Cancer and Metastasis Reviews

, Volume 28, Issue 1–2, pp 35–49

Signal transduction by focal adhesion kinase in cancer

Article

Abstract

Cellular interactions with extracellular matrix play essential roles in tumor initiation, progression and metastasis. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase identified as a key mediator of signaling by integrins, a major family of cell surface receptors for extracellular matrix, as well as other receptors in both normal and cancer cells. FAK is activated by integrins through disruption of an auto-inhibitory intra-molecular interaction between its kinase domain and the amino terminal FERM domain. The activated FAK forms a binary complex with Src family kinases which can phosphorylate other substrates and trigger multiple intracellular signaling pathways to regulate various cellular functions. Subcellular localization of FAK in focal adhesions is essential for FAK signaling, which is another distinguishing feature of the kinase. Integrin-FAK signaling has been shown to activate a number of signaling pathways through phosphorylation and protein-protein interactions to promote tumorigenesis. FAK also plays a prominent role in tumor progression and metastasis through its regulation of both cancer cells and their microenvironments including cancer cell migration, invasion, epithelial to mesenchymal transition, and angiogenesis. More recently, a role for FAK in tumor initiation and progression has been demonstrated directly using xenograft as well as conditional knockout mouse models. In agreement with these experimental data, overexpression and activation of FAK have been found in a variety of human cancers. A number of small molecule inhibitors for FAK have been developed and in various phases of testing for cancer treatments. Overall, the intensive research on FAK signaling in cancer have yielded a wealth of information on this pivotal kinase and these and future studies are leading to potentially novel therapies for cancer.

Keywords

FAK Tumorigenesis Metastasis Mouse models 

References

  1. 1.
    Hynes, R. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.PubMedGoogle Scholar
  2. 2.
    Golden, A., Brugge, J. S., & Shattil, S. J. (1990). Role of platelet membrane glycoprotein IIb-IIIa in agonist-induced tyrosine phosphorylation of platelet proteins. Journal of Cell Biology, 111, 3117–3127.PubMedGoogle Scholar
  3. 3.
    Ferrell Jr., J. E., & Martin, G. S. (1989). Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb-IIIa in platelets. Proceedings of the National Academy of Sciences of the United States of America, 86, 2234–2238.PubMedGoogle Scholar
  4. 4.
    Kornberg, L. J., Earp, H. S., Turner, C. E., Prockop, C., & Juliano, R. L. (1991). Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins. Proceedings of the National Academy of Sciences of the United States of America, 88, 8392–8396.PubMedGoogle Scholar
  5. 5.
    Guan, J. L., Trevithick, J. E., & Hynes, R. O. (1991). Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regulation, 2, 951–964.PubMedGoogle Scholar
  6. 6.
    Kanner, S. B., Reynolds, A. B., Vines, R. R., & Parsons, J. T. (1990). Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proceedings of the National Academy of Sciences of the United States of America, 87, 3328–3332.PubMedGoogle Scholar
  7. 7.
    Schaller, M. D., Borgman, C. A., Cobb, B. S., Vines, R. R., Reynolds, A. B., & Parsons, J. T. (1992). pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 89, 5192–5196.PubMedGoogle Scholar
  8. 8.
    Guan, J. L., & Shalloway, D. (1992). Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature, 358, 690–692.PubMedGoogle Scholar
  9. 9.
    Parsons, J. T. (2003). Focal adhesion kinase: the first ten years. Journal of Cell Science, 116, 1409–1416.PubMedGoogle Scholar
  10. 10.
    Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516–523.PubMedGoogle Scholar
  11. 11.
    Fiedorek Jr., F. T., & Kay, E. S. (1995). Mapping of the focal adhesion kinase (Fadk) gene to mouse chromosome 15 and human chromosome 8. Mammalian Genome, 6, 123–126.PubMedGoogle Scholar
  12. 12.
    Whitney, G. S., Chan, P. Y., Blake, J., Cosand, W. L., Neubauer, M. G., Aruffo, A., et al. (1993). Human T and B lymphocytes express a structurally conserved focal adhesion kinase, pp125FAK. DNA and Cell Biology, 12, 823–830.PubMedCrossRefGoogle Scholar
  13. 13.
    Lietha, D., Cai, X., Ceccarelli, D. F., Li, Y., Schaller, M. D., & Eck, M. J. (2007). Structural basis for the autoinhibition of focal adhesion kinase. Cell, 129, 1177–1187.PubMedGoogle Scholar
  14. 14.
    Dunty, J. M., Gabarra-Niecko, V., King, M. L., Ceccarelli, D. F., Eck, M. J., & Schaller, M. D. (2004). FERM domain interaction promotes FAK signaling. Molecular and Cellular Biology, 24, 5353–5368.PubMedGoogle Scholar
  15. 15.
    Cooper, L. A., Shen, T. L., & Guan, J. L. (2003). Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Molecular and Cellular Biology, 23, 8030–8041.PubMedGoogle Scholar
  16. 16.
    Cohen, L. A., & Guan, J. L. (2005). Residues within the first subdomain of the FERM-like domain in focal adhesion kinase are important in its regulation. Journal of Biological Chemistry, 280, 8197–8207.PubMedGoogle Scholar
  17. 17.
    Cai, X., Lietha, D., Ceccarelli, D. F., Karginov, A. V., Rajfur, Z., Jacobson, K., et al. (2008). Spatial and temporal regulation of focal adhesion kinase activity in living cells. Molecular and Cellular Biology, 28, 201–214.PubMedGoogle Scholar
  18. 18.
    Sieg, D. J., Hauck, C. R., Ilic, D., Klingbeil, C. K., Schaefer, E., Damsky, C. H., et al. (2000). FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biology, 2, 249–256.PubMedGoogle Scholar
  19. 19.
