Cancer and Metastasis Reviews

, Volume 28, Issue 1–2, pp 197–208 | Cite as

Kinesin motor proteins as targets for cancer therapy

  • Dennis Huszar
  • Maria-Elena Theoclitou
  • Jeffrey Skolnik
  • Ronald Herbst


The process of mitosis is a validated point of intervention in cancer therapy and a variety of anti-mitotic drugs are successfully being used in the clinic. To date, all approved antimitotics target the spindle microtubules, thus interfering with spindle dynamics, leading to mitotic arrest and apoptosis. While effective, these drugs are also associated with a variety of side effects, including neurotoxicity. In recent years, mitotic kinesins have attracted significant attention in the search for novel, alternative mitotic drug targets. Due to their specific function in mitosis, targeting these proteins creates an opportunity for the development of more selective antimitotics with an improved side effect profile. In addition, kinesin inhibitors may overcome resistance to microtubule targeting drugs. Drug discovery efforts in this area have initially focused on the plus-end directed kinesin spindle protein (KSP) and a variety of compounds are currently undergoing clinical testing.


Kinesin Eg5 KSP Mitosis Microtubule Cancer 



We thank Daniel Russell, Victor Sandor and Louise Grochow for critical review of the manuscript.


  1. 1.
    Compton, D. A. (2000). Spindle assembly in animal cells. Annual Review of Biochemistry, 69, 95–114.PubMedCrossRefGoogle Scholar
  2. 2.
    Cheesman, I. M., & Desai, A. (2008). Molecular architecture of the kinetochore-microtubule interphase. Nature Reviews Molecular and Cellular Biology, 9, 33–46.CrossRefGoogle Scholar
  3. 3.
    Jordan, M. A., & Wilson, L. (2004). Microtubules as target for anticancer drugs. Nature Reviews Cancer, 4, 253–265.PubMedCrossRefGoogle Scholar
  4. 4.
    Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.PubMedCrossRefGoogle Scholar
  5. 5.
    Musacchio, A., & Hardwick, K. G. (2002). The spindle checkpoint: Structural insights into dynamic signalling. Nature Reviews Molecular and Cellular Biology, 3, 731–741.CrossRefGoogle Scholar
  6. 6.
    Miki, H., Okada, Y., & Hirokawa, N. (2005). Analysis of the kinesin superfamily: Insights into structure and function. Trends in Cell Biology, 15, 467–476.PubMedCrossRefGoogle Scholar
  7. 7.
    Mountain, V., & Compton, D. A. (2000). Dissecting the role of molecular motors in the mitotic spindle. Anatomical Record (New Anat), 261, 14–24.CrossRefGoogle Scholar
  8. 8.
    Hirokawa, N., & Takemura, R. (2004). Kinesin superfamily proteins and their various functions and dynamics. Experimental Cell Research, 301, 50–59.PubMedCrossRefGoogle Scholar
  9. 9.
    Heck, M. M. S. (1999). Dr Dolittle and the making of the mitotic spindle. BioEssays, 21, 985–990.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhu, C., Zhao, J., Bibikova, M., Leverson, J. D., Bossy-Wetzel, E., Fan, J-B., et al. (2005). Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Molecular Biology of the Cell, 16, 3187–3199.PubMedCrossRefGoogle Scholar
  11. 11.
    Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., & Mitchison, T. J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 286, 971–974.PubMedCrossRefGoogle Scholar
  12. 12.
    LeGuellec, R., Paris, J., Couturier, A., Roghi, C., & Philippe, M. (1991). Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein. Molecular and Cellular Biology, 11, 3395–3398.Google Scholar
  13. 13.
    Sawin, K. E., LeGuellec, K., Philippe, M., & Mitchison, T. J. (1992). Mitotic spindle organization by a plus-end-directed microtubule motor. Nature, 359, 540–543.PubMedCrossRefGoogle Scholar
  14. 14.
