Cancer and Metastasis Reviews

, Volume 28, Issue 1–2, pp 85–98

Centrosomes and cancer: how cancer cells divide with too many centrosomes



Precise control of centrosome number is crucial for bipolar spindle assembly and accurate transmission of genetic material to daughter cells. Failure to properly control centrosome number results in supernumerary centrosomes, which are frequently found in cancer cells. This presents a paradox: during mitosis, cells with more than two centrosomes are prone to multipolar mitoses and cell death, however, cancer cells possessing extra centrosomes usually divide successfully. One mechanism frequently utilized by cancer cells to escape death caused by multipolar mitoses is the clustering of supernumerary centrosomes into bipolar arrays. An understanding of the molecular mechanisms by which cancer cells can suppress multipolar mitoses is beginning to emerge. Here, we review what’s currently known about centrosome clustering mechanisms and discuss potential strategies to target these mechanisms for the selective killing of cancer cells.


Centrosomes Mitosis Multipolar Tetraploidy Cancer HSET 


  1. 1.
    Bettencourt-Dias, M., & Glover, D. M. (2007). Centrosome biogenesis and function: centrosomics brings new understanding. Nature Reviews. Molecular Cell Biology, 8, 451–463.PubMedGoogle Scholar
  2. 2.
    Bornens, M. (2002). Centrosome composition and microtubule anchoring mechanisms. Current Opinion in Cell Biology, 14, 25–34.PubMedGoogle Scholar
  3. 3.
    Basto, R., Lau, J., Vinogradova, T., Gardiol, A., Woods, C. G., Khodjakov, A., et al. (2006). Flies without centrioles. Cell, 125, 1375–1386.PubMedGoogle Scholar
  4. 4.
    Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L., Gatt, M. K., et al. (2005). SAK/PLK4 is required for centriole duplication and flagella development. Current Biology, 15, 2199–2207.PubMedGoogle Scholar
  5. 5.
    Bobinnec, Y., Khodjakov, A., Mir, L. M., Rieder, C. L., Edde, B., & Bornens, M. (1998). Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. The Journal of Cell Biology, 143, 1575–1589.PubMedGoogle Scholar
  6. 6.
    Dammermann, A., Muller-Reichert, T., Pelletier, L., Habermann, B., Desai, A., & Oegema, K. (2004). Centriole assembly requires both centriolar and pericentriolar material proteins. Developmental Cell, 7, 815–829.PubMedGoogle Scholar
  7. 7.
    Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S., & Hyman, A. A. (2003). SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell, 112, 575–587.PubMedGoogle Scholar
  8. 8.
    Strnad, P., & Gonczy, P. (2008). Mechanisms of procentriole formation. Trends in Cell Biology, 18, 389–396.PubMedGoogle Scholar
  9. 9.
    Tsou, M. F., & Stearns, T. (2006). Controlling centrosome number: licenses and blocks. Current Opinion in Cell Biology, 18, 74–78.PubMedGoogle Scholar
  10. 10.
    Loncarek, J., Hergert, P., Magidson, V., & Khodjakov, A. (2008). Control of daughter centriole formation by the pericentriolar material. Nature Cell Biology, 10, 322–328.PubMedGoogle Scholar
  11. 11.
    Dammermann, A., Maddox, P. S., Desai, A., & Oegema, K. (2008). SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules. The Journal of Cell Biology, 180, 771–785.PubMedGoogle Scholar
  12. 12.
    Kramer, A., Neben, K., & Ho, A. D. (2005). Centrosome aberrations in hematological malignancies. Cell Biology International, 29, 375–383.PubMedGoogle Scholar
  13. 13.
    Nigg, E. A. (2002). Centrosome aberrations: cause or consequence of cancer progression? Nature Reviews. Cancer, 2, 815–825.PubMedGoogle Scholar
  14. 14.
    Nigg, E. A. (2007). Centrosome duplication: of rules and licenses. Trends in Cell Biology, 17, 215–221.PubMedGoogle Scholar
  15. 15.
    Lingle, W. L., Lutz, W. H., Ingle, J. N., Maihle, N. J., & Salisbury, J. L. (1998). Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proceedings of the National Academy of Sciences of the United States of America, 95, 2950–2955.PubMedGoogle Scholar
  16. 16.