    Cary, L. A., & Guan, J. L. (1999). Focal adhesion kinase in integrin-mediated signaling. Frontiers in Bioscience, 4, D102–113.PubMedGoogle Scholar
  20. 20.
    Schaller, M. D., Hildebrand, J. D., Shannon, J. D., Fox, J. W., Vines, R. R., & Parsons, J. T. (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Molecular and Cellular Biology, 14, 1680–1688.PubMedGoogle Scholar
  21. 21.
    Xing, Z., Chen, H. C., Nowlen, J. K., Taylor, S. J., Shalloway, D., & Guan, J. L. (1994). Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain. Molecular Biology of the Cell, 5, 413–421.PubMedGoogle Scholar
  22. 22.
    Zachary, I., Sinnett-Smith, J., & Rozengurt, E. (1992). Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. Identification of a novel tyrosine kinase as a major substrate. Journal of Biological Chemistry, 267, 19031–19034.PubMedGoogle Scholar
  23. 23.
    Frisch, S. M., Vuori, K., Ruoslahti, E., & Chan-Hui, P. Y. (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. Journal of Cell Biology, 134, 793–799.PubMedGoogle Scholar
  24. 24.
    Chan, P. Y., Kanner, S. B., Whitney, G., & Aruffo, A. (1994). A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to pp125FAK. Journal of Biological Chemistry, 269, 20567–20574.PubMedGoogle Scholar
  25. 25.
    Hungerford, J. E., Compton, M. T., Matter, M. L., Hoffstrom, B. G., & Otey, C. A. (1996). Inhibition of pp125FAK in cultured fibroblasts results in apoptosis. Journal of Cell Biology, 135, 1383–1390.PubMedGoogle Scholar
  26. 26.
    Xu, L. H., Owens, L. V., Sturge, G. C., Yang, X., Liu, E. T., Craven, R. J., et al. (1996). Attenuation of the expression of the focal adhesion kinase induces apoptosis in tumor cells. Cell Growth & Differentiation, 7, 413–418.Google Scholar
  27. 27.
    Ilic, D., Almeida, E. A., Schlaepfer, D. D., Dazin, P., Aizawa, S., & Damsky, C. H. (1998). Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. Journal of Cell Biology, 143, 547–560.PubMedGoogle Scholar
  28. 28.
    Chan, P. C., Lai, J. F., Cheng, C. H., Tang, M. J., Chiu, C. C., & Chen, H. C. (1999). Suppression of ultraviolet irradiation-induced apoptosis by overexpression of focal adhesion kinase in Madin-Darby canine kidney cells. Journal of Biological Chemistry, 274, 26901–26906.PubMedGoogle Scholar
  29. 29.
    Sonoda, Y., Matsumoto, Y., Funakoshi, M., Yamamoto, D., Hanks, S. K., & Kasahara, T. (2000). Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60. Journal of Biological Chemistry, 275, 16309–16315.PubMedGoogle Scholar
  30. 30.
    Reiske, H. R., Kao, S. C., Cary, L. A., Guan, J. L., Lai, J. F., & Chen, H. C. (1999). Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration. Journal of Biological Chemistry, 274, 12361–1236.PubMedGoogle Scholar
  31. 31.
    Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., & Mills, G. B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Reviews. Drug discovery, 4, 988–1004.PubMedGoogle Scholar
  32. 32.
    Luo, J., Manning, B. D., & Cantley, L. C. (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell, 4, 257–262.PubMedGoogle Scholar
  33. 33.
    Kurenova, E., Xu, L. H., Yang, X., Baldwin Jr., A. S., Craven, R. J., Hanks, S. K., et al. (2004). Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein. Molecular and Cellular Biology, 24, 4361–4371.PubMedGoogle Scholar
  34. 34.
    Lim, S. T., Chen, X. L., Lim, Y., Hanson, D. A., Vo, T. T., Howerton, K., et al. (2008). Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Molecular Cell, 29, 9–22.PubMedGoogle Scholar
  35. 35.
    Gilmore, A. P., & Romer, L. H. (1996). Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Molecular Biology of the Cell, 7, 1209–1224.PubMedGoogle Scholar
  36. 36.
    Sechler, J. L., & Schwarzbauer, J. E. (1998). Control of cell cycle progression by fibronectin matrix architecture. Journal of Biological Chemistry, 273, 25533–25536.PubMedGoogle Scholar
  37. 37.
    Zhao, J. H., Reiske, H., & Guan, J. L. (1998). Regulation of the cell cycle by focal adhesion kinase. Journal of Cell Biology, 143, 1997–2008.PubMedGoogle Scholar
  38. 38.
    Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., et al. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377, 539–544.PubMedGoogle Scholar
  39. 39.
    Weis, S. M., Lim, S. T., Lutu-Fuga, K. M., Barnes, L. A., Chen, X. L., Gothert, J. R., et al. (2008). Compensatory role for Pyk2 during angiogenesis in adult mice lacking endothelial cell FAK. Journal of Cell Biology, 181, 43–50.PubMedGoogle Scholar
  40. 40.
    Shen, T. L., Park, A. Y., Alcaraz, A., Peng, X., Jang, I., Koni, P., et al. (2005). Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. Journal of Cell Biology, 169, 941–952.PubMedGoogle Scholar
  41. 41.
    Schlaepfer, D. D., Hanks, S. K., Hunter, T., & van der Geer, P. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 372, 786–791.PubMedGoogle Scholar
  42. 42.
    Schlaepfer, D. D., Jones, K. C., & Hunter, T. (1998). Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src—and focal adhesion kinase-initiated tyrosine phosphorylation events. Molecular and Cellular Biology, 18, 2571–2585.PubMedGoogle Scholar
  43. 43.