    Valentine, M. T., Fordyce, P. M., & Block, S. M. (2006). Eg5 steps it up! Cell Division, 1, 31.PubMedCrossRefGoogle Scholar
  15. 15.
    Kapitein, L. C., Peterman, E. J. G., Kwok, B. H., Kim, J. H., Kapoor, T. M., & Schmidt, C. F. (2005). The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature, 435, 114–118.PubMedCrossRefGoogle Scholar
  16. 16.
    Heck, M. M. S., Pereira, A., Pesavento, P., Yannoni, Y., Spradling, A. C., & Goldstein, L. S. B. (1993). The kinesin-like protein KLP61F is essential for mitosis in Drosophila. Journal of Cell Biology, 123, 665–679.PubMedCrossRefGoogle Scholar
  17. 17.
    Blangy, A., Lane, H. A., d’Herin, P., Harper, M., Kress, M., & Nigg, E. A. (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 83, 1159–1169.PubMedCrossRefGoogle Scholar
  18. 18.
    Castillo, A., Morse, H. C., Godfrey, V. L., Naeem, R., & Justice, M. J. (2007). Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Research, 67, 10138–10147.PubMedCrossRefGoogle Scholar
  19. 19.
    Castillo, A., & Justice, M. J. (2007). The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis. Biochemical and Biophysical Research Communications, 357, 694–699.PubMedCrossRefGoogle Scholar
  20. 20.
    Chauviere, M., Kress, C., & Kress, M. (2008). Disruption of the mitotic kinesin Eg5 gene (Knsl1) results in early embryonic lethality. Biochemical and Biophysical Research Communications, 372, 513–519.PubMedCrossRefGoogle Scholar
  21. 21.
    Carter, B. Z., Mak, D. H., Shi, Y., Schoeber, W. D., Wang, R. Y., Konopleva, M., et al. (2006). Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: Overcoming imatinib resistance. Cell Cycle, 5, 2223–2229.PubMedGoogle Scholar
  22. 22.
    Hegde, P. S., Cogswell, J., Carrick, K., Jackson, J., Wood, K. W., Eng, W. K., et al. (2003). Differential gene expression analysis of kinesin spindle protein in human solid tumors. Proceedings of the American Society of Clinical Oncology, 22, abstract 535.Google Scholar
  23. 23.
    Saijo, T., Ishii, G., Ochiai, A., Yoh, K., Goto, K., Nagai, K., et al. (2006). Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimititic agents combined with platinum chemotherapy. Lung Cancer, 54, 217–225.PubMedCrossRefGoogle Scholar
  24. 24.
    DeBonis, S., Skoufias, D. A., Lebeau, L., Lopez, R., Robin, G., Margolis, R. L., et al. (2004). In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Molecular Cancer Therapeutics, 3, 1079–1090.PubMedGoogle Scholar
  25. 25.
    Sakowicz, R., Finer, J. T., Beraud, C., Crompton, A., Lewis, E., Fritsch, A., et al. (2004). Antitumor activity of a kinesin inhibitor. Cancer Research, 64, 3276–3280.PubMedCrossRefGoogle Scholar
  26. 26.
    Marcus, A. I., Peters, U., Thomas, S. L., Garrett, S., Zelnak, A., Kapoor, T. M., et al. (2005). Mitotic kinesin inhibitors induce mitotic arrest and cell death in taxol-resistant and -sensitive cancer cells. Journal of Biological Chemistry, 280, 11569–11577.PubMedCrossRefGoogle Scholar
  27. 27.
    Chin, G. M., & Herbst, R. (2006). Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint. Molecular Cancer Therapeutics, 5, 2580–2591.PubMedCrossRefGoogle Scholar
  28. 28.
    Lemieux, C., DeWolf, W., Voegtli, W., DeLisle, R. K., Laird, E., Wallace, E., et al. (2007). ARRY-520: A novel, highly selective KSP inhibitor with potent anti-proliferative activity. AACR Annual Meeting.Google Scholar
  29. 29.
