Cancer and Metastasis Reviews

, Volume 28, Issue 1–2, pp 151–166 | Cite as

E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer

  • Otto Schmalhofer
  • Simone Brabletz
  • Thomas Brabletz


The embryonic program ‘epithelial-mesenchymal transition’ (EMT) is activated during tumor invasion in disseminating cancer cells. Characteristic to these cells is a loss of E-cadherin expression, which can be mediated by EMT-inducing transcriptional repressors, e.g. ZEB1. Consequences of a loss of E-cadherin are an impairment of cell-cell adhesion, which allows detachment of cells, and nuclear localization of β-catenin. In addition to an accumulation of cancer stem cells, nuclear β-catenin induces a gene expression pattern favoring tumor invasion, and mounting evidence indicates multiple reciprocal interactions of E-cadherin and β-catenin with EMT-inducing transcriptional repressors to stabilize an invasive mesenchymal phenotype of epithelial tumor cells.


E-cadherin EMT ZEB1 Cancer Invasion Feedback/forward loop 



This work was supported by grants to T.B. from the EU MCSC contract no. 037297, the DFG (no. BR 1399/4-3) and the Deutsche Krebshilfe (no. 106958).


  1. 1.
    Yilmaz, M., Christofori, G., & Lehembre, F. (2007). Distinct mechanisms of tumor invasion and metastasis. Trends in Molecular Medicine, 13, 535–541.PubMedGoogle Scholar
  2. 2.
    Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2, 442–454.PubMedGoogle Scholar
  3. 3.
    Takahashi, E., Funato, N., Higashihori, N., Hata, Y., Gridley, T., & Nakamura, M. (2004). Snail regulates p21(WAF/CIP1) expression in cooperation with E2A and Twist. Biochemical and Biophysical Research Communications, 325, 1136–1144.PubMedGoogle Scholar
  4. 4.
    Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMedGoogle Scholar
  5. 5.
    Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2, 84–89.PubMedGoogle Scholar
  6. 6.
    Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2, 76–83.PubMedGoogle Scholar
  7. 7.
    Guaita, S., Puig, I., Franci, C., Garrido, M., Dominguez, D., Batlle, E., et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. Journal of Biological Chemistry, 277, 39209–39216.PubMedGoogle Scholar
  8. 8.
    Peinado, H., Ballestar, E., Esteller, M., & Cano, A. (2004). Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Molecular and Cellular Biology, 24, 306–319.PubMedGoogle Scholar
  9. 9.
    Hajra, K. M., Chen, D. Y., & Fearon, E. R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Research, 62, 1613–1618.PubMedGoogle Scholar
  10. 10.
    Bolos, V., Peinado, H., Perez-Moreno, M. A., Fraga, M. F., Esteller, M., & Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of Cell Science, 116, 499–511.PubMedGoogle Scholar
  11. 11.
    Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7, 1267–1278.PubMedGoogle Scholar
  12. 12.
    Grooteclaes, M. L., & Frisch, S. M. (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene, 19, 3823–3828.PubMedGoogle Scholar
  13. 13.
    Funahashi, J., Sekido, R., Murai, K., Kamachi, Y., & Kondoh, H. (1993). Delta-crystallin enhancer binding protein delta EF1 is a zinc finger- homeodomain protein implicated in postgastrulation embryogenesis. Development, 119, 433–446.PubMedGoogle Scholar
  14. 14.
    Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24, 2375–2385.PubMedGoogle Scholar
  15. 15.
    Perez-Moreno, M., Jamora, C., & Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell, 112, 535–548.PubMedGoogle Scholar
  16. 16.
    Perez-Moreno, M., & Fuchs, E. (2006). Catenins: keeping cells from getting their signals crossed. Developmental Cell, 11, 601–612.PubMedGoogle Scholar
  17. 17.
    McNeill, H., Ozawa, M., Kemler, R., & Nelson, W. J. (1990). Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell, 62, 309–316.PubMedGoogle Scholar
  18. 18.
    Wheelock, M. J., & Johnson, K. R. (2003). Cadherins as modulators of cellular phenotype. Annual Review of Cell and Developmental Biology, 19, 207–235.PubMedGoogle Scholar
  19. 19.
    Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O., Hiendlmeyer, E., Jung, A., et al. (2005). Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs, 179, 56–65.PubMedGoogle Scholar
  20. 20.
    De Vries, W. N., Evsikov, A. V., Haac, B. E., Fancher, K. S., Holbrook, A. E., Kemler, R., et al. (2004). Maternal beta-catenin and E-cadherin in mouse development. Development, 131, 4435–4445.PubMedGoogle Scholar
  21. 21.
    Nose, A., & Takeichi, M. (1986). A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. Journal of Cell Biology, 103, 2649–2658.PubMedGoogle Scholar
  22. 22.
    Butz, S., & Larue, L. (1995). Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhesion and Communication, 3, 337–352.PubMedGoogle Scholar
  23. 23.
    Takeichi, M. (1988). The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development, 102, 639–655.PubMedGoogle Scholar
  24. 24.
    Carver, E. A., Jiang, R., Lan, Y., Oram, K. F., & Gridley, T. (2001). The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Molecular and Cellular Biology, 21, 8184–8188.PubMedGoogle Scholar
  25. 25.
    Huber, O., Bierkamp, C., & Kemler, R. (1996). Cadherins and catenins in development. Current Opinion in Cell Biology, 8, 685–691.PubMedGoogle Scholar
  26. 26.