    Zhao, J., Pestell, R., & Guan, J. L. (2001). Transcriptional activation of cyclin D1 promoter by FAK contributes to cell cycle progression. Molecular Biology of the Cell, 12, 4066–4077.PubMedGoogle Scholar
  44. 44.
    Oktay, M., Wary, K. K., Dans, M., Birge, R. B., & Giancotti, F. G. (1999). Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. Journal of Cell Biology, 145, 1461–1469.PubMedGoogle Scholar
  45. 45.
    Zhao, J., Bian, Z. C., Yee, K., Chen, B. P., Chien, S., & Guan, J. L. (2003). Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Molecular Cell, 11, 1503–1515.PubMedGoogle Scholar
  46. 46.
    Ding, Q., Grammer, J. R., Nelson, M. A., Guan, J. L., Stewart Jr., J. E., & Gladson, C. L. (2005). p27Kip1 and cyclin D1 are necessary for focal adhesion kinase regulation of cell cycle progression in glioblastoma cells propagated in vitro and in vivo in the scid mouse brain. Journal of Biological Chemistry, 280, 6802–6815.PubMedGoogle Scholar
  47. 47.
    Bond, M., Sala-Newby, G. B., & Newby, A. C. (2004). Focal adhesion kinase (FAK)-dependent regulation of S-phase kinase-associated protein-2 (Skp-2) stability. A novel mechanism regulating smooth muscle cell proliferation. Journal of Biological Chemistry, 279, 37304–37310.PubMedGoogle Scholar
  48. 48.
    Carrano, A. C., Eytan, E., Hershko, A., & Pagano, M. (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biology, 1, 193–199.PubMedGoogle Scholar
  49. 49.
    Bryant, P., Zheng, Q., & Pumiglia, K. (2006) Focal adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1 through Skp2-dependent and independent mechanisms. Molecular and Cellular Biology, 26, 4201–4213.PubMedGoogle Scholar
  50. 50.
    Romer, L. H., McLean, N., Turner, C. E., & Burridge, K. (1994). Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells. Molecular Biology of the Cell, 5, 349–361.PubMedGoogle Scholar
  51. 51.
    Gates, R. E., King Jr., L. E., Hanks, S. K., & Nanney, L. B. (1994). Potential role for focal adhesion kinase in migrating and proliferating keratinocytes near epidermal wounds and in culture. Cell Growth & Differentiation, 5, 891–899.Google Scholar
  52. 52.
    Cary, L. A., Chang, J. F., & Guan, J. L. (1996). Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. Journal of Cell Science, 109, 1787–1794.PubMedGoogle Scholar
  53. 53.
    Sieg, D. J., Hauck, C. R., & Schlaepfer, D. D. (1999). Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. Journal of Cell Science, 112, 2677–2691.PubMedGoogle Scholar
  54. 54.
    Owen, J. D., Ruest, P. J., Fry, D. W., & Hanks, S. K. (1999). Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto—and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Molecular and Cellular Biology, 19, 4806–4818.PubMedGoogle Scholar
  55. 55.
    Cary, L. A., Han, D. C., Polte, T. R., Hanks, S. K., & Guan, J. L. (1998). Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. Journal of Cell Biology, 140, 211–221.PubMedGoogle Scholar
  56. 56.
    Klemke, R. L., Leng, J., Molander, R., Brooks, P. C., Vuori, K., & Cheresh, D. A. (1998). CAS/Crk coupling serves as a "molecular switch" for induction of cell migration. Journal of Cell Biology, 140, 961–972.PubMedGoogle Scholar
  57. 57.
    Richardson, A., & Parsons, T. (1996). A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK [published erratum appears in Nature 1996 Jun 27;381(6585):810]. Nature, 380, 538–540.PubMedGoogle Scholar
  58. 58.
    Cho, S. Y., & Klemke, R. L. (2000). Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. Journal of Cell Biology, 149, 223–236.PubMedGoogle Scholar
  59. 59.
    Cheresh, D. A., Leng, J., & Klemke, R. L. (1999). Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. Journal of Cell Biology, 146, 1107–1116.PubMedGoogle Scholar
  60. 60.
    Turner, C. E. (2000). Paxillin interactions. Journal of Cell Science, 113, 4139–4140.PubMedGoogle Scholar
  61. 61.
    Turner, C. E., Brown, M. C., Perrotta, J. A., Riedy, M. C., Nikolopoulos, S. N., McDonald, A. R., et al. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. Journal of Cell Biology, 145, 851–863.PubMedGoogle Scholar
  62. 62.
    West, K. A., Zhang, H., Brown, M. C., Nikolopoulos, S. N., Riedy, M. C., Horwitz, A. F., et al. (2001). The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). Journal of Cell Biology, 154, 161–176.PubMedGoogle Scholar
  63. 63.
    Han, D. C., & Guan, J. L. (1999). Association of focal adhesion kinase with Grb7 and its role in cell migration. Journal of Biological Chemistry, 274, 24425–24430.PubMedGoogle Scholar
  64. 64.
    Han, D. C., Shen, T. L., & Guan, J. L. (2000). Role of Grb7 targeting to focal contacts and its phosphorylation by focal adhesion kinase in regulation of cell migration. Journal of Biological Chemistry, 275, 28911–28917.PubMedGoogle Scholar
  65. 65.
    Shen, T. L., Han, D. C., & Guan, J. L. (2002). Association of Grb7 with phosphoinositides and its role in the regulation of cell migration. Journal of Biological Chemistry, 277, 29069–29077.PubMedGoogle Scholar
  66. 66.