    Woessner, R., Corrette, C., Allen, S., Hans, J., Zhao, Q., Aicher, T., et al. (2007). ARRY-520: A KSP inhibitor with efficacy and pharmacodynamic activity in animal models of solid tumors. AACR Annual Meeting.Google Scholar
  30. 30.
    Weaver, B. A. A., & Cleveland, D. W. (2005). Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8, 7–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Tao, W., South, V. J., Zhang, Y., Davide, J. P., Farrell, L., Kohl, N. E., et al. (2005). Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell, 8, 49–59.PubMedCrossRefGoogle Scholar
  32. 32.
    Tao, W., South, V. J., Diehl, R. E., Davide, J. P., Sepp-Lorenzino, L., Fraley, M. E., et al. (2007). An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis. Molecular and Cellular Biology, 27, 689–698.PubMedCrossRefGoogle Scholar
  33. 33.
    Vijapurkar, U., Wang, W., & Herbst, R. (2007). Potentiation of kinesin spindle protein inhibitor-induced cell death by modulation of mitochondrial and death receptor apoptotic pathways. Cancer Research, 67, 237–245.PubMedCrossRefGoogle Scholar
  34. 34.
    Shi, J., Orth, J. D., & Mitchison, T. (2008). Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Research, 68, 3269–3276.PubMedCrossRefGoogle Scholar
  35. 35.
    Gascoigne, K. E., & Taylor, S. S. (2008). Cancer cells display profound intra-and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell, 14, 111–122.PubMedCrossRefGoogle Scholar
  36. 36.
    Kappe, C. O., Shishkin, O. V., Uray, G., & Verdino, P. (2000). X-Ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 56, 1859–1862.CrossRefGoogle Scholar
  37. 37.
    Yan, Y., Sardana, V., Xu, B., Homnick, C., Halczenko, W., Buser, C. A., et al. (2004). Inhibition of a mitotic motor protein: Where, how and conformational changes. Journal of Molecular Biology, 335, 547–554.PubMedCrossRefGoogle Scholar
  38. 38.
    Bristol Myers Squibb (2002). WO2002079169.Google Scholar
  39. 39.
    Bristol Myers Squibb (2002). WO2002079149.Google Scholar
  40. 40.
    Leipzig University/Max-Planck Institute (2006). WO2006048308.Google Scholar
  41. 41.
    Gartner, M., Sunder-Plassmann, N., Seiler, J., Utz, M., Vernos, I., Surrey, T., et al. (2005). Development and biological evaluation of potent and specific inhibitors of mitotic kinesin Eg5. ChemBioChem, 6, 1173–1177.PubMedCrossRefGoogle Scholar
  42. 42.
    Sarli, V., Huemmer, S., Sunder-Plassmann, N., Mayer, T. U., & Giannis, A. (2005). Synthesis and biological evaluation of novel Eg5 inhibitors. ChemBioChem, 6, 2005–2013.PubMedCrossRefGoogle Scholar
  43. 43.
    Harvard University, WO2006074293Google Scholar
  44. 44.
    Sorbera, L. A., Bolos, J., Serradell, N., & Bayes, M. (2006). Ispinesib mesilate. Drugs Future, 31, 778–787.CrossRefGoogle Scholar
  45. 45.
    Cytokinetics (2001). WO2001030768Google Scholar
  46. 46.
    Cytokinetics (2001). WO200198278Google Scholar
  47. 47.
    Bergnes, G., Ha, E., Feng, B., Smith, W. W., Yao, B., Tochimoto, T., et al. (2002). Mitotic kinesin-targeted antitumor agents: Discovery, lead optimization and anti-tumor activity of a series of novel quinazolinones as inhibitors of kinesin spindle protein (KSP). Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, MEDI-249.Google Scholar
  48. 48.
    Cytokinetics/GSK (2003). WO2003103575.Google Scholar
  49. 49.
    Merck & Co. (2003). WO2003049679.Google Scholar
  50. 50.
    BMS (2003). WO2003099286.Google Scholar
  51. 51.
    Merck & Co. (2003). WO2003049678.Google Scholar
  52. 52.