    Giehl, M., Fabarius, A., Frank, O., Hochhaus, A., Hafner, M., Hehlmann, R., et al. (2005). Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia, 19, 1192–1197.PubMedGoogle Scholar
  17. 17.
    Pihan, G. A., Purohit, A., Wallace, J., Knecht, H., Woda, B., Quesenberry, P., et al. (1998). Centrosome defects and genetic instability in malignant tumors. Cancer Research, 58, 3974–3985.PubMedGoogle Scholar
  18. 18.
    Duelli, D., & Lazebnik, Y. (2007). Cell-to-cell fusion as a link between viruses and cancer. Nature Reviews. Cancer, 7, 968–976.PubMedGoogle Scholar
  19. 19.
    Boveri, T. (1929). The origin of malignant tumors. Baltimore: Williams and Wilkins.Google Scholar
  20. 20.
    Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics & Development, 17, 157–162.Google Scholar
  21. 21.
    Guarguaglini, G., Duncan, P. I., Stierhof, Y. D., Holmstrom, T., Duensing, S., & Nigg, E. A. (2005). The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Molecular Biology of the Cell, 16, 1095–1107.PubMedGoogle Scholar
  22. 22.
    Heneen, W. K. (1970). In situ analysis of normal and abnormal patterns of the mitotic apparatus in cultured rat-kangaroo cells. Chromosoma, 29, 88–117.PubMedGoogle Scholar
  23. 23.
    Hansemann, D. (1890). Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin, 119, 299–326.Google Scholar
  24. 24.
    Boveri, T. (1902). Ueber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh Phys-med Ges Wurzburg NF, 35, 67–90.Google Scholar
  25. 25.
    D’Assoro, A. B., Barrett, S. L., Folk, C., Negron, V. C., Boeneman, K., Busby, R., et al. (2002). Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Research and Treatment, 75, 25–34.PubMedGoogle Scholar
  26. 26.
    Levine, D. S., Sanchez, C. A., Rabinovitch, P. S., & Reid, B. J. (1991). Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 88, 6427–6431.PubMedGoogle Scholar
  27. 27.
    Pihan, G. A., Wallace, J., Zhou, Y., & Doxsey, S. J. (2003). Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Research, 63, 1398–1404.PubMedGoogle Scholar
  28. 28.
    Fukasawa, K. (2007). Oncogenes and tumour suppressors take on centrosomes. Nature Reviews. Cancer, 7, 911–924.PubMedGoogle Scholar
  29. 29.
    Grisendi, S., Bernardi, R., Rossi, M., Cheng, K., Khandker, L., Manova, K., et al. (2005). Role of nucleophosmin in embryonic development and tumorigenesis. Nature, 437, 147–153.PubMedGoogle Scholar
  30. 30.
    Storchova, Z., & Pellman, D. (2004). From polyploidy to aneuploidy, genome instability and cancer. Nature Reviews. Molecular Cell Biology, 5, 45–54.PubMedGoogle Scholar
  31. 31.
    Marumoto, T., Zhang, D., & Saya, H. (2005). Aurora-A—a guardian of poles. Nature Reviews. Cancer, 5, 42–50.PubMedGoogle Scholar
  32. 32.
    Meraldi, P., Honda, R., & Nigg, E. A. (2002). Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO Journal, 21, 483–492.PubMedGoogle Scholar
  33. 33.
    Caldwell, C. M., Green, R. A., & Kaplan, K. B. (2007). APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. The Journal of Cell Biology, 178, 1109–1120.PubMedGoogle Scholar
  34. 34.
    Daniels, M. J., Wang, Y., Lee, M., & Venkitaraman, A. R. (2004). Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science, 306, 876–879.PubMedGoogle Scholar
  35. 35.
    Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T., & Pellman, D. (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 437, 1043–1047.PubMedGoogle Scholar
  36. 36.
    Roh, M., Franco, O. E., Hayward, S. W., van der Meer, R., & Abdulkadir, S. A. (2008). A role for polyploidy in the tumorigenicity of Pim-1-expressing human prostate and mammary epithelial cells. PLoS ONE,, 3, e2572.Google Scholar
  37. 37.