    Ren, X. D., Kiosses, W. B., Sieg, D. J., Otey, C. A., Schlaepfer, D. D., & Schwartz, M. A. (2000). Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. Journal of Cell Science, 113, 3673–3678.PubMedGoogle Scholar
  67. 67.
    Hsia, D. A., Mitra, S. K., Hauck, C. R., Streblow, D. N., Nelson, J. A., Ilic, D., et al. (2003). Differential regulation of cell motility and invasion by FAK. Journal of Cell Biology, 160, 753–767.PubMedGoogle Scholar
  68. 68.
    Chen, B. H., Tzen, J. T., Bresnick, A. R., & Chen, H. C. (2002). Roles of Rho-associated kinase and myosin light chain kinase in morphological and migratory defects of focal adhesion kinase-null cells. Journal of Biological Chemistry, 277, 33857–33863.PubMedGoogle Scholar
  69. 69.
    Zhai, J., Lin, H., Nie, Z., Wu, J., Canete-Soler, R., Schlaepfer, W. W., et al. (2003). Direct interaction of focal adhesion kinase with p190RhoGEF. Journal of Biological Chemistry, 278, 24865–24873.PubMedGoogle Scholar
  70. 70.
    Hildebrand, J. D., Taylor, J. M., & Parsons, J. T. (1996). An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Molecular and Cellular Biology, 16, 3169–3178.PubMedGoogle Scholar
  71. 71.
    Liu, Y., Loijens, J. C., Martin, K. H., Karginov, A. V., & Parsons, J. T. (2002). The association of ASAP1, an ADP ribosylation factor-GTPase activating protein, with focal adhesion kinase contributes to the process of focal adhesion assembly. Molecular Biology of the Cell, 13, 2147–2156.PubMedGoogle Scholar
  72. 72.
    Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T., & Guan, J. L. (2004). Focal adhesion kinase regulation of N-WASP subcellular localization and function. Journal of Biological Chemistry, 279, 9565–9576.PubMedGoogle Scholar
  73. 73.
    Hauck, C. R., Hsia, D. A., Puente, X. S., Cheresh, D. A., & Schlaepfer, D. D. (2002). FRNK blocks v-Src-stimulated invasion and experimental metastases without effects on cell motility or growth. Embo Journal, 21, 6289–6302.PubMedGoogle Scholar
  74. 74.
    Shibata, K., Kikkawa, F., Nawa, A., Thant, A. A., Naruse, K., Mizutani, S., et al. (1998). Both focal adhesion kinase and c-Ras are required for the enhanced matrix metalloproteinase 9 secretion by fibronectin in ovarian cancer cells. Cancer Research, 58, 900–903.PubMedGoogle Scholar
  75. 75.
    Wu, X., Gan, B., Yoo, Y., & Guan, J. L. (2005). FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Developmental Cell, 9, 185–196.PubMedGoogle Scholar
  76. 76.
    Irby, R. B., & Yeatman, T. J. (2002). Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Research, 62, 2669–2674.PubMedGoogle Scholar
  77. 77.
    Avizienyte, E., & Frame, M. C. (2005). Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Current Opinion in Cell Biology, 17, 542–547.PubMedGoogle Scholar
  78. 78.
    McLean, G. W., Carragher, N. O., Avizienyte, E., Evans, J., Brunton, V. G., & Frame, M. C. (2005). The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nature Reviews. Cancer, 5, 505–515.PubMedGoogle Scholar
  79. 79.
    Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews. Molecular and Cellular Biology, 7, 131–142.Google Scholar
  80. 80.
    Avizienyte, E., Wyke, A. W., Jones, R. J., McLean, G. W., Westhoff, M. A., Brunton, V. G., et al. (2002). Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nature Cell Biology, 4, 632–638.PubMedGoogle Scholar
  81. 81.
    Bailey, K. M., & Liu, J. (2008). Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. Journal of Biological Chemistry, 283, 13714–13724.PubMedGoogle Scholar
  82. 82.
    Cicchini, C., Laudadio, I., Citarella, F., Corazzari, M., Steindler, C., Conigliaro, A., et al. (2008). TGFbeta-induced EMT requires focal adhesion kinase (FAK) signaling. Experimental Cell Research, 314, 143–152.PubMedGoogle Scholar
  83. 83.
    Nakamura, K., Yano, H., Schaefer, E., & Sabe, H. (2001). Different modes and qualities of tyrosine phosphorylation of Fak and Pyk2 during epithelial-mesenchymal transdifferentiation and cell migration: analysis of specific phosphorylation events using site-directed antibodies. Oncogene, 20, 2626–2635.PubMedGoogle Scholar
  84. 84.
    Prunier, C., & Howe, P. H. (2005). Disabled-2 (Dab2) is required for transforming growth factor beta-induced epithelial to mesenchymal transition (EMT). Journal of Biological Chemistry, 280, 17540–17548.PubMedGoogle Scholar
  85. 85.
    Strizzi, L., Bianco, C., Normanno, N., Seno, M., Wechselberger, C., Wallace-Jones, B., et al. (2004). Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice. Journal of Cellular Physiology, 201, 266–276.PubMedGoogle Scholar
  86. 86.
    Rodrigo, J. P., Dominguez, F., Suarez, V., Canel, M., Secades, P., & Chiara, M. D. (2007). Focal adhesion kinase and E-cadherin as markers for nodal metastasis in laryngeal cancer. Archives of Otolaryngology-head & Neck Surgery, 133, 145–150.Google Scholar
  87. 87.
    Wang, X., Zheng, M., Liu, G., Xia, W., McKeown-Longo, P. J., Hung, M. C., et al. (2007). Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Research, 67, 7184–7193.PubMedGoogle Scholar
  88. 88.
