Cancer and Metastasis Reviews

, 27:545 | Cite as

Imaging of tumor glucose utilization with positron emission tomography

Article

Abstract

In recent years, imaging of tumor glucose metabolism with positron emission tomography and fluorodeoxyglucose (FDG-PET) has become a routine test for detection, staging and restaging of malignant lymphomas and many solid tumors. FDG-PET is also increasingly used to monitor the effects of chemotherapy. The success of FDG-PET in oncologic imaging has generated considerable interest in understanding the molecular mechanisms underlying the markedly accelerated glucose use of almost all human cancers. Recent studies have indicated that there may be a close relation between the activation of oncogenic signaling pathways and cellular glucose utilization. For example deregulation of Akt, ras and MYC as well as loss of p53 function have been reported to confer increased glucose metabolic rates in cancer cells. These findings suggest that imaging of tumor glucose utilization may represent a marker for the activity of oncogenic pathways and metabolic changes during therapy may be used as a readout for the effectiveness of drugs targeting these pathways. However, the mechanisms for increased glucose metabolic activity of cancers cells are multifactorial and clinical studies will be necessary to determine in which context imaging of tumor glucose metabolism may be used for treatment monitoring.

Keywords

Glucose metabolism Cancer Fluorodeoxyglucose Positron emission tomography 

Notes

References

  1. 1.
    Cheson, B. D., Pfistner, B., Juweid, M. E., Gascoyne, R. D., Specht, L., Horning, S. J., et al. (2007). Revised response criteria for malignant lymphoma. Journal of Clinical Oncology, 25, 579–586.PubMedCrossRefGoogle Scholar
  2. 2.
    IMV (2006). 2005/06 PET market summary report. IMV Medical Information Division: Des Plaines.Google Scholar
  3. 3.
    Warburg, O., Posener, K., & Negelein, E. (1924). Ueber den Stoffwechsel von Tumoren. Biochemische Zeitschrift, 152, 319–344.Google Scholar
  4. 4.
    Czernin, J., Allen-Auerbach, M., & Schelbert, H. R. (2007). Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. Journal of Nuclear Medicine, 48(Suppl 1), 78S–88S.PubMedGoogle Scholar
  5. 5.
    Israel, O., & Kuten, A. (2007). Early detection of cancer recurrence: 18F-FDG PET/CT can make a difference in diagnosis and patient care. Journal of Nuclear Medicine, 48(Suppl 1), 28S–35S.PubMedGoogle Scholar
  6. 6.
    Bunyaviroch, T., & Coleman, R. E. (2006). PET evaluation of lung cancer. Journal of Nuclear Medicine, 47, 451–469.PubMedGoogle Scholar
  7. 7.
    Seam, P., Juweid, M. E., & Cheson, B. D. (2007). The role of FDG-PET scans in patients with lymphoma. Blood, 110, 3507–3516.PubMedCrossRefGoogle Scholar
  8. 8.
    Weber, W. A. (2005). Use of PET for monitoring cancer therapy and for predicting outcome. Journal of Nuclear Medicine, 46, 983–995.PubMedGoogle Scholar
  9. 9.
    Rich, P. R. (2003). The molecular machinery of Keilin’s respiratory chain. Biochemical Society Transactions, 31, 1095–1105.PubMedCrossRefGoogle Scholar
  10. 10.
    Van Schaftingen, E., Jett, M. F., Hue, L., & Hers, H. G. (1981). Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proceedings of the National Academy of Sciences of the United States of America, 78, 3483–3486.PubMedCrossRefGoogle Scholar
  11. 11.
    Telang, S., Yalcinm, A., Clem, A. L., Bucala, R., Lane, A. N., Eaton, J. W., et al. (2006). Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene, 25, 7225–7234.PubMedCrossRefGoogle Scholar
  12. 12.
    Huang, S. C. (2000). Anatomy of SUV. Standardized uptake value. Nuclear Medicine and Biology, 27, 643–646.PubMedCrossRefGoogle Scholar
  13. 13.
    Weber, W. A., Petersen, V., Schmidt, B., Tyndale-Hines, L., Link, T., Peschel, C., et al. (2003). Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. Journal of Clinical Oncology, 21, 2651–2657.PubMedCrossRefGoogle Scholar
  14. 14.
    Vesselle, H., Schmidt, R. A., Pugsley, J. M., Li, M., Kohlmyer, S. G., Vallires, E., et al. (2000). Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clinical Cancer Research, 6, 3837–3844.PubMedGoogle Scholar
  15. 15.