    Basto, R., Brunk, K., Vinadogrova, T., Peel, N., Franz, A., Khodjakov, A., et al. (2008). Centrosome amplification can initiate tumorigenesis in flies. Cell, 133, 1032–1042.PubMedGoogle Scholar
  38. 38.
    Habedanck, R., Stierhof, Y. D., Wilkinson, C. J., & Nigg, E. A. (2005). The Polo kinase Plk4 functions in centriole duplication. Nature Cell Biology, 7, 1140–1146.PubMedGoogle Scholar
  39. 39.
    Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Habedanck, R., Stierhof, Y. D., & Nigg, E. A. (2007). Plk4-induced centriole biogenesis in human cells. Developmental Cell, 13, 190–202.PubMedGoogle Scholar
  40. 40.
    Castellanos, E., Dominguez, P., & Gonzalez, C. (2008). Centrosome dysfunction in drosophila neural stem cells causes tumors that are not due to genome instability. Current Biology, 18, 1209–1214.PubMedGoogle Scholar
  41. 41.
    Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedGoogle Scholar
  42. 42.
    Manandhar, G., Schatten, H., & Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biology of Reproduction, 72, 2–13.PubMedGoogle Scholar
  43. 43.
    Kim, D. Y., & Roy, R. (2006). Cell cycle regulators control centrosome elimination during oogenesis in Caenorhabditis elegans. The Journal of Cell Biology, 174, 751–757.PubMedGoogle Scholar
  44. 44.
    Graf, R., Euteneuer, U., Ho, T. H., & Rehberg, M. (2003). Regulated expression of the centrosomal protein DdCP224 affects microtubule dynamics and reveals mechanisms for the control of supernumerary centrosome number. Molecular Biology of the Cell, 14, 4067–4074.PubMedGoogle Scholar
  45. 45.
    Iwao, Y. (2000). Fertilization in amphibians. In J. J. Tarin & A. Cano (Eds.), Fertilization in protozoa and metazoa animals, cellular and molecular aspects (pp. 147–191). Heidelberg: Springfield.Google Scholar
  46. 46.
    Iwao, Y., Murakawa, T., Yamaguchi, J., & Yamashita, M. (2002). Localization of gamma-tubulin and cyclin B during early cleavage in physiologically polyspermic newt eggs. Development, Growth & Differentiation, 44, 489–499.Google Scholar
  47. 47.
    Iwao, Y., Yasumitsu, K., Narihira, M., Jiang, J., & Nagahama, Y. (1997). Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs. Molecular Reproduction and Development, 47, 210–221.PubMedGoogle Scholar
  48. 48.
    Ohta, K., Shiina, N., Okumura, E., Hisanaga, S., Kishimoto, T., Endo, S., et al. (1993). Microtubule nucleating activity of centrosomes in cell-free extracts from Xenopus eggs: involvement of phosphorylation and accumulation of pericentriolar material. Journal of Cell Science, 104(Pt 1), 125–137.PubMedGoogle Scholar
  49. 49.
    Chiba, S., Okuda, M., Mussman, J. G., & Fukasawa, K. (2000). Genomic convergence and suppression of centrosome hyperamplification in primary p53−/−cells in prolonged culture. Experimental Cell Research, 258, 310–321.PubMedGoogle Scholar
  50. 50.
    Brinkley, B. R. (2001). Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends in Cell Biology, 11, 18–21.PubMedGoogle Scholar
  51. 51.
    Ring, D., Hubble, R., & Kirschner, M. (1982). Mitosis in a cell with multiple centrioles. The Journal of Cell Biology, 94, 549–556.PubMedGoogle Scholar
  52. 52.
    Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.Google Scholar
  53. 53.
    Sharp, G. A., Osborn, M., & Weber, K. (1981). Ultrastructure of multiple microtubule initiation sites in mouse neuroblastoma cells. Journal of Cell Science, 47, 1–24.PubMedGoogle Scholar
  54. 54.
    Duensing, S. (2005). A tentative classification of centrosome abnormalities in cancer. Cell Biology International, 29, 352–359.PubMedGoogle Scholar
  55. 55.