    Barbara, G., De Giorgio, R., Stanghellini, V., Corinaldesi, R., Cremon, C., Gerard, N., et al. (2003). Neutral endopeptidase (EC downregulates the onset of intestinal inflammation in the nematode infected mouse. Gut, 52, 1457–1464.PubMedGoogle Scholar
  27. 27.
    Matsunami, H., & Takeichi, M. (1995). Fetal brain subdivisions defined by R- and E-cadherin expressions: evidence for the role of cadherin activity in region-specific, cell-cell adhesion. Developmental Biology, 172, 466–478.PubMedGoogle Scholar
  28. 28.
    Shimamura, K., Hirano, S., McMahon, A. P., & Takeichi, M. (1994). Wnt-1-dependent regulation of local E-cadherin and alpha N-catenin expression in the embryonic mouse brain. Development, 120, 2225–2234.PubMedGoogle Scholar
  29. 29.
    Shimamura, K., & Takeichi, M. (1992). Local and transient expression of E-cadherin involved in mouse embryonic brain morphogenesis. Development, 116, 1011–1019.PubMedGoogle Scholar
  30. 30.
    Shimamura, K., Takahashi, T., & Takeichi, M. (1992). E-cadherin expression in a particular subset of sensory neurons. Developmental Biology, 152, 242–254.PubMedGoogle Scholar
  31. 31.
    Nishimura, E. K., Yoshida, H., Kunisada, T., & Nishikawa, S. I. (1999). Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Developmental Biology, 215, 155–166.PubMedGoogle Scholar
  32. 32.
    Larue, L., Antos, C., Butz, S., Huber, O., Delmas, V., Dominis, M., et al. (1996). A role for cadherins in tissue formation. Development, 122, 3185–3194.PubMedGoogle Scholar
  33. 33.
    Riethmacher, D., Brinkmann, V., & Birchmeier, C. (1995). A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proceedings of the National Academy of Sciences of the United States of America, 92, 855–859.PubMedGoogle Scholar
  34. 34.
    Larue, L., Ohsugi, M., Hirchenhain, J., & Kemler, R. (1994). E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proceedings of the National Academy of Sciences of the United States of America, 91, 8263–8267.PubMedGoogle Scholar
  35. 35.
    Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V., & Kemler, R. (2002). E-cadherin is a survival factor for the lactating mouse mammary gland. Mechanisms of Development, 115, 53–62.PubMedGoogle Scholar
  36. 36.
    Tunggal, J. A., Helfrich, I., Schmitz, A., Schwarz, H., Gunzel, D., Fromm, M., et al. (2005). E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO Journal, 24, 1146–1156.PubMedGoogle Scholar
  37. 37.
    Cali, G., Zannini, M., Rubini, P., Tacchetti, C., D’Andrea, B., Affuso, A., et al. (2007). Conditional inactivation of the E-cadherin gene in thyroid follicular cells affects gland development but does not impair junction formation. Endocrinology, 148, 2737–2746.PubMedGoogle Scholar
  38. 38.
    Tinkle, C. L., Lechler, T., Pasolli, H. A., & Fuchs, E. (2004). Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proceedings of the National Academy of Sciences of the United States of America, 101, 552–557.PubMedGoogle Scholar
  39. 39.
    Young, P., Boussadia, O., Halfter, H., Grose, R., Berger, P., Leone, D. P., et al. (2003). E-cadherin controls adherens junctions in the epidermis and the renewal of hair follicles. EMBO Journal, 22, 5723–5733.PubMedGoogle Scholar
  40. 40.
    Hermiston, M. L., Wong, M. H., & Gordon, J. I. (1996). Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes and Development, 10, 985–996.PubMedGoogle Scholar
  41. 41.
    Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Reviews Cancer, 4, 118–132.PubMedGoogle Scholar
  42. 42.
    Gottardi, C. J., Wong, E., & Gumbiner, B. M. (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. Journal of Cell Biology, 153, 1049–1060.PubMedGoogle Scholar
  43. 43.
    Kuphal, F., & Behrens, J. (2006). E-cadherin modulates Wnt-dependent transcription in colorectal cancer cells but does not alter Wnt-independent gene expression in fibroblasts. Experimental Cell Research, 312, 457–467.PubMedGoogle Scholar
  44. 44.
    Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68, 3645–3654.PubMedGoogle Scholar
  45. 45.
    van Noort, M., & Clevers, H. (2002). TCF transcription factors, mediators of Wnt-signaling in development and cancer. Developmental Biology, 244, 1–8.PubMedGoogle Scholar
  46. 46.
    Behrens, J., Jerchow, B. A., Wurtele, M., Grimm, J., Asbrand, C., Wirtz, R., et al. (1998). Functional interaction of an axin homolog, conductin, with beta- catenin, APC, and GSK3beta. Science, 280, 596–599.PubMedGoogle Scholar
  47. 47.
    Kishida, S., Yamamoto, H., Ikeda, S., Kishida, M., Sakamoto, I., Koyama, S., et al. (1998). Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. Journal of Biological Chemistry, 273, 10823–10826.PubMedGoogle Scholar
  48. 48.
    Amit, S., Hatzubai, A., Birman, Y., Andersen, J. S., Ben-Shushan, E., Mann, M., et al. (2002). Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes and Development, 16, 1066–1076.PubMedGoogle Scholar
  49. 49.
    Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108, 837–847.PubMedGoogle Scholar
  50. 50.
    Kitagawa, M., Hatakeyama, S., Shirane, M., Matsumoto, M., Ishida, N., Hattori, K., et al. (1999). An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO Journal, 18, 2401–2410.PubMedGoogle Scholar
  51. 51.
    Fodde, R., Smits, R., & Clevers, H. (2001). APC, signal transduction and genetic instability in colorectal cancer. Nature Reviews Cancer, 1, 55–67.PubMedGoogle Scholar
  52. 52.
    Wehrli, M., Dougan, S. T., Caldwell, K., O’Keefe, L., Schwartz, S., Vaizel-Ohayon, D., et al. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature, 407, 527–530.PubMedGoogle Scholar
  53. 53.
    Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J., & Skarnes, W. C. (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature, 407, 535–538.PubMedGoogle Scholar
  54. 54.
    Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J., & Nusse, R. (1995). The dishevelled protein is modified by wingless signaling in Drosophila. Genes and Development, 9, 1087–1097.PubMedGoogle Scholar
  55. 55.
    Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma [see comments]. Science, 275, 1784–1787.PubMedGoogle Scholar
  56. 56.
    Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., et al. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382, 638–642.PubMedGoogle Scholar
  57. 57.
    Clevers, H., & van de Wetering, M. (1997). TCF/LEF factor earn their wings. Trends in Genetics, 13, 485–489.PubMedGoogle Scholar
  58. 58.
    Kramps, T., Peter, O., Brunner, E., Nellen, D., Froesch, B., Chatterjee, S., et al. (2002). Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell, 109, 47–60.PubMedGoogle Scholar
  59. 59.
    Takemaru, K., Yamaguchi, S., Lee, Y. S., Zhang, Y., Carthew, R. W., & Moon, R. T. (2003). Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature, 422, 905–909.PubMedGoogle Scholar
  60. 60.
    Takemaru, K. I., & Moon, R. T. (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. Journal of Cell Biology, 149, 249–254.PubMedGoogle Scholar
  61. 61.
    Barker, N., Hurlstone, A., Musisi, H., Miles, A., Bienz, M., & Clevers, H. (2001). The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO Journal, 20, 4935–4943.PubMedGoogle Scholar
  62. 62.
    Pollheimer, J., Loregger, T., Sonderegger, S., Saleh, L., Bauer, S., Bilban, M., et al. (2006). Activation of the canonical wingless/t-cell factor signaling pathway promotes invasive differentiation of human trophoblast. American Journal of Pathology, 168, 1134–1147.PubMedGoogle Scholar
  63. 63.
    Cadigan, K. M., & Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes and Development, 11, 3286–3305.PubMedGoogle Scholar
  64. 64.
    Angerer, L., & Angerer, R. (1999). Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients. Seminars in Cell and Developmental Biology, 10, 327–334.PubMedGoogle Scholar
  65. 65.
    Liebner, S., Cattelino, A., Gallini, R., Rudini, N., Iurlaro, M., Piccolo, S., et al. (2004). Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. Journal of Cell Biology, 166, 359–367.PubMedGoogle Scholar
  66. 66.
    Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., & Kemler, R. (1995). Lack of beta-catenin affects mouse development at gastrulation. Development, 121, 3529–3537.PubMedGoogle Scholar
  67. 67.
    Gat, U., DasGupta, R., Degenstein, L., & Fuchs, E. (1998). De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell, 95, 605–614.PubMedGoogle Scholar
  68. 68.
    Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., & Birchmeier, W. (2001). beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 105, 533–545.PubMedGoogle Scholar
  69. 69.
    Staal, F. J., Meeldijk, J., Moerer, P., Jay, P., van de Weerdt, B. C., Vainio, S., et al. (2001). Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. European Journal of Immunology, 31, 285–293.PubMedGoogle Scholar
  70. 70.
    Brault, V., Moore, R., Kutsch, S., Ishibashi, M., Rowitch, D. H., McMahon, A. P., et al. (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development, 128, 1253–1264.PubMedGoogle Scholar
  71. 71.
    Ishikawa, T., Tamai, Y., Zorn, A. M., Yoshida, H., Seldin, M. F., Nishikawa, S., et al. (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development, 128, 25–33.PubMedGoogle Scholar
  72. 72.
    Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., et al. (2000). Inhibition of adipogenesis by Wnt signaling. Science, 289, 950–953.PubMedGoogle Scholar
  73. 73.
    Barker, N., Huls, G., Korinek, V., & Clevers, H. (1999). Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. American Journal of Pathology, 154, 29–35.PubMedGoogle Scholar
  74. 74.
    Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19, 379–383.PubMedGoogle Scholar
  75. 75.
    Taipale, J., & Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411, 349–354.PubMedGoogle Scholar
  76. 76.
    Herzig, M., Savarese, F., Novatchkova, M., Semb, H., & Christofori, G. (2007). Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling. Oncogene, 26, 2290–2298.PubMedGoogle Scholar
  77. 77.
    van de Wetering, M., Barker, N., Harkes, I. C., van der Heyden, M., Dijk, N. J., Hollestelle, A., et al. (2001). Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Research, 61, 278–284.PubMedGoogle Scholar
  78. 78.
    Rubinfeld, B., Souza, B., Albert, I., Muller, O., Chamberlain, S. H., Masiarz, F. R., et al. (1993). Association of the APC gene product with beta-catenin. Science, 262, 1731–1734.PubMedGoogle Scholar
  79. 79.