    Buck, A., Halter, G., Schirrmeister, H., Kotzerke, J., Wurziger, I., Glatting, G., et al. (2003). Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. Journal of Nuclear Medicine, 44, 1432–1434.Google Scholar
  16. 16.
    van Baardwijk, A., Dooms, C., van Suylen, R. J., Verbeken, E., Hochstenbag, M., Dehing-Oberije, C., et al. (2007). The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer. European Journal of Cancer, 43, 1392–1398.PubMedCrossRefGoogle Scholar
  17. 17.
    Yap, C. S., Czernin, J., Fishbein, M. C., Cameron, R. B., Schiepers, C., Phelps, M. E., et al. (2006). Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest, 129, 393–401.PubMedCrossRefGoogle Scholar
  18. 18.
    Di Chiro, G. (1987). Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Investigative Radiology, 22, 360–371.PubMedCrossRefGoogle Scholar
  19. 19.
    Folpe, A. L., Lyles, R. H., Sprouse, J. T., Conrad 3rd, E. U., & Eary, J. F. (2000). (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clinical Cancer Research, 6, 1279–1287.PubMedGoogle Scholar
  20. 20.
    Kole, A. C., Nieweg, O. E., Hoekstra, H. J., van Horn, J. R., Koops, H. S., & Vaalburg, W. (1998). Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. Journal of Nuclear Medicine, 39, 810–815.PubMedGoogle Scholar
  21. 21.
    Fulham, M. J., Melisi, J. W., Nishimiya, J., Dwyer, A. J., & Di Chiro, G. (1993). Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology, 189, 221–225.PubMedGoogle Scholar
  22. 22.
    Bos, R., van Der Hoeven, J. J., van Der Wall, E., van Der Groep, P., van Diest, P. J., Comans, E. F., et al. (2002). Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. Journal of Clinical Oncology, 20, 379–387.PubMedCrossRefGoogle Scholar
  23. 23.
    Westerterp, M., Sloof, G. W., Hoekstra, O. S., Ten Kate, F. J., Meijer, G. A., Reitsma, J. B., et al. (2008). (18)FDG uptake in oesophageal adenocarcinoma: linking biology and outcome. Journal of Cancer Research and Clinical Oncology, 134, 227–236.PubMedCrossRefGoogle Scholar
  24. 24.
    Yen, T. C., See, L. C., Lai, C. H., Yah-Huei, C. W., Ng, K. K., Ma, S. Y., et al. (2004). 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. Journal of Nuclear Medicine, 45, 22–29.PubMedGoogle Scholar
  25. 25.
    Tohma, T., Okazumi, S., Makino, H., Cho, A., Mochiduki, R., Shuto, K., et al. (2005). Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepato-Gastroenterology, 52, 486–490.PubMedGoogle Scholar
  26. 26.
    Yamada, K., Brink, I., Bisse, E., Epting, T., & Engelhardt, R. (2005). Factors influencing [F-18] 2-fluoro-2-deoxy-d-glucose (F-18 FDG) uptake in melanoma cells: the role of proliferation rate, viability, glucose transporter expression and hexokinase activity. Journal of Dermatology, 32, 316–334.PubMedGoogle Scholar
  27. 27.
    Mamede, M., Higashi, T., Kitaichi, M., Ishizu, K., Ishimori, T., Nakamoto, Y., et al. (2005). [18F]FDG uptake and PCNA, glut-1, and hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia, 7, 369–379.PubMedCrossRefGoogle Scholar
  28. 28.
    de Geus-Oei, L. F., van Krieken, J. H., Aliredjo, R. P., Krabbe, P. F., Frielink, C., Verhagen, A. F., et al. (2007). Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer, 55, 79–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Aloj, L., Caraco, C., Jagoda, E., Eckelman, W. C., & Neumann, R. D. (1999). Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Research, 59, 4709–4714.PubMedGoogle Scholar
  30. 30.
    Gatenby, R. A., & Gillies, R. J. (2008). A microenvironmental model of carcinogenesis. Nature Reviews Cancer, 8, 56–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim, J. W., Gao, P., & Dang, C. V. (2007). Effects of hypoxia on tumor metabolism. Cancer and Metastasis Reviews, 26, 291–298.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., et al. (2007). HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 11, 407–420.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3, 177–185.PubMedCrossRefGoogle Scholar
  34. 34.
    Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry, 269, 23757–23763.PubMedGoogle Scholar
  35. 35.
    Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394, 485–490.PubMedCrossRefGoogle Scholar
  36. 36.
    Riddle, S. R., Ahmad, A., Ahmad, S., Deeb, S. S., Malkki, M., Schneider, B. K., et al. (2000). Hypoxia induces hexokinase II gene expression in human lung cell line A549. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278, L407–L416.PubMedGoogle Scholar