    Brinkley, B. R., Cox, S. M., Pepper, D. A., Wible, L., Brenner, S. L., & Pardue, R. L. (1981). Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells. The Journal of Cell Biology, 90, 554–562.PubMedGoogle Scholar
  56. 56.
    Lingle, W. L., & Salisbury, J. L. (1999). Altered centrosome structure is associated with abnormal mitoses in human breast tumors. The American Journal of Pathology, 155, 1941–1951.PubMedGoogle Scholar
  57. 57.
    Fleisch, M. C., Maxwell, C. A., Kuper, C. K., Brown, E. T., Barcellos-Hoff, M. H., & Costes, S. V. (2006). Intensity-based signal separation algorithm for accurate quantification of clustered centrosomes in tissue sections. Microscopy Research and Technique, 69, 964–972.PubMedGoogle Scholar
  58. 58.
    Guidotti, J. E., Bregerie, O., Robert, A., Debey, P., Brechot, C., & Desdouets, C. (2003). Liver cell polyploidization: a pivotal role for binuclear hepatocytes. The Journal of Biological Chemistry, 278, 19095–19101.PubMedGoogle Scholar
  59. 59.
    Oberringer, M., Lothschutz, D., Jennewein, M., Koschnick, M., Mutschler, W., & Hanselmann, R. G. (1999). Centrosome multiplication accompanies a transient clustering of polyploid cells during tissue repair. Molecular Cell Biology Research Communications, 2, 190–196.PubMedGoogle Scholar
  60. 60.
    Sluder, G., & Nordberg, J. J. (2004). The good, the bad and the ugly: the practical consequences of centrosome amplification. Current Opinion in Cell Biology, 16, 49–54.PubMedGoogle Scholar
  61. 61.
    Fukasawa, K. (2005). Centrosome amplification, chromosome instability and cancer development. Cancer Letter, 230, 6–19.Google Scholar
  62. 62.
    Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews. Molecular Cell Biology, 8, 379–393.PubMedGoogle Scholar
  63. 63.
    Lambert, R. (1913). Comparative studies upon cancer cells and normal cells. The Journal of Experimental Medicine, 17, 499–510.Google Scholar
  64. 64.
    Lewis, M. R., & Lewis, W. H. (1932). The malignant cells of Walker rat sarcoma. American Journal of Cancer, 16, 1153–1183.Google Scholar
  65. 65.
    Therman, E., & Kuhn, E. M. (1989). Mitotic modifications and aberrations in cancer. Critical Reviews in Oncogenesis, 1, 293–305.PubMedGoogle Scholar
  66. 66.
    Sisken, J. E., Bonner, S. V., & Grasch, S. D. (1982). The prolongation of mitotic stages in SV40-transformed vs nontransformed human fibroblast cells. Journal of Cellular Physiology, 113, 219–223.PubMedGoogle Scholar
  67. 67.
    Yang, Z., Loncarek, J., Khodjakov, A., & Rieder, C. L. (2008). Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nature Cell Biology, 10, 748–751.PubMedGoogle Scholar
  68. 68.
    Sluder, G., Thompson, E. A., Miller, F. J., Hayes, J., & Rieder, C. L. (1997). The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. Journal of Cell Science, 110(Pt 4), 421–429.PubMedGoogle Scholar
  69. 69.
    Buffin, E., Emre, D., & Karess, R. E. (2007). Flies without a spindle checkpoint. Nature Cell Biology, 9, 565–572.PubMedGoogle Scholar
  70. 70.
    Duensing, S., Lee, B. H., Dal Cin, P., & Munger, K. (2003). Excessive centrosome abnormalities without ongoing numerical chromosome instability in a Burkitt’s lymphoma. Molecular Cancer, 2, 30.PubMedGoogle Scholar
  71. 71.
    Goshima, G., Nedelec, F., & Vale, R. D. (2005). Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. The Journal of Cell Biology, 171, 229–240.PubMedGoogle Scholar
  72. 72.
    Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M., & Saunders, W. S. (2005). Spindle multipolarity is prevented by centrosomal clustering. Science, 307, 127–129.PubMedGoogle Scholar
  73. 73.
    Merdes, A., Ramyar, K., Vechio, J. D., & Cleveland, D. W. (1996). A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell, 87, 447–458.PubMedGoogle Scholar
  74. 74.