    Wang, X., Urvalek, A. M., Liu, J., & Zhao, J. (2008). Activation of KLF8 transcription by focal adhesion kinase in human ovarian epithelial and cancer cells. Journal of Biological Chemistry, 283, 13934–13942.PubMedGoogle Scholar
  89. 89.
    Wang, X., & Zhao, J. (2007). KLF8 transcription factor participates in oncogenic transformation. Oncogene, 26, 456–461.PubMedGoogle Scholar
  90. 90.
    Polte, T. R., Naftilan, A. J., & Hanks, S. K. (1994). Focal adhesion kinase is abundant in developing blood vessels and elevation of its phosphotyrosine content in vascular smooth muscle cells is a rapid response to angiotensin II. Journal of Cellular Biochemistry, 55, 106–119.PubMedGoogle Scholar
  91. 91.
    Qi, J. H., & Claesson-Welsh, L. (2001). VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Experimental Cell Research, 263, 173–182.PubMedGoogle Scholar
  92. 92.
    Kim, I., Kim, H. G., Moon, S. O., Chae, S. W., So, J. N., Koh, K. N., et al. (2000). Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circulation Research, 86, 952–959.PubMedGoogle Scholar
  93. 93.
    Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., et al. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79, 1157–1164.PubMedGoogle Scholar
  94. 94.
    Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., & Cheresh, D. A. (1995). Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. Journal of Clinical Investigation, 96, 1815–1822.PubMedGoogle Scholar
  95. 95.
    Eliceiri, B. P., & Cheresh, D. A. (1999). The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. Journal of Clinical Investigation, 103, 1227–1230.PubMedGoogle Scholar
  96. 96.
    Eliceiri, B. P., Puente, X. S., Hood, J. D., Stupack, D. G., Schlaepfer, D. D., Huang, X. Z., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. Journal of Cell Biology, 157, 149–160.PubMedGoogle Scholar
  97. 97.
    Ilic, D., Kovacic, B., McDonagh, S., Jin, F., Baumbusch, C., Gardner, D. G., et al. (2003). Focal adhesion kinase is required for blood vessel morphogenesis. Circulation Research, 92, 300–307.PubMedGoogle Scholar
  98. 98.
    Braren, R., Hu, H., Kim, Y. H., Beggs, H. E., Reichardt, L. F., & Wang, R. (2006). Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation. Journal of Cell Biology, 172, 151–162.PubMedGoogle Scholar
  99. 99.
    Peng, X., Ueda, H., Zhou, H., Stokol, T., Shen, T. L., Alcaraz, A., et al. (2004). Overexpression of focal adhesion kinase in vascular endothelial cells promotes angiogenesis in transgenic mice. Cardiovascular Research, 64, 421–430.PubMedGoogle Scholar
  100. 100.
    Abdel-Ghany, M., Cheng, H. C., Elble, R. C., & Pauli, B. U. (2002). Focal adhesion kinase activated by beta(4) integrin ligation to mCLCA1 mediates early metastatic growth. Journal of Biological Chemistry, 277, 34391–34400.PubMedGoogle Scholar
  101. 101.
    Benlimame, N., He, Q., Jie, S., Xiao, D., Xu, Y. J., Loignon, M., et al. (2005). FAK signaling is critical for ErbB-2/ErbB-3 receptor cooperation for oncogenic transformation and invasion. Journal of Cell Biology, 171, 505–516.PubMedGoogle Scholar
  102. 102.
    van Nimwegen, M. J., Verkoeijen, S., van Buren, L., Burg, D., & van de Water, B. (2005). Requirement for focal adhesion kinase in the early phase of mammary adenocarcinoma lung metastasis formation. Cancer Research, 65, 4698–4706.PubMedGoogle Scholar
  103. 103.
    Mitra, S. K., Lim, S. T., Chi, A., & Schlaepfer, D. D. (2006). Intrinsic focal adhesion kinase activity controls orthotopic breast carcinoma metastasis via the regulation of urokinase plasminogen activator expression in a syngeneic tumor model. Oncogene, 25, 4429–4440.PubMedGoogle Scholar
  104. 104.
    Wang, D., Grammer, J. R., Cobbs, C. S., Stewart Jr., J. E., Liu, Z., Rhoden, R., et al. (2000). p125 focal adhesion kinase promotes malignant astrocytoma cell proliferation in vivo. Journal of Cell Science, 113, 4221–4230.PubMedGoogle Scholar
  105. 105.
    McLean, G. W., Brown, K., Arbuckle, M. I., Wyke, A. W., Pikkarainen, T., Ruoslahti, E., et al. (2001). Decreased focal adhesion kinase suppresses papilloma formation during experimental mouse skin carcinogenesis. Cancer Research, 61, 8385–8389.PubMedGoogle Scholar
  106. 106.
    McLean, G. W., Komiyama, N. H., Serrels, B., Asano, H., Reynolds, L., Conti, F., et al. (2004). Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes & Development, 18, 2998–3003.Google Scholar
  107. 107.
    Lahlou, H., Sanguin-Gendreau, V., Zuo, D., Cardiff, R. D., McLean, G. W., Frame, M. C., et al. (2007). Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 104, 20302–20307.PubMedGoogle Scholar
  108. 108.
    Owens, L. V., Xu, L., Craven, R. J., Dent, G. A., Weiner, T. M., Kornberg, L., et al. (1995). Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Research, 55, 2752–2755.PubMedGoogle Scholar
  109. 109.
    Owens, L. V., Xu, L., Dent, G. A., Yang, X., Sturge, G. C., Craven, R. J., et al. (1996). Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. Annals of Surgical Oncology, 3, 100–105.PubMedGoogle Scholar
  110. 110.