  37. 37.
    Burgman, P., Odonoghue, J. A., Humm, J. L., & Ling, C. C. (2001). Hypoxia-induced increase in FDG uptake in MCF7 cells. Journal of Nuclear Medicine, 42, 170–175.PubMedGoogle Scholar
  38. 38.
    Clavo, A. C., Brown, R. S., & Wahl, R. L. (1995). Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. Journal of Nuclear Medicine, 36, 1625–1632.PubMedGoogle Scholar
  39. 39.
    Cherk, M. H., Foo, S. S., Poon, A. M., Knight, S. R., Murone, C., Papenfuss, A. T., et al. (2006). Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. Journal of Nuclear Medicine, 47, 1921–1926.PubMedGoogle Scholar
  40. 40.
    Rajendran, J. G., Mankoff, D. A., O'Sullivan, F., Peterson, L. M., Schwartz, D. L., Conrad, E. U., et al. (2004). Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clinical Cancer Research, 10, 2245–2252.PubMedCrossRefGoogle Scholar
  41. 41.
    Rajendran, J. G., Wilson, D. C., Conrad, E. U., Peterson, L. M., Bruckner, J. D., Rasey, J. S., et al. (2003). [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. European Journal of Nuclear Medicine and Molecular Imaging, 30, 695–704.PubMedGoogle Scholar
  42. 42.
    Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., et al. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America, 94, 6658–6663.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim, J. W., & Dang, C. V. (2006). Cancer’s molecular sweet tooth and the Warburg effect. Cancer Research, 66, 8927–8930.PubMedCrossRefGoogle Scholar
  44. 44.
    Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3, 721–732.PubMedCrossRefGoogle Scholar
  45. 45.
    Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes and Development, 14, 34–44.PubMedGoogle Scholar
  46. 46.
    Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. Genes and Development, 14, 391–396.PubMedGoogle Scholar
  47. 47.
    Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M. M., et al. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Research, 60, 1541–1545.PubMedGoogle Scholar
  48. 48.
    Jiang, B. H., Agani, F., Passaniti, A., & Semenza, G. L. (1997). V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Research, 57, 5328–5335.PubMedGoogle Scholar
  49. 49.
    Fukuda, R., Hirota, K., Fan, F., Jung, Y. D., Ellis, L. M., & Semenza, G. L. (2002). Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. Journal of Biological Chemistry, 277, 38205–38211.PubMedCrossRefGoogle Scholar
  50. 50.
    Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C., & Semenza, G. L. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and Cellular Biology, 21, 3995–4004.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu, X. H., Kirschenbaum, A., Lu, M., Yao, S., Dosoretz, A., Holland, J. F., et al. (2002). Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. Journal of Biological Chemistry, 277, 50081–50086.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F., & Maity, A. (2001). Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. Journal of Biological Chemistry, 276, 9519–9525.PubMedCrossRefGoogle Scholar
  53. 53.
    Blum, R., Jacob-Hirsch, J., Amariglio, N., Rechavi, G., & Kloog, Y. (2005). Ras inhibition in glioblastoma downregulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Research, 65, 999–1006.PubMedGoogle Scholar
  54. 54.
    Chesney, J. (2006). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 535–539.PubMedCrossRefGoogle Scholar
  55. 55.
    Zdychova, J., & Komers, R. (2005). Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiological Research, 54, 1–16.PubMedGoogle Scholar
  56. 56.
    Thompson, J. E., & Thompson, C. B. (2004). Putting the rap on Akt. Journal of Clinical Oncology, 22, 4217–4226.PubMedCrossRefGoogle Scholar
  57. 57.
    Plas, D. R., & Thompson, C. B. (2005). Akt-dependent transformation: there is more to growth than just surviving. Oncogene, 24, 7435–7442.PubMedCrossRefGoogle Scholar
  58. 58.
    Majewski, N., Nogueira, V., Bhaskar, P., Coy, P. E., Skeen, J. E., Gottlob, K., et al. (2004). Hexokinase–mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Molecular Cell, 16, 819–830.PubMedCrossRefGoogle Scholar
  59. 59.
