cancer Research Consortium to SKA.


  1. 1.
    Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.CrossRefPubMedGoogle Scholar
  2. 2.
    Rajewsky, N. (2006). microRNA target predictions in animals. Nature Genetics, 38(Suppl), S8–S13.CrossRefPubMedGoogle Scholar
  3. 3.
    Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMedGoogle Scholar
  4. 4.
    Reinhart, B. J., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906.CrossRefPubMedGoogle Scholar
  5. 5.
    Pasquinelli, A. E., et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808), 86–89.CrossRefPubMedGoogle Scholar
  6. 6.
    Lagos-Quintana, M., et al. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.CrossRefPubMedGoogle Scholar
  7. 7.
    Lau, N. C., et al. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543), 858–862.CrossRefPubMedGoogle Scholar
  8. 8.
    Lee, R. C., & Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science, 294(5543), 862–864.CrossRefPubMedGoogle Scholar
  9. 9.
    ALTMAN, L.K., 5 Pioneering Scientists Win Lasker Medical Prizes in New York Times. 2008Google Scholar
  10. 10.
    Bagga, S., et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122(4), 553–563.CrossRefPubMedGoogle Scholar
  11. 11.
    Pillai, R. S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA? RNA, 11(12), 1753–1761.CrossRefPubMedGoogle Scholar
  12. 12.
    Bernstein, E., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35(3), 215–217.CrossRefPubMedGoogle Scholar
  13. 13.
    Harris, K. S., et al. (2006). Dicer function is essential for lung epithelium morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2208–2213.CrossRefPubMedGoogle Scholar
  14. 14.
    Harfe, B. D., et al. (2005). The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 10898–10903.CrossRefPubMedGoogle Scholar
  15. 15.
    O'Rourke, J. R., et al. (2007). Essential role for Dicer during skeletal muscle development. Developmental Biology, 311(2), 359–368.CrossRefPubMedGoogle Scholar
  16. 16.
    Muljo, S. A., et al. (2005). Aberrant T cell differentiation in the absence of Dicer. Journal of Experimental Medicine, 202(2), 261–269.CrossRefPubMedGoogle Scholar
  17. 17.
    Yi, R., et al. (2008). A skin microRNA promotes differentiation by repressing ‘stemness’. Nature, 452(7184), 225–229.CrossRefPubMedGoogle Scholar
  18. 18.
    Ashraf, S. I., & Kunes, S. (2006). A trace of silence: memory and microRNA at the synapse. Current Opinion in Neurobiology, 16(5), 535–539.CrossRefPubMedGoogle Scholar
  19. 19.
    Poy, M. N., et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014), 226–230.CrossRefPubMedGoogle Scholar
  20. 20.
    Esau, C., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolic, 3(2), 87–98.CrossRefGoogle Scholar
  21. 21.
    Esau, C. C., & Monia, B. P. (2007). Therapeutic potential for microRNAs. Advanced drug delivery reviews, 59(2–3), 101–114.CrossRefPubMedGoogle Scholar
  22. 22.
    Care, A., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMedGoogle Scholar
  23. 23.
    Xiao, C., & Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell, 136(1), 26–36.CrossRefPubMedGoogle Scholar
  24. 24.
    Cameron, J. E., et al. (2008). Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. Journal of Virology, 82(4), 1946–1958.CrossRefPubMedGoogle Scholar
  25. 25.
    Gottwein, E., et al. (2007). A viral microRNA functions as an orthologue of cellular miR-155. Nature, 450(7172), 1096–1099.CrossRefPubMedGoogle Scholar
  26. 26.
    Moschos, S. A., et al. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 8, 240.CrossRefPubMedGoogle Scholar
  27. 27.
    Sonkoly, E., Stahle, M., & Pivarcsi, A. (2008). MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Seminars in Cancer Biology, 18(2), 131–140.CrossRefPubMedGoogle Scholar
  28. 28.
    Calin, G. A., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.CrossRefPubMedGoogle Scholar
  29. 29.
    Jiang, J., et al. (2005). Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Research, 33(17), 5394–5403.CrossRefPubMedGoogle Scholar
  30. 30.
    Davison, T. S., Johnson, C. D., & Andruss, B. F. (2006). Analyzing micro-RNA expression using microarrays. Methods in Enzymology, 411, 14–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Liang, Z., et al. (2007). Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochemical and Biophysical Research Communications, 363(3), 542–546.CrossRefPubMedGoogle Scholar
  32. 32.
    Miska, E. A. (2005). How microRNAs control cell division, differentiation and death. Current Opinion in Genetics and Development, 15(5), 563–568.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee, Y. S., et al. (2005). Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. Journal of Biological Chemistry, 280(17), 16635–16641.CrossRefPubMedGoogle Scholar
  34. 34.
    Roldo, C., et al. (2006). MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. Journal of Clinical Oncology, 24(29), 4677–4684.CrossRefPubMedGoogle Scholar
  35. 35.
    Dillhoff, M., et al. (2008). MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. Journal of Gastrointestinal Surgery, 12(12), 2171–2176.CrossRefPubMedGoogle Scholar
  36. 36.
    Gironella, M., et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16170–16175.CrossRefPubMedGoogle Scholar
  37. 37.
    Burk, U., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.CrossRefPubMedGoogle Scholar
  38. 38.
    Nakajima, G., et al. (2006). Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics, 3(5), 317–324.PubMedGoogle Scholar
  39. 39.
    Lanza, G., et al. (2007). mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Molecular Cancer, 6, 54.CrossRefPubMedGoogle Scholar
  40. 40.
    Asangani, I. A., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.CrossRefPubMedGoogle Scholar
  41. 41.
    Hayashita, Y., et al. (2005). A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Research, 65(21), 9628–9632.CrossRefPubMedGoogle Scholar
  42. 42.