    Endow, S. A., & Komma, D. J. (1998). Assembly and dynamics of an anastral:astral spindle: the meiosis II spindle of Drosophila oocytes. Journal of Cell Science, 111(Pt 17), 2487–2495.PubMedGoogle Scholar
  75. 75.
    Morales-Mulia, S., & Scholey, J. M. (2005). Spindle pole organization in Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and KLP10A. Molecular Biology of the Cell, 16, 3176–3186.PubMedGoogle Scholar
  76. 76.
    Mountain, V., Simerly, C., Howard, L., Ando, A., Schatten, G., & Compton, D. A. (1999). The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. The Journal of Cell Biology, 147, 351–366.PubMedGoogle Scholar
  77. 77.
    Karsenti, E., & Vernos, I. (2001). The mitotic spindle: a self-made machine. Science, 294, 543–547.PubMedGoogle Scholar
  78. 78.
    Rosenblatt, J., Cramer, L. P., Baum, B., & McGee, K. M. (2004). Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell, 117, 361–372.PubMedGoogle Scholar
  79. 79.
    Carreno, S., Kouranti, I., Glusman, E. S., Fuller, M. T., Echard, A., & Payre, F. (2008). Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. The Journal of Cell Biology, 180, 739–746.PubMedGoogle Scholar
  80. 80.
    Kunda, P., Pelling, A. E., Liu, T., & Baum, B. (2008). Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Current Biology, 18, 91–101.PubMedGoogle Scholar
  81. 81.
    Bretscher, A., Edwards, K., & Fehon, R. G. (2002). ERM proteins and merlin: integrators at the cell cortex. Nature Reviews. Molecular Cell Biology, 3, 586–599.PubMedGoogle Scholar
  82. 82.
    Thery, M., Racine, V., Pepin, A., Piel, M., Chen, Y., Sibarita, J. B., et al. (2005). The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biology, 7, 947–953.PubMedGoogle Scholar
  83. 83.
    Pearson, C. G., & Bloom, K. (2004). Dynamic microtubules lead the way for spindle positioning. Nature Reviews. Molecular Cell Biology, 5, 481–492.PubMedGoogle Scholar
  84. 84.
    Gundersen, G. G., Gomes, E. R., & Wen, Y. (2004). Cortical control of microtubule stability and polarization. Current Opinion in Cell Biology, 16, 106–112.PubMedGoogle Scholar
  85. 85.
    Nguyen-Ngoc, T., Afshar, K., & Gonczy, P. (2007). Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. Nature Cell Biology, 9, 1294–1302.PubMedGoogle Scholar
  86. 86.
    Toyoshima, F., & Nishida, E. (2007). Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO Journal, 26, 1487–1498.PubMedGoogle Scholar
  87. 87.
    Toyoshima, F., Matsumura, S., Morimoto, H., Mitsushima, M., & Nishida, E. (2007). PtdIns(3,4,5)P3 regulates spindle orientation in adherent cells. Developmental Cell, 13, 796–811.PubMedGoogle Scholar
  88. 88.
    Kim, H., Ling, S. C., Rogers, G. C., Kural, C., Selvin, P. R., Rogers, S. L., et al. (2007). Microtubule binding by dynactin is required for microtubule organization but not cargo transport. The Journal of Cell Biology, 176, 641–651.PubMedGoogle Scholar
  89. 89.
    Woolner, S., O’Brien, L. L., Wiese, C., & Bement, W. M. (2008). Myosin-10 and actin filaments are essential for mitotic spindle function. The Journal of Cell Biology, 182, 77–88.PubMedGoogle Scholar
  90. 90.
    Mitchison, T. J., Maddox, P., Gaetz, J., Groen, A., Shirasu, M., Desai, A., et al. (2005). Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Molecular Biology of the Cell, 16, 3064–3076.PubMedGoogle Scholar
  91. 91.
    Wang, W., Chen, L., Ding, Y., Jin, J., & Liao, K. (2008). Centrosome separation driven by actin-microfilaments during mitosis is mediated by centrosome-associated tyrosine-phosphorylated cortactin. Journal of Cell Science, 121, 1334–1343.PubMedGoogle Scholar
  92. 92.
    Gonczy, P. (2008). Mechanisms of asymmetric cell division: flies and worms pave the way. Nature Reviews. Molecular Cell Biology, 9, 355–366.PubMedGoogle Scholar
  93. 93.
    Mitchison, T. J. (1992). Actin based motility on retraction fibers in mitotic PtK2 cells. Cell Motility and the Cytoskeleton, 22, 135–151.PubMedGoogle Scholar
  94. 94.
    Grill, S. W., Gonczy, P., Stelzer, E. H., & Hyman, A. A. (2001). Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature, 409, 630–633.PubMedGoogle Scholar
  95. 95.
    Thery, M., Jimenez-Dalmaroni, A., Racine, V., Bornens, M., & Julicher, F. (2007). Experimental and theoretical study of mitotic spindle orientation. Nature, 447, 493–496.PubMedGoogle Scholar
  96. 96.
    Pugacheva, E. N., & Golemis, E. A. (2005). The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nature Cell Biology, 7, 937–946.PubMedGoogle Scholar
  97. 97.
    Zhao, Z. S., Lim, J. P., Ng, Y. W., Lim, L., & Manser, E. (2005). The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Molecular Cell, 20, 237–249.PubMedGoogle Scholar
  98. 98.
    Fielding, A. B., Dobreva, I., McDonald, P. C., Foster, L. J., & Dedhar, S. (2008). Integrin-linked kinase localizes to the centrosome and regulates mitotic spindle organization. The Journal of Cell Biology, 180, 681–689.PubMedGoogle Scholar
  99. 99.
    Huang, P., Senga, T., & Hamaguchi, M. (2007). A novel role of phospho-beta-catenin in microtubule regrowth at centrosome. Oncogene, 26, 4357–4371.PubMedGoogle Scholar
  100. 100.
    Kalous, J., Solc, P., Baran, V., Kubelka, M., Schultz, R. M., & Motlik, J. (2006). PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biology of the Cell, 98, 111–123.PubMedGoogle Scholar
  101. 101.
    Wakefield, J. G., Stephens, D. J., & Tavare, J. M. (2003). A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome alignment. Journal of Cell Science, 116, 637–646.PubMedGoogle Scholar
  102. 102.
    Reverte, C. G., Benware, A., Jones, C. W., & LaFlamme, S. E. (2006). Perturbing integrin function inhibits microtubule growth from centrosomes, spindle assembly, and cytokinesis. The Journal of Cell Biology, 174, 491–497.PubMedGoogle Scholar
  103. 103.
    Raz, A., & Ben-Ze’ev, A. (1983). Modulation of the metastatic capability in B16 melanoma by cell shape. Science, 221, 1307–1310.PubMedGoogle Scholar
  104. 104.
    Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. (1997). Geometric control of cell life and death. Science, 276, 1425–1428.PubMedGoogle Scholar
  105. 105.
    Akiri, G., Sabo, E., Dafni, H., Vadasz, Z., Kartvelishvily, Y., Gan, N., et al. (2003). Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Research, 63, 1657–1666.PubMedGoogle Scholar
  106. 106.
    Khaled, W., Reichling, S., Bruhns, O. T., Boese, H., Baumann, M., Monkman, G., et al. (2004). Palpation imaging using a haptic system for virtual reality applications in medicine. Studies in Health Technology and Informatics, 98, 147–153.PubMedGoogle Scholar
  107. 107.
    Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8, 241–254.PubMedGoogle Scholar
  108. 108.
    Nigro, J. M., Aldape, K. D., Hess, S. M., & Tlsty, T. D. (1997). Cellular adhesion regulates p53 protein levels in primary human keratinocytes. Cancer Research, 57, 3635–3639.PubMedGoogle Scholar
  109. 109.
    Tlsty, T. D. (1998). Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Current Opinion in Cell Biology, 10, 647–653.PubMedGoogle Scholar
  110. 110.
    Cuomo, M. E., Knebel, A., Morrice, N., Paterson, H., Cohen, P., & Mittnacht, S. (2008). p53-Driven apoptosis limits centrosome amplification and genomic instability downstream of NPM1 phosphorylation. Nature Cell Biology, 10, 723–730.PubMedGoogle Scholar
  111. 111.
    Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMedGoogle Scholar
  112. 112.