    Pastorino, J. G., Hoek, J. B., & Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Research, 65, 10545–10554.PubMedCrossRefGoogle Scholar
  60. 60.
    Elstrom, R. L., Bauer, D. E., Buzzai, M., Karnauskas, R., Harris, M. H., Plas, D. R., et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Research, 64, 3892–3899.PubMedCrossRefGoogle Scholar
  61. 61.
    Majumder, P. K., Febbo, P. G., Bikoff, R., Berger, R., Xue, Q., McMahon, L. M., et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Medicine, 10, 594–601.PubMedCrossRefGoogle Scholar
  62. 62.
    Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., et al. (2006). p53 regulates mitochondrial respiration. Science, 312, 1650–1653.PubMedCrossRefGoogle Scholar
  63. 63.
    Kondoh, H., Lleonart, M. E., Gil, J., Wang, J., Degan, P., Peters, G., et al. (2005). Glycolytic enzymes can modulate cellular life span. Cancer Research, 65, 177–185.PubMedGoogle Scholar
  64. 64.
    Levine, A. J., Feng, Z., Mak, T. W., You, H., & Jin, S. (2006). Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes and Development, 20, 267–275.PubMedCrossRefGoogle Scholar
  65. 65.
    Smith, T. A., Sharma, R. I., Thompson, A. M., & Paulin, F. E. (2006). Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. Journal of Nuclear Medicine, 47, 1525–1530.PubMedGoogle Scholar
  66. 66.
    Riedl, C. C., Akhurst, T., Larson, S., Stanziale, S. F., Tuorto, S., Bhargava, A., et al. (2007). 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases. Journal of Nuclear Medicine, 48, 771–775.PubMedCrossRefGoogle Scholar
  67. 67.
    Gottlieb, E., & Tomlinson, I. P. (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Reviews Cancer, 5, 857–866.PubMedCrossRefGoogle Scholar
  68. 68.
    Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287, 848–851.PubMedCrossRefGoogle Scholar
  69. 69.
    Niemann, S., & Muller, U. (2000). Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genetics, 26, 268–270.PubMedCrossRefGoogle Scholar
  70. 70.
    Tomlinson, I. P., Alam, N. A., Rowan, A. J., Barclay, E., Jaeger, E. E., Kelsell, D., et al. (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genetics, 30, 406–410.PubMedCrossRefGoogle Scholar
  71. 71.
    Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7, 77–85.PubMedCrossRefGoogle Scholar
  72. 72.
    Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 11, 37–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425–434.PubMedCrossRefGoogle Scholar
  74. 74.
    Thomas, G. V., Tran, C., Mellinghoff, I. K., Welsbie, D. S., Chan, E., Fueger, B., et al. (2006). Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Medicine, 12, 122–127.PubMedCrossRefGoogle Scholar
  75. 75.
    Majhail, N. S., Urbain, J. L., Albani, J. M., Kanvinde, M. H., Rice, T. W., Novick, A. C., et al. (2003). F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. Journal of Clinical Oncology, 21, 3995–4000.PubMedCrossRefGoogle Scholar
  76. 76.
    Van den Abbeele, A. D., & Badawi, R. D. (2002). Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). European Journal of Cancer, 38(Suppl 5), S60–S65.PubMedGoogle Scholar
  77. 77.
    Stroobants, S., Goeminne, J., Seegers, M., Dimitrijevic, S., Dupont, P., Nuyts, J., et al. (2003). 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). European Journal of Cancer, 39, 2012–2020.PubMedCrossRefGoogle Scholar
  78. 78.
    Cullinane, C., Dorow, D. S., Kansara, M., Conus, N., Binns, D., Hicks, R. J., et al. (2005). An in vivo tumor model exploiting metabolic response as a biomarker for targeted drug development. Cancer Research, 65, 9633–9636.PubMedCrossRefGoogle Scholar
  79. 79.
    Su, H., Bodenstein, C., Dumont, R. A., Seimbille, Y., Dubinett, S., Phelps, M. E., et al. (2006). Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clinical Cancer Research, 12, 5659–5667.PubMedCrossRefGoogle Scholar
  80. 80.
    Gatenby, R. A., & Gillies, R. J. (2007). Glycolysis in cancer: a potential target for therapy. International Journal of Biochemistry and Cell Biology, 39, 1358–1366.PubMedCrossRefGoogle Scholar
  81. 81.
    Pearson, H. (2007). Cancer patients opt for unapproved drug. Nature, 446, 474–475.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Nuclear MedicineUniversity of FreiburgFreiburgGermany

Personalised recommendations