    Matsubara, H., et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene, 26(41), 6099–6105.CrossRefPubMedGoogle Scholar
  43. 43.
    Chang, T. C., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745–752.CrossRefPubMedGoogle Scholar
  44. 44.
    Lodygin, D., et al. (2008). Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 7(16), 2591–2600.PubMedGoogle Scholar
  45. 45.
    Michael, M. Z., et al. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular Cancer Research, 1(12), 882–891.PubMedGoogle Scholar
  46. 46.
    Akao, Y., Nakagawa, Y., & Naoe, T. (2006). MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncology Reports, 16(4), 845–850.PubMedGoogle Scholar
  47. 47.
    Shi, B., et al. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. Journal of Biological Chemistry, 282(45), 32582–32590.CrossRefPubMedGoogle Scholar
  48. 48.
    Akao, Y., Nakagawa, Y., & Naoe, T. (2006). Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biological and Pharmaceutical Bulletin, 29(5), 903–906.CrossRefPubMedGoogle Scholar
  49. 49.
    Takamizawa, J., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64(11), 3753–3756.CrossRefPubMedGoogle Scholar
  50. 50.
    Johnson, S. M., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.CrossRefPubMedGoogle Scholar
  51. 51.
    Johnson, C. D., et al. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16), 7713–7722.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee, Y. S., & Dutta, A. (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes and Development, 21(9), 1025–1030.CrossRefPubMedGoogle Scholar
  53. 53.
    Bommer, G. T., et al. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Current Biology, 17(15), 1298–1307.CrossRefPubMedGoogle Scholar
  54. 54.
    Calin, G. A., & Croce, C. M. (2006). MicroRNA-cancer connection: the beginning of a new tale. Cancer Research, 66(15), 7390–7394.CrossRefPubMedGoogle Scholar
  55. 55.
    Cimmino, A., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.CrossRefPubMedGoogle Scholar
  56. 56.
    Lin, T., et al. (2009). MicroRNA-143 as a tumor suppressor for bladder cancer. The Journal of Urology, 181, 1372–1380.CrossRefPubMedGoogle Scholar
  57. 57.
    Varambally, S., et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322(5908), 1695–1699.CrossRefPubMedGoogle Scholar
  58. 58.
    Liu, C. G., et al. (2004). An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9740–9744.CrossRefPubMedGoogle Scholar
  59. 59.
    Walsh, T., & King, M. C. (2007). Ten genes for inherited breast cancer. Cancer Cell, 11(2), 103–105.CrossRefPubMedGoogle Scholar
  60. 60.
    Xin, F., et al. (2008). Computational analysis of MicroRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics, 25, 430–434.CrossRefPubMedGoogle Scholar
  61. 61.
    Scott, G. K., et al. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Research, 66(3), 1277–1281.CrossRefPubMedGoogle Scholar
  62. 62.
    Abdelrahim, M., et al. (2002). Small inhibitory RNA duplexes for Sp1 mRNA block basal and estrogen-induced gene expression and cell cycle progression in MCF-7 breast cancer cells. Journal of Biological Chemistry, 277(32), 28815–28822.CrossRefPubMedGoogle Scholar
  63. 63.
    Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.CrossRefPubMedGoogle Scholar
  64. 64.
    Si, M. L., et al. (2007). miR-21-mediated tumor growth. Oncogene, 26(19), 2799–2803.CrossRefPubMedGoogle Scholar
  65. 65.
    Zhu, S., et al. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.CrossRefPubMedGoogle Scholar
  66. 66.
    Boyd, J., et al. (1995). Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1. Proceedings of the National Academy of Sciences of the United States of America, 92(25), 11534–11538.CrossRefPubMedGoogle Scholar
  67. 67.
    Frankel, L. B., et al. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. Journal of Biological Chemistry, 283(2), 1026–1033.CrossRefPubMedGoogle Scholar
  68. 68.
    Hossain, A., Kuo, M. T., & Saunders, G. F. (2006). Mir-17–5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Molecular and Cellular Biology, 26(21), 8191–8201.CrossRefPubMedGoogle Scholar
  69. 69.
    Murray, G. I., et al. (1997). Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Research, 57(14), 3026–3031.PubMedGoogle Scholar
  70. 70.
    Tsuchiya, Y., et al. (2006). MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Research, 66(18), 9090–9098.CrossRefPubMedGoogle Scholar
  71. 71.
    Mattie, M. D., et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer, 5, 24.CrossRefPubMedGoogle Scholar
  72. 72.
    Scott, G. K., et al. (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. Journal of Biological Chemistry, 282(2), 1479–1486.CrossRefPubMedGoogle Scholar
  73. 73.
    Eger, A., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24(14), 2375–2385.CrossRefPubMedGoogle Scholar
  74. 74.
    Hurteau, G. J., et al. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67(17), 7972–7976.CrossRefPubMedGoogle Scholar
  75. 75.
    Adams, B. D., Furneaux, H., & White, B. A. (2007). The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Molecular Endocrinology, 21(5), 1132–1147.CrossRefPubMedGoogle Scholar
  76. 76.
    Kondo, N., et al. (2008). miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Research, 68(13), 5004–5008.CrossRefPubMedGoogle Scholar
  77. 77.
    Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.CrossRefPubMedGoogle Scholar
  78. 78.
    Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Review Cancer, 3(6), 453–458.CrossRefGoogle Scholar
  79. 79.
    Huang, Q., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210.CrossRefPubMedGoogle Scholar
  80. 80.
    Tavazoie, S. F., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.CrossRefPubMedGoogle Scholar
  81. 81.
    Yu, F., et al. (2007). Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.CrossRefPubMedGoogle Scholar
  82. 82.
    Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansUSA

Personalised recommendations