    Weiner, T. M., Liu, E. T., Craven, R. J., & Cance, W. G. (1993). Expression of focal adhesion kinase gene and invasive cancer. Lancet, 342, 1024–1025.PubMedGoogle Scholar
  111. 111.
    Agochiya, M., Brunton, V. G., Owens, D. W., Parkinson, E. K., Paraskeva, C., Keith, W. N., et al. (1999). Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene, 18, 5646–5653.PubMedGoogle Scholar
  112. 112.
    Tremblay, L., Hauck, W., Aprikian, A. G., Begin, L. R., Chapdelaine, A., & Chevalier, S. (1996). Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. International Journal of Cancer, 68, 164–171.Google Scholar
  113. 113.
    Zagzag, D., Friedlander, D. R., Margolis, B., Grumet, M., Semenza, G. L., Zhong, H., et al. (2000). Molecular events implicated in brain tumor angiogenesis and invasion. Pediatric Neurosurgery, 33, 49–55.PubMedGoogle Scholar
  114. 114.
    Wang, J. F., Park, I. W., & Groopman, J. E. (2000). Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood, 95, 2505–2513.PubMedGoogle Scholar
  115. 115.
    Gutenberg, A., Bruck, W., Buchfelder, M., & Ludwig, H. C. (2004). Expression of tyrosine kinases FAK and Pyk2 in 331 human astrocytomas. Acta Neuropathologica, 108, 224–230.PubMedGoogle Scholar
  116. 116.
    Hecker, T. P., Grammer, J. R., Gillespie, G. Y., Stewart Jr., J., & Gladson, C. L. (2002). Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples. Cancer Research, 62, 2699–2707.PubMedGoogle Scholar
  117. 117.
    Jones, G., Machado Jr., J., & Merlo, A. (2001). Loss of focal adhesion kinase (FAK) inhibits epidermal growth factor receptor-dependent migration and induces aggregation of nh(2)-terminal FAK in the nuclei of apoptotic glioblastoma cells. Cancer Research, 61, 4978–4981.PubMedGoogle Scholar
  118. 118.
    Garcia, S., Dales, J. P., Charafe-Jauffret, E., Carpentier-Meunier, S., Andrac-Meyer, L., Jacquemier, J., et al. (2007). Overexpression of c-Met and of the transducers PI3K, FAK and JAK in breast carcinomas correlates with shorter survival and neoangiogenesis. International Journal of Oncology, 31, 49–58.PubMedGoogle Scholar
  119. 119.
    Cance, W. G., Harris, J. E., Iacocca, M. V., Roche, E., Yang, X., Chang, J., et al. (2000). Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clinical Cancer Research, 6, 2417–2423.PubMedGoogle Scholar
  120. 120.
    Lark, A. L., Livasy, C. A., Dressler, L., Moore, D. T., Millikan, R. C., Geradts, J., et al. (2005). High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype. Modern Pathology, 18, 1289–1294.PubMedGoogle Scholar
  121. 121.
    Su, J. M., Gui, L., Zhou, Y. P., & Zha, X. L. (2002). Expression of focal adhesion kinase and alpha5 and beta1 integrins in carcinomas and its clinical significance. World Journal of Gastroenterology, 8, 613–618.PubMedGoogle Scholar
  122. 122.
    Gabriel, B., zur Hausen, A., Stickeler, E., Dietz, C., Gitsch, G., Fischer, D. C., et al. (2006). Weak expression of focal adhesion kinase (pp125FAK) in patients with cervical cancer is associated with poor disease outcome. Clinical Cancer Research, 12, 2476–2483.PubMedGoogle Scholar
  123. 123.
    Han, N. M., Fleming, R. Y., Curley, S. A., & Gallick, G. E. (1997). Overexpression of focal adhesion kinase (p125FAK) in human colorectal carcinoma liver metastases: independence from c-src or c-yes activation. Annals of Surgical Oncology, 4, 264–268.PubMedGoogle Scholar
  124. 124.
    Ayaki, M., Komatsu, K., Mukai, M., Murata, K., Kameyama, M., Ishiguro, S., et al. (2001). Reduced expression of focal adhesion kinase in liver metastases compared with matched primary human colorectal adenocarcinomas. Clinical Cancer Research, 7, 3106–3112.PubMedGoogle Scholar
  125. 125.
    Lark, A. L., Livasy, C. A., Calvo, B., Caskey, L., Moore, D. T., Yang, X., et al. (2003). Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clinical Cancer Research, 9, 215–222.PubMedGoogle Scholar
  126. 126.
    Theocharis, S. E., Kouraklis, G. P., Kakisis, J. D., Kanelli, H. G., Apostolakou, F. E., Karatzas, G. M., et al. (2003). Focal adhesion kinase expression is not a prognostic predictor in colon adenocarcinoma patients. European Journal of Surgical Oncology, 29, 571–574.PubMedGoogle Scholar
  127. 127.
    Yu, H. G., Tong, S. L., Ding, Y. M., Ding, J., Fang, X. M., Zhang, X. F., et al. (2006). Enhanced expression of cholecystokinin-2 receptor promotes the progression of colon cancer through activation of focal adhesion kinase. International Journal of Cancer, 119, 2724–2732.Google Scholar
  128. 128.
    Livasy, C. A., Moore, D., Cance, W. G., & Lininger, R. A. (2004). Focal adhesion kinase overexpression in endometrial neoplasia. Applied Immunohistochemistry & Molecular Morphology, 12, 342–345.Google Scholar
  129. 129.
    Miyazaki, T., Kato, H., Nakajima, M., Sohda, M., Fukai, Y., Masuda, N., et al. (2003). FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. British Journal of Cancer, 89, 140–145.PubMedGoogle Scholar
  130. 130.