    Merck & Co. (2003). WO2003050122.Google Scholar
  53. 53.
    Merck & Co. (2004). WO2004039774.Google Scholar
  54. 54.
    Cytokinetics/GSK (2004). WO2004024086.Google Scholar
  55. 55.
    Cytokinetics/GSK (2004). WO200406741.Google Scholar
  56. 56.
    Merck & Co. (2003). WO2003050064.Google Scholar
  57. 57.
    Cytokinetics/GSK (2005). WO2005042697.Google Scholar
  58. 58.
    AstraZeneca (2004). WO2004078758.Google Scholar
  59. 59.
    AstraZeneca (2006). WO2006018627.Google Scholar
  60. 60.
    AstraZeneca (2006). WO2006018628.Google Scholar
  61. 61.
    AstraZeneca (2006). WO2006008523.Google Scholar
  62. 62.
    Chiron (2004). WO2004113335.Google Scholar
  63. 63.
    Chiron (2005). WO2005100357.Google Scholar
  64. 64.
    Cytokinetics (2005). WO2005061460.Google Scholar
  65. 65.
    BMS (2005). WO2005077920.Google Scholar
  66. 66.
    Chiron (2006). WO2006049835.Google Scholar
  67. 67.
    Takeda (2006). WO2006060737.Google Scholar
  68. 68.
    Cytokinetics/GSK (2003). WO2003088903.Google Scholar
  69. 69.
    Merck & Co. (2003). WO2003039460.Google Scholar
  70. 70.
    Merck & Co. (2003). WO2003050122.Google Scholar
  71. 71.
    Cytokinetics (2004). WO2004009036.Google Scholar
  72. 72.
    Cytokinetics (2004). WO2004034972.Google Scholar
  73. 73.
    Cytokinetics/GSK (2004). WO2004055008.Google Scholar
  74. 74.
    Merck & Co. (2006). WO2006078574.Google Scholar
  75. 75.
    Merck & Co. (2006). WO2006078575.Google Scholar
  76. 76.
    Merck & Co. (2006). WO2006078598.Google Scholar
  77. 77.
    Cytokinetics/GSK (2003). WO2003094839.Google Scholar
  78. 78.
    Cytokinetics (2004). WO2004006865.Google Scholar
  79. 79.
    Cytokinetics/GSK (2004). WO2004032840.Google Scholar
  80. 80.
    Cytokinetics (2004). WO2004032879.Google Scholar
  81. 81.
    Chiron (2006). WO2006002236.Google Scholar
  82. 82.
    Cytokinetics (2004). WO2004091547.Google Scholar
  83. 83.
    Cytokinetics (2004). WO2004103282.Google Scholar
  84. 84.
    Cytokinetics (2004). WO2004100873.Google Scholar
  85. 85.
    Cytokinetics (2005). WO2005013888.Google Scholar
  86. 86.
    Merck & Co. (2003). WO2003105855.Google Scholar
  87. 87.
    Merck & Co. (2004). WO2004037171.Google Scholar
  88. 88.
    Cox, C. D., Breslin, M. J., Mariano, B. J., Coleman, P. J., Buser, C. A., Walsh, E. S., et al. (2005). Kinesin spindle protein (KSP) inhibitors. Part 1: The discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 15, 2041–2045.CrossRefGoogle Scholar
  89. 89.
    Fraley, M. E., Garbaccio, R. M., Arrington, K. L., Hoffman, W. F., Tasber, E. S., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 2: The design, synthesis, and characterization of 2,4-diaryl-2,5-dihydropyrrole inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 1775–1779.CrossRefGoogle Scholar
  90. 90.
    Garbaccio, R. M., Fraley, M. E., Tasber, E. S., Olson, C. M., Hoffman, W. F., Arrington, K. L., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2,4-diaryl-2,5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility. Bioorganic & Medicinal Chemistry Letters, 16, 1780–1783.CrossRefGoogle Scholar
  91. 91.