    Hussain, S. P., Hofseth, L. J., & Harris, C. C. (2003). Radical causes of cancer. Nature Reviews. Cancer, 3, 276–285.PubMedGoogle Scholar
  113. 113.
    Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98, 137–146.PubMedGoogle Scholar
  114. 114.
    Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews. Cancer, 4, 253–265.PubMedGoogle Scholar
  115. 115.
    McGuire, W. P., Rowinsky, E. K., Rosenshein, N. B., Grumbine, F. C., Ettinger, D. S., Armstrong, D. K., et al. (1989). Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Annals of Internal Medicine, 111, 273–279.PubMedGoogle Scholar
  116. 116.
    Rowinsky, E. K., Chaudhry, V., Cornblath, D. R., & Donehower, R. C. (1993). Neurotoxicity of Taxol. J Natl Cancer Inst Monographs, 107–115.Google Scholar
  117. 117.
    Jackson, J. R., Patrick, D. R., Dar, M. M., & Huang, P. S. (2007). Targeted anti-mitotic therapies: can we improve on tubulin agents? Nature Reviews. Cancer, 7, 107–117.PubMedGoogle Scholar
  118. 118.
    Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.PubMedGoogle Scholar
  119. 119.
    Blangy, A., Lane, H. A., d’Herin, P., Harper, M., Kress, M., & Nigg, E. A. (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 83, 1159–1169.PubMedGoogle Scholar
  120. 120.
    Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., & Mitchison, T. J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 286, 971–974.PubMedGoogle Scholar
  121. 121.
    Bergnes, G., Brejc, K., & Belmont, L. (2005). Mitotic kinesins: prospects for antimitotic drug discovery. Current Topics in Med Chem, 5, 127–145.Google Scholar
  122. 122.
    Lee, C. W., Belanger, K., Rao, S. C., Petrella, T. M., Tozer, R. G., Wood, L., et al. (2008). A phase II study of ispinesib (SB-715992) in patients with metastatic or recurrent malignant melanoma: a National Cancer Institute of Canada Clinical Trials Group trial. Investigational New Drugs, 26, 249–255.PubMedGoogle Scholar
  123. 123.
    Tang, P. A., Siu, L. L., Chen, E. X., Hotte, S. J., Chia, S., Schwarz, J. K., et al. (2008). Phase II study of ispinesib in recurrent or metastatic squamous cell carcinoma of the head and neck. Investigational New Drugs, 26, 257–264.PubMedGoogle Scholar
  124. 124.
    Keen, N., & Taylor, S. (2004). Aurora-kinase inhibitors as anticancer agents. Nature Reviews. Cancer, 4, 927–936.PubMedGoogle Scholar
  125. 125.
    Strebhardt, K., & Ullrich, A. (2006). Targeting polo-like kinase 1 for cancer therapy. Nature Reviews. Cancer, 6, 321–330.PubMedGoogle Scholar
  126. 126.
    Amendola, R., Martinez, R., Negroni, A., Venturelli, D., Tanno, B., Calabretta, B., et al. (2001). DR-nm23 expression affects neuroblastoma cell differentiation, integrin expression, and adhesion characteristics. Medical and Pediatric Oncology, 36, 93–96.PubMedGoogle Scholar
  127. 127.
    Ward, S., Sotsios, Y., Dowden, J., Bruce, I., & Finan, P. (2003). Therapeutic potential of phosphoinositide 3-kinase inhibitors. Chemistry & Biology, 10, 207–213.Google Scholar
  128. 128.
    Li, H., Gou, F., Rubinstein, B., & Li, R. (2008). Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nature Cell Biology, 10, 1301–1308.PubMedGoogle Scholar
  129. 129.
    Schuh, M., & Ellenberg J. (2008). A new model for asymmetric spindle positioning in mouse oocytes. Current Biology, 18, 1986–1992.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Susana A. Godinho
    • 1
  • Mijung Kwon
    • 1
  • David Pellman
    • 1
    • 2
    • 3
  1. 1.Department of Pediatric Oncology, Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA
  2. 2.Department of Pediatric Hematology/OncologyChildren’s HospitalBostonUSA
  3. 3.Howard Hughes Medical InstituteBostonUSA

Personalised recommendations