    Huelsken, J., & Behrens, J. (2002). The Wnt signalling pathway. Jouranl of Cell Science, 115, 3977–3978.Google Scholar
  80. 80.
    Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.PubMedGoogle Scholar
  81. 81.
    Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198, 11–26.PubMedGoogle Scholar
  82. 82.
    Behrens, J., Mareel, M. M., Van Roy, F. M., & Birchmeier, W. (1989). Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. Journal of Cell Biology, 108, 2435–2447.PubMedGoogle Scholar
  83. 83.
    Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., et al. (1991). E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. Journal of Cell Biology, 113, 173–185.PubMedGoogle Scholar
  84. 84.
    Vleminckx, K., Vakaet Jr., L., Mareel, M., Fiers, W., & van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell, 66, 107–119.PubMedGoogle Scholar
  85. 85.
    Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Current Opinion in Cell Biology, 7, 619–627.PubMedGoogle Scholar
  86. 86.
    Kemler, R. (1993). From Cadherins to Catenins: cytoplasmic proetin interactions and regulation of cell adhesion. Trend in Genetics, 9, 317–321.Google Scholar
  87. 87.
    Berx, G., Cleton-Jansen, A. M., Strumane, K., de Leeuw, W. J., Nollet, F., van Roy, F., et al. (1996). E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene, 13, 1919–1925.PubMedGoogle Scholar
  88. 88.
    Risinger, J. I., Berchuck, A., Kohler, M. F., & Boyd, J. (1994). Mutations of the E-cadherin gene in human gynecologic cancers. Nature Genetics, 7, 98–102.PubMedGoogle Scholar
  89. 89.
    Oda, T., Kanai, Y., Oyama, T., Yoshiura, K., Shimoyama, Y., Birchmeier, W., et al. (1994). E-cadherin gene mutations in human gastric carcinoma cell lines. Proceedings of the National Academy of Sciences of the United States of America, 91, 1858–1862.PubMedGoogle Scholar
  90. 90.
    Tamura, G., Sakata, K., Nishizuka, S., Maesawa, C., Suzuki, Y., Iwaya, T., et al. (1996). Inactivation of the E-cadherin gene in primary gastric carcinomas and gastric carcinoma cell lines. Japanese Journal of Cancer Research, 87, 1153–1159.PubMedGoogle Scholar
  91. 91.
    Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., et al. (1998). E-cadherin germline mutations in familial gastric cancer. Nature, 392, 402–405.PubMedGoogle Scholar
  92. 92.
    Guilford, P. J., Hopkins, J. B., Grady, W. M., Markowitz, S. D., Willis, J., Lynch, H., et al. (1999). E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Human Mutation, 14, 249–255.PubMedGoogle Scholar
  93. 93.
    Graff, J. R., Gabrielson, E., Fujii, H., Baylin, S. B., & Herman, J. G. (2000). Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. Journal of Biological Chemistry, 275, 2727–2732.PubMedGoogle Scholar
  94. 94.
    Lynch, H. T., Grady, W., Lynch, J. F., Tsuchiya, K. D., Wiesner, G., & Markowitz, S. D. (2000). E-cadherin mutation-based genetic counseling and hereditary diffuse gastric carcinoma. Cancer Genet Cytogenet, 122, 1–6.PubMedGoogle Scholar
  95. 95.
    Caldeira, J. R., Prando, E. C., Quevedo, F. C., Neto, F. A., Rainho, C. A., & Rogatto, S. R. (2006). CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer, 6, 48.PubMedGoogle Scholar
  96. 96.
    Nass, S. J., Herman, J. G., Gabrielson, E., Iversen, P. W., Parl, F. F., Davidson, N. E., et al. (2000). Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Research, 60, 4346–4348.PubMedGoogle Scholar
  97. 97.
    Azarschab, P., Stembalska, A., Loncar, M. B., Pfister, M., Sasiadek, M. M., & Blin, N. (2003). Epigenetic control of E-cadherin (CDH1) by CpG methylation in metastasising laryngeal cancer. Oncology Reports, 10, 501–503.PubMedGoogle Scholar
  98. 98.
    Wheeler, J. M., Kim, H. C., Efstathiou, J. A., Ilyas, M., Mortensen, N. J., & Bodmer, W. F. (2001). Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut, 48, 367–371.PubMedGoogle Scholar
  99. 99.
    Vicovac, L., & Aplin, J. D. (1996). Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel), 156, 202–216.Google Scholar
  100. 100.
    Bloch-Zupan, A., Hunter, N., Manthey, A., & Gibbins, J. (2001). R-twist gene expression during rat palatogenesis. International Journal of Developmental Biology, 45, 397–404.PubMedGoogle Scholar
  101. 101.
    Selleck, M. A., & Bronner-Fraser, M. (2000). Avian neural crest cell fate decisions: a diffusible signal mediates induction of neural crest by the ectoderm. International Journal of Developmental Neuroscience, 18, 621–627.PubMedGoogle Scholar
  102. 102.
    Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Research, 6, 1–11.PubMedGoogle Scholar
  103. 103.
    Viebahn, C. (1995). Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anatomica, 154, 79–97.PubMedGoogle Scholar
  104. 104.
    Kim, K., Lu, Z., & Hay, E. D. (2002). Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biology International, 26, 463–476.PubMedGoogle Scholar
  105. 105.
    Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. Journal of Cell Biology, 172, 973–981.PubMedGoogle Scholar
  106. 106.
    Agiostratidou, G., Hulit, J., Phillips, G. R., & Hazan, R. B. (2007). Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. Journal of Mammary Gland Biology and Neoplasia, 12, 127–133.PubMedGoogle Scholar
  107. 107.
    Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMedGoogle Scholar
  108. 108.
    Morel, A. P., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE, 3, e2888.PubMedGoogle Scholar
  109. 109.
    Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedGoogle Scholar
  110. 110.
    Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415–428.PubMedGoogle Scholar
  111. 111.
    Lai, Z. C., Fortini, M. E., & Rubin, G. M. (1991). The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mechanisms of Development, 34, 123–134.PubMedGoogle Scholar
  112. 112.
    Lai, Z. C., Rushton, E., Bate, M., & Rubin, G. M. (1993). Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proceedings of the National Academy of Sciences of the United States of America, 90, 4122–4126.PubMedGoogle Scholar
  113. 113.
    Takagi, T., Moribe, H., Kondoh, H., & Higashi, Y. (1998). DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development, 125, 21–31.PubMedGoogle Scholar
  114. 114.
    Higashi, Y., Moribe, H., Takagi, T., Sekido, R., Kawakami, K., Kikutani, H., et al. (1997). Impairment of T cell development in deltaEF1 mutant mice. Journal of Experimental Medicine, 185, 1467–1479.PubMedGoogle Scholar
  115. 115.
    Liu, Y., El-Naggar, S., Darling, D. S., Higashi, Y., & Dean, D. C. (2008). Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development, 135, 579–588.PubMedGoogle Scholar
  116. 116.
    Genetta, T., Ruezinsky, D., & Kadesch, T. (1994). Displacement of an E-box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Molecular and Cellular Biology, 14, 6153–6163.PubMedGoogle Scholar
  117. 117.
    Williams, T. M., Moolten, D., Burlein, J., Romano, J., Bhaerman, R., Godillot, A., et al. (1991). Identification of a zinc finger protein that inhibits IL-2 gene expression. Science, 254, 1791–1794.PubMedGoogle Scholar
  118. 118.
    Kraus, R. J., Perrigoue, J. G., & Mertz, J. E. (2003). ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus. Journal of Virology, 77, 199–207.PubMedGoogle Scholar
  119. 119.
    Remacle, J. E., Kraft, H., Lerchner, W., Wuytens, G., Collart, C., Verschueren, K., et al. (1999). New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO Journal, 18, 5073–5084.PubMedGoogle Scholar
  120. 120.
    Gregoire, J. M., & Romeo, P. H. (1999). T-cell expression of the human GATA-3 gene is regulated by a non- lineage-specific silencer. Journal of Biological Chemistry, 274, 6567–6578.PubMedGoogle Scholar
  121. 121.
    Fontemaggi, G., Gurtner, A., Strano, S., Higashi, Y., Sacchi, A., Piaggio, G., et al. (2001). The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Molecular and Cellular Biology, 21, 8461–8470.PubMedGoogle Scholar
  122. 122.
    Murray, D., Precht, P., Balakir, R., & Horton Jr., W. E. (2000). The transcription factor deltaEF1 is inversely expressed with type II collagen mRNA and can repress Col2a1 promoter activity in transfected chondrocytes. Journal of Biological Chemistry, 275, 3610–3618.PubMedGoogle Scholar
  123. 123.
    Terraz, C., Toman, D., Delauche, M., Ronco, P., & Rossert, J. (2001). delta Ef1 binds to a far upstream sequence of the mouse pro-alpha 1(I) collagen gene and represses its expression in osteoblasts. Journal of Biological Chemistry, 276, 37011–37019.PubMedGoogle Scholar
  124. 124.
    Brabletz, T., Jung, A., Hlubek, F., Lohberg, C., Meiler, J., Suchy, U., et al. (1999). Negative regulation of CD4 expression in T cells by the transcriptional repressor ZEB. International Immunology, 11, 1701–1708.PubMedGoogle Scholar
  125. 125.
    Nishimura, G., Manabe, I., Tsushima, K., Fujiu, K., Oishi, Y., Imai, Y., et al. (2006). DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Developmental Cell, 11, 93–104.PubMedGoogle Scholar
  126. 126.
    Chamberlain, E. M., & Sanders, M. M. (1999). Identification of the novel player deltaEF1 in estrogen transcriptional cascades. Molecular Cellular Biology, 19, 3600–3606.Google Scholar
  127. 127.
    Lazarova, D. L., Bordonaro, M., & Sartorelli, A. C. (2001). Transcriptional regulation of the vitamin D(3) receptor gene by ZEB. Cell Growth and Differentiation, 12, 319–326.PubMedGoogle Scholar
  128. 128.
    Postigo, A. A. (2003). Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO Journal, 22, 2443–2452.PubMedGoogle Scholar
  129. 129.
    Postigo, A. A., Depp, J. L., Taylor, J. J., & Kroll, K. L. (2003). Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO Journal, 22, 2453–2462.PubMedGoogle Scholar
  130. 130.
    van Grunsven, L. A., Taelman, V., Michiels, C., Opdecamp, K., Huylebroeck, D., & Bellefroid, E. J. (2006). deltaEF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis. Developmental Dynamics, 235, 1491–1500.PubMedGoogle Scholar
  131. 131.
    Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283, 14910–14914.PubMedGoogle Scholar
  132. 132.
    Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10, 593–601.PubMedGoogle Scholar
  133. 133.
    Gilles, C., Polette, M., Birembaut, P., Brunner, N., & Thompson, E. W. (1997). Expression of c-ets-1 mRNA is associated with an invasive, EMT-derived phenotype in breast carcinoma cell lines. Clinical and Experimental Metastasis, 15, 519–526.PubMedGoogle Scholar
  134. 134.
    Rodrigo, I., Cato, A. C., & Cano, A. (1999). Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Experimental Cell Research, 248, 358–371.PubMedGoogle Scholar
  135. 135.
    Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Report, 9, 582–589.Google Scholar
  136. 136.
    Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S., & Nakshatri, H. (2007). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26, 711–724.PubMedGoogle Scholar
  137. 137.
    Irie, H. Y., Pearline, R. V., Grueneberg, D., Hsia, M., Ravichandran, P., Kothari, N., et al. (2005). Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. Journal of Cell Biology, 171, 1023–1034.PubMedGoogle Scholar
  138. 138.
    Kawada, M., Inoue, H., Masuda, T., & Ikeda, D. (2006). Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer. Cancer Research, 66, 4419–4425.PubMedGoogle Scholar
  139. 139.
    Miyamoto, S., Nakamura, M., Shitara, K., Nakamura, K., Ohki, Y., Ishii, G., et al. (2005). Blockade of paracrine supply of insulin-like growth factors using neutralizing antibodies suppresses the liver metastasis of human colorectal cancers. Clinical Cancer Research, 11, 3494–3502.PubMedGoogle Scholar
  140. 140.
    Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., Tighiouart, M., et al. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 68, 2479–2488.PubMedGoogle Scholar
  141. 141.
    Weber, K. L., Doucet, M., & Price, J. E. (2003). Renal cell carcinoma bone metastasis: epidermal growth factor receptor targeting. Clin Orthop Relat Res, 415, S86–94.Google Scholar
  142. 142.
    Verbeek, B. S., Adriaansen-Slot, S. S., Vroom, T. M., Beckers, T., & Rijksen, G. (1998). Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Letters, 425, 145–150.PubMedGoogle Scholar
  143. 143.
    Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4, 499–515.PubMedGoogle Scholar
  144. 144.
    Wang, F., Sloss, C., Zhang, X., Lee, S. W., & Cusack, J. C. (2007). Membrane-bound heparin-binding epidermal growth factor like growth factor regulates E-cadherin expression in pancreatic carcinoma cells. Cancer Research, 67, 8486–8493.PubMedGoogle Scholar
  145. 145.
    Yang, L., Amann, J. M., Kikuchi, T., Porta, R., Guix, M., Gonzalez, A., et al. (2007). Inhibition of epidermal growth factor receptor signaling elevates 15-hydroxyprostaglandin dehydrogenase in non-small-cell lung cancer. Cancer Research, 67, 5587–5593.PubMedGoogle Scholar
  146. 146.
    Richer, J. K., Jacobsen, B. M., Manning, N. G., Abel, M. G., Wolf, D. M., & Horwitz, K. B. (2002). Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. Journal of Biological Chemistry, 277, 5209–5218.PubMedGoogle Scholar
  147. 147.
    Dohadwala, M., Yang, S. C., Luo, J., Sharma, S., Batra, R. K., Huang, M., et al. (2006). Cyclooxygenase-2-dependent regulation of E-Cadherin: prostaglandin E2 induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Research, 66, 5338–5345.PubMedGoogle Scholar
  148. 148.
    Manavella, P. A., Roqueiro, G., Darling, D. S., & Cabanillas, A. M. (2007). The ZFHX1A gene is differentially autoregulated by its isoforms. Biochemical and Biophysical Research Communications, 360, 621–626.PubMedGoogle Scholar
  149. 149.
    Liu, Y., Costantino, M. E., Montoya-Durango, D., Higashi, Y., Darling, D. S., & Dean, D. C. (2007). The zinc finger transcription factor ZFHX1A is linked to cell proliferation by Rb-E2F1. Biochemical Journal, 408, 79–85.PubMedGoogle Scholar
  150. 150.
    Anose, B. M., LaGoo, L., & Schwendinger, J. (2008). Characterization of androgen regulation of ZEB-1 and PSA in 22RV1 prostate cancer cells. Advances in Experimental Medicine and Biology, 617, 541–546.PubMedGoogle Scholar
  151. 151.
    Krishnamachary, B., Zagzag, D., Nagasawa, H., Rainey, K., Okuyama, H., Baek, J. H., et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Research, 66, 2725–2731.PubMedGoogle Scholar
  152. 152.
    Singh, M., Spoelstra, N. S., Jean, A., Howe, E., Torkko, K. C., Clark, H. R., et al. (2008). ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Modern Pathology, 21, 912–923.PubMedGoogle Scholar
  153. 153.
    Spoelstra, N. S., Manning, N. G., Higashi, Y., Darling, D., Singh, M., Shroyer, K. R., et al. (2006). The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Research, 66, 3893–3902.PubMedGoogle Scholar
  154. 154.
    Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S., & Nakshatri, H. (2006). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26, 711–724.PubMedGoogle Scholar
  155. 155.
    Aigner, K., Descovich, L., Mikula, M., Sultan, A., Dampier, B., Bonne, S., et al. (2007). The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett, 581, 1617–1624.PubMedGoogle Scholar
  156. 156.