    Cox, C. D., Torrent, M., Breslin, M. J., Mariano, B. J., Whitman, D. B., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Structure-based design of 5-alkylamino-3,5-diaryl-4,5-dihydropyrazoles as potent, water-soluble inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 3175–3179.CrossRefGoogle Scholar
  92. 92.
    Cox, C. D., Breslin, M. J., Whitman, D. B., Coleman, P. J., Garbaccio, R. M., Fraley, M. E., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Discovery of 2-propylamino-2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by β -fluorination to overcome cellular efflux by P-glycoprotein. Bioorganic & Medicinal Chemistry Letters, 17, 2697–2702.CrossRefGoogle Scholar
  93. 93.
    Coleman, P. J., Schreier, J. D., Cox, C. D., Fraley, M. E., Garbaccio, R. M., Buser, C. A., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 6: Design and synthesis of 3,5-diaryl-4,5-dihydropyrazole amides as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5390–5395.CrossRefGoogle Scholar
  94. 94.
    Garbaccio, R. M., Tasber, E. S., Neilson, L. A., Coleman, P. J., Fraley, M. E., Olson, C., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 7: Design and synthesis of 3,3-disubstituted dihydropyrazolobenzoxazines as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5671–5676.CrossRefGoogle Scholar
  95. 95.
    Roecker, A. J., Coleman, P. J., Mercer, S. P., Schreier, J. D., Buser, C. A., Walsh, E. S., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 8: Design and synthesis of 1,4-diaryl-4,5-dihydropyrazoles as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5677–5682.CrossRefGoogle Scholar
  96. 96.
    Cox, C. D., Coleman, P. J., Breslin, M. J., Whitman, D. B., Garbaccio, R. M., Fraley, M. E., et al. (2008). Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer. Journal of Medicinal Chemistry, 51, 4239–4252.PubMedCrossRefGoogle Scholar
  97. 97.
    Kyowa Hakko/Fuji Film (2005). WO2005035512.Google Scholar
  98. 98.
    Kyowa Hakko/Fuji Film (2005). JP2005232016.Google Scholar
  99. 99.
    Kyowa Hakko/Fuji Film (2006). WO2006101102.Google Scholar
  100. 100.
    Merck & Co. (2006). WO2006023440.Google Scholar
  101. 101.
    Merck & Co. (2006). WO2006031348.Google Scholar
  102. 102.
    Array Biopharma (2006). WO2006044825.Google Scholar
  103. 103.
    Array Biopharma (2008). WO2008042928.Google Scholar
  104. 104.
    Merck KgaA (2006). WO2006133805.Google Scholar
  105. 105.
    Merck KgaA (2006). WO2006002726.Google Scholar
  106. 106.
    Merck KgaA (2005). WO2005063735.Google Scholar
  107. 107.
    Merck KgaA (2006). WO2006133821.Google Scholar
  108. 108.
    Merck KgaA (2007). WO2007054138.Google Scholar
  109. 109.
    Sunder-Plassmann, N., Sarli, V., Gartner, M., Utz, M., Seiler, J., Huemmer, S., et al. (2005). Synthesis and biological evaluation of new tetrahydro-β -carbolines as inhibitors of the mitotic kinesin Eg5. Bioorganic & Medicinal Chemistry, 13, 6094–6111.CrossRefGoogle Scholar
  110. 110.
    Nakazawa, J., Yajima, J., Usui, T., Ueki, M., Takatsuki, A., Imoto, M., et al. (2003). A novel action of terpendole E on the motor activity of mitotic kinesin Eg5. Chemistry & Biology, 10, 131–137.CrossRefGoogle Scholar
  111. 111.
    Cytokinetics (2002). WO2002057244.Google Scholar
  112. 112.
    Okumura, H., Nakazawa, J., Tsuganezawa, K., Usui, T., Osada, H., Matsumoto, T., et al. (2006). Phenothiazine and carbazole-related compounds inhibit mitotic kinesin Eg5 and trigger apoptosis in transformed culture cells. Toxicology Letters, 166, 44–52.PubMedCrossRefGoogle Scholar
  113. 113.