    Canel, M., Secades, P., Rodrigo, J. P., Cabanillas, R., Herrero, A., Suarez, C., et al. (2006). Overexpression of focal adhesion kinase in head and neck squamous cell carcinoma is independent of fak gene copy number. Clinical Cancer Research, 12, 3272–3279.PubMedGoogle Scholar
  131. 131.
    Fujii, T., Koshikawa, K., Nomoto, S., Okochi, O., Kaneko, T., Inoue, S., et al. (2004). Focal adhesion kinase is overexpressed in hepatocellular carcinoma and can be served as an independent prognostic factor. Journal of Hepatology, 41, 104–111.PubMedGoogle Scholar
  132. 132.
    Itoh, S., Maeda, T., Shimada, M., Aishima, S., Shirabe, K., Tanaka, S., et al. (2004). Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma. Clinical Cancer Research, 10, 2812–2817.PubMedGoogle Scholar
  133. 133.
    Miyasaka, Y., Enomoto, N., Nagayama, K., Izumi, N., Marumo, F., Watanabe, M., et al. (2001). Analysis of differentially expressed genes in human hepatocellular carcinoma using suppression subtractive hybridization. British Journal of Cancer, 85, 228–234.PubMedGoogle Scholar
  134. 134.
    Yuan, Z., Fan, J., Wu, Z. Q., Zhou, J., & Qiu, S. J. (2007). [Focal adhesion kinase mRNA overexpression in hepatocellular carcinoma HCC) and correlation thereof with prognosis of HCC]. Zhonghua Yi Xue Za Zhi, 87, 1256–1259.PubMedGoogle Scholar
  135. 135.
    Aronsohn, M. S., Brown, H. M., Hauptman, G., & Kornberg, L. J. (2003). Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in squamous cell carcinoma of the larynx. Laryngoscope, 113, 1944–1948.PubMedGoogle Scholar
  136. 136.
    Yu, H. G., Schrader, H., Otte, J. M., Schmidt, W. E., & Schmitz, F. (2004). Rapid tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130Cas by gastrin in human colon cancer cells. Biochemical Pharmacology, 67, 135–146.PubMedGoogle Scholar
  137. 137.
    Carelli, S., Zadra, G., Vaira, V., Falleni, M., Bottiglieri, L., Nosotti, M., et al. (2006). Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer, 53, 263–271.PubMedGoogle Scholar
  138. 138.
    Hsu, N. Y., Chen, C. Y., Hsu, C. P., Lin, T. Y., Chou, M. C., Chiou, S. H., et al. (2007). Prognostic significance of expression of nm23-H1 and focal adhesion kinase in non-small cell lung cancer. Oncology Reports, 18, 81–85.PubMedGoogle Scholar
  139. 139.
    Imaizumi, M., Nishimura, M., Takeuchi, S., Murase, M., & Hamaguchi, M. (1997). Role of tyrosine specific phosphorylation of cellular proteins, especially EGF receptor and p125FAK in human lung cancer cells. Lung Cancer, 17, 69–84.PubMedGoogle Scholar
  140. 140.
    Nishimura, M., Machida, K., Imaizumi, M., Abe, T., Umeda, T., Takeshima, E., et al. (1996). Tyrosine phosphorylation of 100–130 kDa proteins in lung cancer correlates with poor prognosis. British Journal of Cancer, 74, 780–787.PubMedGoogle Scholar
  141. 141.
    Wang, X. Y., Liu, T., Zhu, C. Z., Li, Y., Sun, R., Sun, C. Y., et al. (2005). Expression of KAI1, MRP-1, and FAK proteins in lung cancer detected by high-density tissue microarray. Ai Zheng, 24, 1091–1095.PubMedGoogle Scholar
  142. 142.
    He, Z. X., He, H. W., Wang, D., & Fang, M. X. (2006). Expression and clinical significance of focal adhesion kinase in oral squamous cell carcinoma. Sichuan Da Xue Xue Bao Yi Xue Ban, 37, 876–878.PubMedGoogle Scholar
  143. 143.
    Kornberg, L. J. (1998). Focal adhesion kinase expression in oral cancers. Head Neck, 20, 634–639.PubMedGoogle Scholar
  144. 144.
    Grisaru-Granovsky, S., Salah, Z., Maoz, M., Pruss, D., Beller, U., & Bar-Shavit, R. (2005). Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. International Journal of Cancer, 113, 372–378.Google Scholar
  145. 145.
    Judson, P. L., He, X., Cance, W. G., & Van Le, L. (1999). Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma. Cancer, 86, 1551–1556.PubMedGoogle Scholar
  146. 146.
    Sood, A. K., Coffin, J. E., Schneider, G. B., Fletcher, M. S., DeYoung, B. R., Gruman, L. M., et al. (2004). Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. American Journal of Pathology, 165, 1087–1095.PubMedGoogle Scholar
  147. 147.
    Rovin, J. D., Frierson Jr., H. F., Ledinh, W., Parsons, J. T., & Adams, R. B. (2002). Expression of focal adhesion kinase in normal and pathologic human prostate tissues. Prostate, 53, 124–132.PubMedGoogle Scholar
  148. 148.
    Kim, S. J., Park, J. W., Yoon, J. S., Mok, J. O., Kim, Y. J., Park, H. K., et al. (2004). Increased expression of focal adhesion kinase in thyroid cancer: immunohistochemical study. Journal of Korean Medical Science, 19, 710–715.PubMedCrossRefGoogle Scholar
  149. 149.
    Gabarra-Niecko, V., Schaller, M. D., & Dunty, J. M. (2003). FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Reviews, 22, 359–374.PubMedGoogle Scholar
  150. 150.