    Aigner, K., Dampier, B., Descovich, L., Mikula, M., Sultan, A., Schreiber, M., et al. (2007). The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene, 26, 6979–6988.PubMedGoogle Scholar
  157. 157.
    Kleer, C. G., Zhang, Y., Pan, Q., & Merajver, S. D. (2004). WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia, 6, 179–185.PubMedGoogle Scholar
  158. 158.
    Zhang, Y., Pan, Q., Zhong, H., Merajver, S. D., & Kleer, C. G. (2005). Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells. Breast Cancer Res, 7, R1080–1089.PubMedGoogle Scholar
  159. 159.
    Kleer, C. G., Zhang, Y., & Merajver, S. D. (2007). CCN6 (WISP3) as a new regulator of the epithelial phenotype in breast cancer. Cells Tissues Organs, 185, 95–99.PubMedGoogle Scholar
  160. 160.
    Ohira, T., Gemmill, R. M., Ferguson, K., Kusy, S., Roche, J., Brambilla, E., et al. (2003). WNT7a induces E-cadherin in lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 10429–10434.PubMedGoogle Scholar
  161. 161.
    Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes and Development, 22, 894–907.PubMedGoogle Scholar
  162. 162.
    Oving, I. M., & Clevers, H. C. (2002). Molecular causes of colon cancer. European Journal of Clinical Investigation, 32, 448–457.PubMedGoogle Scholar
  163. 163.
    Behrens, J. (2005). The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochemical Society Transactions, 33, 672–675.PubMedGoogle Scholar
  164. 164.
    Bienz, M., & Clevers, H. (2000). Linking colorectal cancer to Wnt signaling. Cell, 103, 311–320.PubMedGoogle Scholar
  165. 165.
    Hlubek, F., Spaderna, S., Schmalhofer, O., Jung, A., Kirchner, T., & Brabletz, T. (2007). Wnt/FZD signaling and colorectal cancer morphogenesis. Frontiers in Bioscience, 12, 458–470.PubMedGoogle Scholar
  166. 166.
    Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159–170.PubMedGoogle Scholar
  167. 167.
    de Santa Barbara, P., van den Brink, G. R., & Roberts, D. J. (2003). Development and differentiation of the intestinal epithelium. Cellular and Molecular Life Sciences, 60, 1322–1332.PubMedGoogle Scholar
  168. 168.
    Sancho, E., Batlle, E., & Clevers, H. (2003). Live and let die in the intestinal epithelium. Current Opinion in Cell Biology, 15, 763–770.PubMedGoogle Scholar
  169. 169.
    Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L., et al. (2001). Variable beta-catenin expression in colorectal cancer indicates a tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98, 10356–10361.PubMedGoogle Scholar
  170. 170.
    Brabletz, T., Jung, A., & Kirchner, T. (2002). Beta-catenin and the morphogenesis of colorectal cancer. Virchows Archiv, 441, 1–11.PubMedGoogle Scholar
  171. 171.
    Ueno, H., Mochizuki, H., Hatsuse, K., Hase, K., & Yamamoto, T. (2000). Indicators for treatment strategies of colorectal liver metastases. Annals of Surgery, 231, 59–66.PubMedGoogle Scholar
  172. 172.
    Hlubek, F., Jung, A., Kotzor, N., Kirchner, T., & Brabletz, T. (2001). Expression of the invasion factor laminin g2 in colorectal carcinomas is regulated by b-catenin. Cancer Research, 61, 8089–8093.PubMedGoogle Scholar
  173. 173.
    Mariadason, J. M., Bordonaro, M., Aslam, F., Shi, L., Kuraguchi, M., Velcich, A., et al. (2001). Down-regulation of beta-catenin TCF signaling is linked to colonic epithelial cell differentiation. Cancer Research, 61, 3465–3471.PubMedGoogle Scholar
  174. 174.
    Naishiro, Y., Yamada, T., Takaoka, A. S., Hayashi, R., Hasegawa, F., Imai, K., et al. (2001). Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of beta-catenin/T-cell factor 4-mediated gene transactivation. Cancer Research, 61, 2751–2758.PubMedGoogle Scholar
  175. 175.
    Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., & Kirchner, T. (2005). Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nature Reviews Cancer, 5, 744–749.PubMedGoogle Scholar
  176. 176.
    Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells [In Process Citation]. Nature, 398, 422–426.PubMedGoogle Scholar
  177. 177.
    Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D’Amico, M., Pestell, R., et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 5522–5527.PubMedGoogle Scholar
  178. 178.
    He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., et al. (1998). Identification of c-MYC as a target of the APC pathway [see comments]. Science, 281, 1509–1512.PubMedGoogle Scholar
  179. 179.
    Zhang, T., Otevrel, T., Gao, Z., Ehrlich, S. M., Fields, J. Z., & Boman, B. M. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Research, 61, 8664–8667.PubMedGoogle Scholar
  180. 180.
    Yamada, T., Takaoka, A. S., Naishiro, Y., Hayashi, R., Maruyama, K., Maesawa, C., et al. (2000). Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Research, 60, 4761–4766.PubMedGoogle Scholar
  181. 181.
    Fodde, R., & Brabletz, T. (2007). Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Current Opinion in Cell Biology, 19, 150–158.PubMedGoogle Scholar
  182. 182.
    Stemmer, V., de Craene, B., Berx, G., & Behrens, J. (2008). Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene, 27, 5075–5080.PubMedGoogle Scholar
  183. 183.
    Roy, H. K., Smyrk, T. C., Koetsier, J., Victor, T. A., & Wali, R. K. (2005). The transcriptional repressor SNAIL is overexpressed in human colon cancer. Digestive Diseases and Sciences, 50, 42–46.PubMedGoogle Scholar
  184. 184.
    Conacci-Sorrell, M., Simcha, I., Ben-Yedidia, T., Blechman, J., Savagner, P., & Ben-Ze’ev, A. (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. Journal of Cell Biology, 163, 847–857.PubMedGoogle Scholar
  185. 185.
    Shioiri, M., Shida, T., Koda, K., Oda, K., Seike, K., Nishimura, M., et al. (2006). Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. British Journal of Cancer, 94, 1816–1822.PubMedGoogle Scholar
  186. 186.
    Peinado, H., Portillo, F., & Cano, A. (2004). Transcriptional regulation of cadherins during development and carcinogenesis. International Journal of Developmental Biology, 48, 365–375.PubMedGoogle Scholar
  187. 187.
    Hlubek, F., Brabletz, T., Budczies, J., Pfeiffer, S., Jung, A., & Kirchner, T. (2007). Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. International Journal of Cancer, 121, 1941–1948.Google Scholar
  188. 188.
    Spaderna, S., Schmalhofer, O., Hlubek, F., Berx, G., Eger, A., Merkel, S., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830–840.PubMedGoogle Scholar
  189. 189.
    Bates, R. C., & Mercurio, A. M. (2003). Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Molecular Biology of the Cell, 14, 1790–1800.PubMedGoogle Scholar
  190. 190.
    Jungck, M., Grunhage, F., Spengler, U., Dernac, A., Mathiak, M., Caspari, R., et al. (2004). E-cadherin expression is homogeneously reduced in adenoma from patients with familial adenomatous polyposis: an immunohistochemical study of E-cadherin, beta-catenin and cyclooxygenase-2 expression. Int J Colorectal Dis, 19, 438–445.PubMedGoogle Scholar
  191. 191.
    Dohadwala, M., Luo, J., Zhu, L., Lin, Y., Dougherty, G. J., Sharma, S., et al. (2001). Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. Journal of Biological Chemistry, 276, 20809–20812.PubMedGoogle Scholar
  192. 192.
    Dohadwala, M., Batra, R. K., Luo, J., Lin, Y., Krysan, K., Pold, M., et al. (2002). Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. Journal of Biological Chemistry, 277, 50828–50833.PubMedGoogle Scholar
  193. 193.
    Tsujii, M., Kawano, S., & DuBois, R. N. (1997). Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 94, 3336–3340.PubMedGoogle Scholar
  194. 194.
    Longo, K. A., Kennell, J. A., Ochocinska, M. J., Ross, S. E., Wright, W. S., & MacDougald, O. A. (2002). Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. Journal of Biological Chemistry, 277, 38239–38244.PubMedGoogle Scholar
  195. 195.
    Dannenberg, A. J., & Zakim, D. (1999). Chemoprevention of colorectal cancer through inhibition of cyclooxygenase-2. Seminars in Oncology, 26, 499–504.PubMedGoogle Scholar
  196. 196.
    Shao, J., Jung, C., Liu, C., & Sheng, H. (2005). Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. Journal of Biological Chemistry, 280, 26565–26572.PubMedGoogle Scholar
  197. 197.
    Jin, T., George Fantus, I., & Sun, J. (2008). Wnt and beyond Wnt: Multiple mechanisms control the transcriptional property of beta-catenin. Cellular Signalling, 20, 1697–1704.PubMedGoogle Scholar
  198. 198.
    Spaderna, S., Schmalhofer, O., Wahlbuhl, M., Dimmler, A., Bauer, K., Sultan, A., et al. (2008). The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Research, 68, 537–544.PubMedGoogle Scholar
  199. 199.
    Barsky, S. H., Siegal, G. P., Jannotta, F., & Liotta, L. A. (1983). Loss of basement membrane components by invasive tumors but not by their benign counterparts. Laboratory Investigation, 49, 140–147.PubMedGoogle Scholar
  200. 200.
    Wodarz, A., & Nathke, I. (2007). Cell polarity in development and cancer. Nat Cell Biol, 9, 1016–1024.PubMedGoogle Scholar
  201. 201.
    Marazuela, M., & Alonso, M. A. (2004). Expression of MAL and MAL2, two elements of the protein machinery for raft-mediated transport, in normal and neoplastic human tissue. Histology and Histopathology, 19, 925–933.PubMedGoogle Scholar
  202. 202.
    Woodhouse, E., Hersperger, E., & Shearn, A. (1998). Growth, metastasis, and invasiveness of Drosophila tumors caused by mutations in specific tumor suppressor genes. Development Genes and Evolution, 207, 542–550.PubMedGoogle Scholar
  203. 203.
    Baskerville, S., & Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 11, 241–247.PubMedGoogle Scholar
  204. 204.
    Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.PubMedGoogle Scholar
  205. 205.
    Cano, A., & Nieto, M. A. (2008). Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends in Cell Biology, 18, 357–359.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Otto Schmalhofer
    • 1
  • Simone Brabletz
    • 1
  • Thomas Brabletz
    • 1
  1. 1.Department of Visceral SurgeryUniversity of FreiburgFreiburgGermany

Personalised recommendations