    Cytokinetics (2002). WO2002056880.Google Scholar
  114. 114.
    Merck & Co. (2004). WO2004058700.Google Scholar
  115. 115.
    ICCB (2004). US040059138.Google Scholar
  116. 116.
    Kalypsys (2007). WO2007011721.Google Scholar
  117. 117.
    Merck KgaA (2006). WO2006094602.Google Scholar
  118. 118.
    Schering (2006). WO2006098961.Google Scholar
  119. 119.
    Schering (2006). WO2006098962.Google Scholar
  120. 120.
    Brier, S., Lemaire, D., DeBonis, S., Forest, E., & Kozielski, F. (2006). Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer resistance to antimitotic agents. Journal of Molecular Biology, 360, 360–376.PubMedCrossRefGoogle Scholar
  121. 121.
    Maliga, Z., & Mitchison, T. J. (2006). Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC Chemical & Biology, 6, 2.CrossRefGoogle Scholar
  122. 122.
    Rickert, K. W., Schaber, M., Torrent, M., Neilson, L. A., Tasber, E. S., Garbaccio, R., et al. (2008). Discovery and biochemical characterization of selective ATP competitive inhibitors of the human mitotic kinesin KSP. Archives of Biochemistry and Biophysics, 469, 220–231.PubMedCrossRefGoogle Scholar
  123. 123.
    Parrish, C. A., Adams, N. D., Auger, K. R., Burgess, J. L., Carson, J. D., Chaudhari, A. M., et al. (2007). Novel ATP-competitive kinesin spindle protein inhibitors. Journal of Medicinal Chemistry, 50, 4939–4952.PubMedCrossRefGoogle Scholar
  124. 124.
    Luo, L., Parrish, C. A., Nevins, N., McNulty, D. E., Chaudhari, A. M., Carson, J. D., et al. (2007). ATP-competitive inhibitors of the mitotic kinesin KSP that function via an allosteric mechanism. Nature Chemical Biology, 3, 722–726.PubMedCrossRefGoogle Scholar
  125. 125.
    Jones, S. F., Plummer, E. R., Burris, H. A., Razak, A. R., Meluch, A. A., Bowen, C. J., et al. (2006). Phase I study of ispinesib in combination with carboplatin in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2027.Google Scholar
  126. 126.
    Rodon, J., Till, E., Patnaik, A., Takimoto, C., Beeram, M., Williams, D., et al. (2006). Phase I study of ispinesib (SB-715992), a kinesin spindle protein inhibitor, in combination with capecitabine in patients with advanced solid tumors. European Journal of Cancer, Supplement, 4, 193.CrossRefGoogle Scholar
  127. 127.
    Blagden, S. P., Molife, L. R., Seebaran, A., Payne, M., Reid, A. H. M., Protheroe, A. S., et al. (2008). A phase I trial of ispinesib, a kinesin spidle protein inhibitor, with docetaxel in patients with advanced solid tumors. British Journal of Cancer, 98, 894–899.PubMedCrossRefGoogle Scholar
  128. 128.
    Souid, A., Dubowy, R. L., Greenwald Triplett, D., Ingle, A. M., Sun, J., Blaney, S. M., et al. (2008). Pediatric phase I trial and pharmacokinetic (PK) study of ispinesib (SB715992): A children’s oncology group phase I consortium study. Proceedings of the American Society of Clinical Oncology, 26, 10014.Google Scholar
  129. 129.
    Lee, R. T., Beekman, K. E., Hussain, M., Davis, N. B., Clark, J. I., Thomas, S. P., et al. (2008). A University of Chicago consortium phase II trial of SB-715992 in advanced renal cell cancer. Clin Genitourin Cancer, 6, 21–24.PubMedCrossRefGoogle Scholar
  130. 130.
    Miller, K., Ng, C., Ang, P., Brufsky, A. M., Lee, S. C., Dees, E. C., et al. (2005). Phase II, open label study of ispinesib in Patients with locally advanced or metastatic breast cancer. San Antonio Breast Cancer Symposium, 1089.Google Scholar
  131. 131.
    Shahin, M. S., Braly, P., Rose, P., Malpass, T., Bailey, H., Alvarez, R. D., et al. (2007). A phase II, open-label study of ispinesib (SB-715992) in patients with platimun/taxane refractory or resistant relapsed ovarian cancer. Proceedings of the American Society of Clinical Oncology, 25, 5562.Google Scholar
  132. 132.
    Holen, K. D., Belani, C. P., Wilding, G., Ramalingam, S., Heideman, J. L., Ramanathan, R. K., et al. (2006). Phase I study to determine tolerability and pharmacokinetics (PK) of SB-743921, a novel kinesin spindle protein (KSP) inhibitor. Proceedings of the American Society of Clinical Oncology, 24, 2000.Google Scholar
  133. 133.
    O’Connor, O. A., Goy, A., Orlowski, R., Hainsworth, J. D., Leonard, J. P., Afanasyev, B., et al. (2008). A phase I-II trial of the kinesin spindle protein (KSP) inhibitor SB-743921 on day 1 and 15 every 28 days in non-Hodgkin or Hodgkin lymphoma. Proceedings of the American Society of Clinical Oncology, 26, 8539.Google Scholar
  134. 134.
    Stephenson, J. J., Lewis, N., Martin, J. C., Ho, A., Li, J., Wu, K., et al. (2008). Phase I multicenter study to assess the safety, tolerability, and pharmacokinetics of AZD4877 administered twice weekly in adult patients with advanced solid malignancies. Proceedings of the American Society of Clinical Oncology, 26, 2516.Google Scholar
  135. 135.
    Heath, E. I., Alousi, A., Eder, J. P., Valdivieso, M., Vasist, L. S., Appleman, L., et al. (2006). A phase I dose escalation trial of ispinesib (SB-715992) administered days 1-3 of a 21-day cycle in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2026.Google Scholar
  136. 136.
    Wood, K. W., Sakowicz, R., Goldstein, L. S. B., & Cleveland, D. W. (1997). CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell, 91, 357–366.PubMedCrossRefGoogle Scholar
  137. 137.
    Kapoor, T. M., Lampson, M. A., Hergert, P., Cameron, L., Cimini, D., Salmon, E. D., et al. (2006). Chromosomes can congress to the metaphase plate before biorientation. Science, 311, 388–391.PubMedCrossRefGoogle Scholar
  138. 138.
    Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D., & Yen, T. J. (1997). CENP-E function at kinetochores is essential for chromosome alignment. Journal of Cell Biology, 139, 1373–1382.PubMedCrossRefGoogle Scholar
  139. 139.
    Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F., & Cleveland, D. W. (2000). CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biology, 2, 484–491.PubMedCrossRefGoogle Scholar
  140. 140.
    Mao, Y., Abrieu, A., & Cleveland, D. W. (2003). Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell, 114, 87–98.PubMedCrossRefGoogle Scholar
  141. 141.
    Yinghui, M., Ariane, A., & Cleveland, D. W. (2003). Activating and Silencing the Mitotic Checkpoint through CENP-E-Dependent Activation/Inactivation of BubR1. Cell, 114, 87–98.CrossRefGoogle Scholar
  142. 142.
    McEwen, B. F., Chan, G. K., Zubrowski, B., Savoian, M. S., Sauer, M. T., & Yen, T. J. (2001). CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Molecular Biology of the Cell, 12, 2776–2789.PubMedGoogle Scholar
  143. 143.
    Putkey, F. R., Cramer, T., Morphew, M. K., Silk, A. D., Johnson, R. S., McIntosh, J. R., et al. (2002). Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev. Cell, 3, 351–365.Google Scholar
  144. 144.
    Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., & Cleveland, D. W. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. Journal of Cell Biology, 162, 551–563.PubMedCrossRefGoogle Scholar
  145. 145.
    Weaver, B. A. A., Silk, A. D., Montagna, C., Pascal Verdier-Pinard, C. P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedCrossRefGoogle Scholar
  146. 146.
    Chua, P. R., Desai, R., Schauer, S. P., Cornwell, W., Gilmartin, A., Sutton, D., et al. (2007). Differential response of tumor cell lines to inhibition of the mitotic checkpoint regulator and mitotic kinesin, CENP-E. AACR-NCI-EORTC-2007.Google Scholar
  147. 147.
    Sutton, D., Gilmartin, A. G., Kusnierz, A. M., Sung, C-M., Luo, L., Carson, J. D., et al. (2007). A potent and selective inhibitor of the mitotic kinesin CENP-E (GSK923295A) demonstrates a novel mechanism of inhibiting tumor cell proliferation and shows activity against a broad panel of human tumor cell lines in vitro. AACR-NCI-EORTC_2007.Google Scholar
  148. 148.
    Sutton, D., Diamond, M., Faucette, L., Giardiniere, M., Zhang, S. Y., Vidal, J., et al. (2007). GSK-923295, a potent and selective CENP-E inhibitor, has broad spectrum activity against human tumor xenografts in nude mice. AACR 2007.Google Scholar
  149. 149.
    Schafer-Hales, K., Iaconelli, J., Snyder, J. P., Prussia, A., Nettles, J. H., El-Naggar, A., et al. (2007). Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Molecular Cancer Therapeutics, 6, 1317–1328.PubMedCrossRefGoogle Scholar
  150. 150.
    Ashar, H. R., James, L., Gray, K., Carr, D., Black, S., Armstrong, L., et al. (2000). Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. Journal of Biological Chemistry, 275, 30451–30457.PubMedCrossRefGoogle Scholar
  151. 151.
    Corson, T. W., Huang, A., Tsao, M. S., & Gallie, B. L. (2005). KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene, 24, 4741–4753.PubMedCrossRefGoogle Scholar
  152. 152.
    Corson, T. W., & Gallie, B. L. (2006). KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. International Journal of Cancer, 119, 1088–1094.CrossRefGoogle Scholar
  153. 153.
    Corson, T. W., Zhu, C. Q., Lau, S. K., Shepherd, F. A., Tsao, M. S., & Gallie, B. L. (2007). KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clinical Cancer Research, 13, 3229–3234.PubMedCrossRefGoogle Scholar
  154. 154.
    Carleton, M., Mao, M., Biery, M., Warrener, P., Kim, S., Buser, C., et al. (2006). RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Molecular and Cellular Biology, 26, 3853–3863.PubMedCrossRefGoogle Scholar
  155. 155.
    Gruneberg, U., Neef, R., Li, X., Chan, E. H., Chalamalasetty, R. B., Nigg, E. A., et al. (2006). KIF14 and citron kinase act together to promote efficient cytokinesis. Journal of Cell Biology, 172, 363–372.PubMedCrossRefGoogle Scholar
  156. 156.
    Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.CrossRefGoogle Scholar
  157. 157.
    Mayr, I. M., Hummer, S., Bormann, J., Gruner, T., Adio, S., Woehlke, G., et al. (2007). The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Current Biology, 17, 488–498.PubMedCrossRefGoogle Scholar
  158. 158.
    Stumpf, J., von Dassow, G., Wagenbach, M., Asbury, C., & Wordeman, L. (2008). The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Developments in Cell, 14, 252–262.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dennis Huszar
    • 1
  • Maria-Elena Theoclitou
    • 2
  • Jeffrey Skolnik
    • 3
  • Ronald Herbst
    • 4
  1. 1.Cancer BioscienceAstraZeneca R&D BostonWalthamUSA
  2. 2.Cancer and Infection Research AreaAstraZenecaMacclesfieldUK
  3. 3.Clinical Research, OncologyAstraZenecaWilmingtonUSA
  4. 4.MedImmune, Inc., One MedImmune WayGaithersburgUSA

Personalised recommendations