    Recher, C., Ysebaert, L., Beyne-Rauzy, O., Mansat-De Mas, V., Ruidavets, J. B., Cariven, P., et al. (2004). Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Research, 64, 3191–3197.PubMedGoogle Scholar
  151. 151.
    Schlaepfer, D. D., Mitra, S. K., & Ilic, D. (2004). Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochimica et Biophysica Acta, 1692, 77–102.PubMedGoogle Scholar
  152. 152.
    Furuyama, K., Doi, R., Mori, T., Toyoda, E., Ito, D., Kami, K., et al. (2006). Clinical significance of focal adhesion kinase in resectable pancreatic cancer. World Journal of Surgery, 30, 219–226.PubMedGoogle Scholar
  153. 153.
    Oktay, M. H., Oktay, K., Hamele-Bena, D., Buyuk, A., & Koss, L. G. (2003). Focal adhesion kinase as a marker of malignant phenotype in breast and cervical carcinomas. Human Pathology, 34, 240–245.PubMedGoogle Scholar
  154. 154.
    Madan, R., Smolkin, M. B., Cocker, R., Fayyad, R., & Oktay, M. H. (2006). Focal adhesion proteins as markers of malignant transformation and prognostic indicators in breast carcinoma. Human Pathology, 37, 9–15.PubMedGoogle Scholar
  155. 155.
    Okamoto, H., Yasui, K., Zhao, C., Arii, S., & Inazawa, J. (2003). PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas. Hepatology, 38, 1242–1249.PubMedGoogle Scholar
  156. 156.
    Golubovskaya, V., Kaur, A., & Cance, W. (2004). Cloning and characterization of the promoter region of human focal adhesion kinase gene: nuclear factor kappa B and p53 binding sites. Biochimica et Biophysica Acta, 1678, 111–125.PubMedGoogle Scholar
  157. 157.
    Golubovskaya, V. M., & Cance, W. G. (2007). Focal adhesion kinase and p53 signaling in cancer cells. International Review of Cytology, 263, 103–153.PubMedGoogle Scholar
  158. 158.
    Slack-Davis, J. K., Martin, K. H., Tilghman, R. W., Iwanicki, M., Ung, E. J., Autry, C., et al. (2007). Cellular characterization of a novel focal adhesion kinase inhibitor. Journal of Biological Chemistry, 282, 14845–14852.PubMedGoogle Scholar
  159. 159.
    Roberts, W. G., Ung, E., Whalen, P., Cooper, B., Hulford, C., Autry, C., et al. (2008). Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Research, 68, 1935–1944.PubMedGoogle Scholar
  160. 160.
    Bagi, C. M., Roberts, G. W., & Andresen, C. J. (2008). Dual focal adhesion kinase/Pyk2 inhibitor has positive effects on bone tumors: implications for bone metastases. Cancer, 112, 2313–2321.PubMedGoogle Scholar
  161. 161.
    Siu, L. L., Burris, H. A., Mileshkin, L., Camidge, D., Rischin, D. R., Chen, E. X., et al. (2007). Phase 1 study of a focal adhesion kinase (FAK) inhibitor PF-00562271 in patients (pts) with advanced solid tumors. Journal of Clinical Oncology, 25, 3527.Google Scholar
  162. 162.
    Liu, T. J., LaFortune, T., Honda, T., Ohmori, O., Hatakeyama, S., Meyer, T., et al. (2007). Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo. Molecular Cancer Therapeutics, 6, 1357–1367.PubMedGoogle Scholar
  163. 163.
    Beierle, E. A., Trujillo, A., Nagaram, A., Golubovskaya, V. M., Cance, W. G., & Kurenova, E. V. (2008). TAE226 inhibits human neuroblastoma cell survival. Cancer Investigation, 26, 145–151.PubMedGoogle Scholar
  164. 164.
    Golubovskaya, V. M., Virnig, C., & Cance, W. G. (2008). TAE226-induced apoptosis in breast cancer cells with overexpressed Src or EGFR. Molecular Carcinogenesis, 47, 222–234.PubMedGoogle Scholar
  165. 165.
    Halder, J., Lin, Y. G., Merritt, W. M., Spannuth, W. A., Nick, A. M., Honda, T., et al. (2007). Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma. Cancer Research, 67, 10976–10983.PubMedGoogle Scholar
  166. 166.
    Watanabe, N., Takaoka, M., Sakurama, K., Tomono, Y., Hatakeyama, S., Ohmori, O., et al. (2008). Dual tyrosine kinase inhibitor for focal adhesion kinase and insulin-like growth factor-I receptor exhibits anticancer effect in esophageal adenocarcinoma in vitro and in vivo. Clinical Cancer Research, 14, 4631–4639.PubMedGoogle Scholar
  167. 167.
    Shi, Q., Hjelmeland, A. B., Keir, S. T., Song, L., Wickman, S., Jackson, D., et al. (2007). A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Molecular Carcinogenesis, 46, 488–496.PubMedGoogle Scholar
  168. 168.
    Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.PubMedGoogle Scholar
  169. 169.
    Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: an old idea—a paradigm shift. Cancer Research, 66, 1883–1890 discussion 1895–1886.PubMedGoogle Scholar
  170. 170.
    Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M-L., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439, 84–88.PubMedGoogle Scholar
  171. 171.
    Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439, 993–997.PubMedGoogle Scholar
  172. 172.
    Kouros-Mehr, H., Bechis, S. K., Slorach, E. M., Littlepage, L. E., Egeblad, M., Ewald, A. J., et al. (2008). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell, 13, 141–152.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for Cell Biology and Cancer ResearchAlbany Medical CollegeAlbanyUSA
  2. 2.Departments of Internal Medicine-MMG and Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations