Cancer and Metastasis Reviews

, Volume 27, Issue 2, pp 315–334 | Cite as

Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development

  • Samir Kumar Patra
  • Aditi Patra
  • Federica Rizzi
  • Tapash Chandra Ghosh
  • Saverio Bettuzzi


Cancer cells and tissues exhibit genome wide hypomethylation and regional hypermethylation. CpG-methylation of DNA (MeCpG-DNA) is defined as the formation of a C–C covalent bond between the 5′-C of cytosine and the –CH3 group of S-adenosylmethionine. Removal of the sole –CH3 group from the methylated cytosine of DNA is one of the many ways of DNA-demethylation, which contributes to activation of transcription. The mechanism of demethylation, the candidate enzyme(s) exhibiting direct demethylase activity and associated cofactors are not firmly established. Genome-wide hypomethylation can be obtained in several ways by inactivation of DNMT enzyme activity, including covalent trapping of DNMT by cytosine base analogues. Removal of methyl layer could also be occurred by excision of the 5-methyl cytosine base by DNA glycosylases. The importance of truly chemically defined direct demethylation of intact DNA in regulation of gene expression, development, cell differentiation and transformation are discussed in this contribution.


Cancer-epigenetics –CpG– islands (Cytosine-5C-methyl)-DNA-demethylation MBD2 DNA-demethylase Transcription 



The work was done in part at the McGill University, Montreal, Canada, during one of the authors (SKP) stay as academic trainee staff, supported by a fellowship from the National Cancer Institute of Canada (NCIC); and also done in part at the University of California at San Francisco, USA, during the stay of SKP and AP as postdoctoral scientists supported by fellowships from NIH, and thereafter from NCIRE, California, USA. Grant support for SB: ABO Project 2006, Venezia, Italy; AICR (UK) Grant No. 06-711; Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma; Associazione Assistenza Tumori Alto Adige—Südtiroler Krebshilfe, Bolzano (Bozen), Italy. We apologize to those, whose work and related publications we have not been able to discuss and cite due to space limitations.


  1. 1.
    Reik, W., Dean, W., & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293, 1089–1093.PubMedCrossRefGoogle Scholar
  2. 2.
    Surani, M. A. (2002). Immaculate misconception—Genetics. Nature, 416, 491–493.PubMedCrossRefGoogle Scholar
  3. 3.
    Judson, H., Hayward, B. E., Sheridan, E., & Bonthron, D. T. (2002). A global disorder of imprinting in the human female germ line. Nature, 416, 539–542.PubMedCrossRefGoogle Scholar
  4. 4.
    Hata, K., Okano, M., Lei, H., & Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 129, 1983–1993.PubMedGoogle Scholar
  5. 5.
    Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B., & Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science, 294, 2536–2539.PubMedCrossRefGoogle Scholar
  6. 6.
    McLay, D. W., & Clarke, H.J. (2003). Remodelling the paternal chromatin at fertilization in mammals. Reproduction, 125, 625–633.PubMedCrossRefGoogle Scholar
  7. 7.
    Haaf, T. (2006). Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development. Current Topics in Microbiology and Immunology, 310, 13–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Hove, J. R., Koster, R. W., Forouhar, A. S., Acevedo-Bolton, G., Fraser, S. E., & Gharib, M. (2003). Intracardiac fluid forces are essential epigenetic factor for embryonic cardiogenesis. Nature, 421, 172–177.PubMedCrossRefGoogle Scholar
  9. 9.
    Patra, S. K. (2008). Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochimica et Biophysica Acta. doi:10.1016/j.bbcan2007.11.002.
  10. 10.
    Konner, M. (2002). Development: Weaving life’s pattern. Nature, 418, 279.PubMedCrossRefGoogle Scholar
  11. 11.
    Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of theoretical biology. New York: Macmillan.Google Scholar
  12. 12.
    Hotchkiss, R. D. (1948). The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography. Journal of Biological Chemistry, 175, 315–332.PubMedGoogle Scholar
  13. 13.
    Smith, S. S. (2000). Gilbert’s conjecture: The search for DNA (Cytosine-5) demethylase and the emergence of new functions for eukaryotic DNA (Cytosine-5) methyltransferases. Journal of Molecular Biology, 302, 1–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Bestor, T. H. (2000). The DNA methyltransferases of mammals. Human Molecular Genetics, 9, 2395–2402.PubMedCrossRefGoogle Scholar
  15. 15.
    Patra, S. K., Patra, A., Zhao, H., & Dahiya, R. (2002). DNA methyltransferase and demethylase in human prostate cancer. Molecular Carcinogenesis, 33, 163–171.PubMedCrossRefGoogle Scholar
  16. 16.
    Patra, S. K., Patra, A., Zhao, H., Carroll, P., & Dahiya, R. (2003). Methyl-CpG-DNA binding proteins in human prostate cancer: expression of CXXC sequence containing MBD1 and repression of MBD2 and MeCP2. Biochemical and Biophysical Research Communications, 302, 759–766.PubMedCrossRefGoogle Scholar
  17. 17.
    Patra, S. K., Patra, A., & Dahiya, R. (2001). Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochemical and Biophysical Research Communications, 287, 705–713.PubMedCrossRefGoogle Scholar
  18. 18.
    Bhattacharya, S. K., Ramchandani, S., Cervoni, N., & Szyf, M. (1999). A mammalian protein with specific demethylase activity for mCpG DNA. Nature, 397, 579–783.PubMedCrossRefGoogle Scholar
  19. 19.
    Ramchandani, S., Bhattacharya, S. K., Cervoni, N., & Szyf, M. (1999). DNA methylation is a reversible biological signal. Proceedings of the National Academy of Sciences of the USA, 96, 6107–6112.PubMedCrossRefGoogle Scholar
  20. 20.
    Goel, A., Mathupala, S. P., & Pedersen, P. L. (2003). Glucose metabolism in cancer: Evidence that demethylation events play a role in activating type II hexokinase gene expression. Journal of Biological Chemistry, 278, 15333–15340.PubMedCrossRefGoogle Scholar
  21. 21.
    Cervoni, N., & Szyf, M. (2001). Demethylase activity is directed by histone acetylation. Journal of Biological Chemistry, 276, 40778–40787.PubMedCrossRefGoogle Scholar
  22. 22.
    Cervoni, N., Bhattacharya, S. K., & Szyf, M. (1999). DNA demethylase is a processive enzyme. Journal of Biological Chemistry, 274, 8363–8366.PubMedCrossRefGoogle Scholar
  23. 23.
    Guo, Y., Pakneshan, P., Gladu, J., Slak, A., Szyf, M., & Rabbani, S. A. (2002). Regulation of DNA methylation in human breast cancer—Effect on the urokinase-type plasminogen activator gene production and tumor invasion. Journal of Biological Chemistry, 277, 41571–41579.PubMedCrossRefGoogle Scholar
  24. 24.
    Wade, P. A., Gregonne, A., Jones, P. L., Ballester, E., Aubry, F., & Wolf, A. P. (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genetics, 23, 61–66.Google Scholar
  25. 25.
    Ng, H. H., Zhang, Y., Hendrich, B., Johnson, C. A., Turner, B. M., Erdjument-Bromage, H., Tempst, P., Reinberg, D., & Bird, A. (1999). MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genetics, 23, 58–61.PubMedGoogle Scholar
  26. 26.
    Fujita, H., Fuji, R., Aratani, S., Amano, T., Fukamizu, A., & Nakajima, T. (2003). Antithetic effects of MBD2a on gene regulation. Molecular and Cellular Biology, 23, 2645–2657.PubMedCrossRefGoogle Scholar
  27. 27.
    Kress, C., Thomassin, H., & Grange, T. (2006). Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proceedings of the National Academy of Sciences of the USA, 103, 11112–11117.PubMedCrossRefGoogle Scholar
  28. 28.
    Barreto, G., Schafer, A., Marhold, J., Stach, D., Swaminathan, S. K., Handa, V., et al. (2007). Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 445, 671–675.PubMedCrossRefGoogle Scholar
  29. 29.
    Thomassin, H., Flavin, M., Espinas, M.-L., & Grange, T. (2001). Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO Journal, 20, 1974–1983.PubMedCrossRefGoogle Scholar
  30. 30.
    Kress, C., Thomassin, H., & Grange, T. (2001). Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Letters, 494, 135–140.PubMedCrossRefGoogle Scholar
  31. 31.
    Jost, J.-P., Thiry, S., & Sigman, M. (2002). 5-Methyldeoxycytidine monophosphate deaminase and 5-methylcytidyl-DNA deaminase activities are present in human mature sperm cells. FEBS Letters, 519, 128–134.PubMedCrossRefGoogle Scholar
  32. 32.
    Surani, M. A. (2001). Reprogramming of genome function through epigenetic inheritance. Nature, 414, 122–128.PubMedCrossRefGoogle Scholar
  33. 33.
    Patra, S. K., & Bettuzzi, S. (2007). Epigenetic DNA methylation regulation of genes coding for lipid raft-associated components: A role for raft proteins in cell transformation and cancer progression (Review). Oncology Reports, 17, 1279–1290.PubMedGoogle Scholar
  34. 34.
    Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews (Genetics), 3, 416–428.Google Scholar
  35. 35.
    Hendrich, B., & Bird, A. (1998). Identification and characterization of a family of mammalian methyl-CpG binding proteins. Molecular and Cellular Biology, 18, 6538–6547.PubMedGoogle Scholar
  36. 36.
    Tan, C. P., & Nakielny, S. (2006). Control of the DNA methylation system component MBD2 by protein arginine methylation. Molecular and Cellular Biology, 26, 7224–7235.PubMedCrossRefGoogle Scholar
  37. 37.
    Wade, P. A. (2001). Methyl CpG-binding proteins and transcriptional repression. BioEssays, 23, 1131–1137.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee, J.-H., Voo, K. S., & Skalnik, D. G. (2001). Identification and characterization of the DNA binding domain of CpG-binding protein. Journal of Biological Chemistry, 276, 44669–44676.PubMedCrossRefGoogle Scholar
  39. 39.
    Feng, Q., & Zhang, Y. (2001). The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes & Development, 15, 827–832.Google Scholar
  40. 40.
    Lopez-Serra, L., Ballestar, E., Fraga, M. F., Alaminos, M., Setien, F., & Esteller, M. (2006). A profile of Methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG-islands of tumor suppressor genes in human cancer. Cancer Research, 66, 8342–8346.PubMedCrossRefGoogle Scholar
  41. 41.
    Lembo, F., Pero, R., Angrisano, T., Vitiello, C., Iuliano, R., Bruni, C. B., et al. (2003). MBDin, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Molecular and Cellular Biology, 23, 1656–1665.PubMedCrossRefGoogle Scholar
  42. 42.
    Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., et al. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119, 941–953.PubMedCrossRefGoogle Scholar
  43. 43.
    Kubicek, S., & Jenuwein, T. (2004). A crack in histone lysine methylation. Cell, 119, 903–906.PubMedCrossRefGoogle Scholar
  44. 44.
    Ehrlich, M. (2006). Cancer-linked DNA hypomethylation and its relationship to hypermethylation. Current Topics in Microbiology and Immunology, 310, 251–274.PubMedCrossRefGoogle Scholar
  45. 45.
    Rodriguez, J., Frigola, J., Vendrell, E., Risques, R. A., Fraga, M. F., Morales, C., et al. (2006). Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Research, 66, 8462–9468.PubMedCrossRefGoogle Scholar
  46. 46.
    Bruniquel, D., & Schwartz, R. H. (2003). Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nature Immunology, 4, 235–240.PubMedCrossRefGoogle Scholar
  47. 47.
    Santos, F., Hendrich, B., Reik, W., & Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Developments in Biologicals, 241, 172–182.CrossRefGoogle Scholar
  48. 48.
    Li, E., Bestor, T. H., & Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69, 915–926.PubMedCrossRefGoogle Scholar
  49. 49.
    Lewin, B. (1995). GENE-V. In B.Lewin (Ed.) Systems that safeguard DNA (pp. 605–629). Oxford, NY: Oxford University Press.Google Scholar
  50. 50.
    Hoeijmakers, J. H. J. (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411, 366–374.PubMedCrossRefGoogle Scholar
  51. 51.
    Richmond, T. H., & Davey, C. A. (2003). The structure of DNA in the nucleosome core. Nature, 423, 145–150.PubMedCrossRefGoogle Scholar
  52. 52.
    Horn, P. J., & Peterson, C. L. (2002). Chromatin higher order folding: Wrapping up transcription. Science, 297, 1824–1827.PubMedCrossRefGoogle Scholar
  53. 53.
    Quina, A. S., Buschbeck, M., & Di Croce, L. (2006). Chromatin structure and epigenetics. Biochemical Pharmacology, 72, 1563–1569.PubMedCrossRefGoogle Scholar
  54. 54.
    Vargason, J. M., Eichman, B. F., & Ho, P. S. (2000). The extended and eccentric E-DNA structure induced by cytosine methylation or bromination. Nature Structural Biology, 7, 758–761.PubMedCrossRefGoogle Scholar
  55. 55.
    Mayer-Jung, C., Moras, D., & Timsit, Y. (1998). Hydration and recognition of methylated CpG steps in DNA. EMBO Journal, 17, 2709–2718.PubMedCrossRefGoogle Scholar
  56. 56.
    Schübeler, D., Lorincz, M. C., Cimbora, D. M., Telling, A., Feng, Y.-Q., Bouhassira, E. E., et al. (2000). Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Molecular and Cellular Biology, 20, 9103–9112.PubMedCrossRefGoogle Scholar
  57. 57.
    Hashimshony, T., Zhang, J., Keshet, I., Bustin, M., & Ceder, H. (2003). The role of DNA methylation in setting up chromatin structure during development. Nature Genetics, 34, 187–192.PubMedCrossRefGoogle Scholar
  58. 58.
    Okitsu, C. Y., & Hsieh, C. L. (2007). DNA methylation dictates histone H3K4 methylation. Molecular and Cellular Biology, 27, 2746–2757.PubMedCrossRefGoogle Scholar
  59. 59.
    Irvine, R. A., Lin, I. G., & Hsieh, C.-L. (2002). DNA methylation has a local effect on transcription and histone acetylation. Molecular and Cellular Biology, 22, 6689–6696.PubMedCrossRefGoogle Scholar
  60. 60.
    Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128, 669–681.PubMedCrossRefGoogle Scholar
  61. 61.
    Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120, 169–181.PubMedCrossRefGoogle Scholar
  62. 62.
    Liang, G., Lin, J. C., Wei, V., Yoo, C., Cheng, J. C., Nguyen, C. T., et al. (2004). Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proceedings of the National Academy of Sciences of the USA, 101, 7357–7362.PubMedCrossRefGoogle Scholar
  63. 63.
    Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., et al. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419, 407–411.PubMedCrossRefGoogle Scholar
  64. 64.
    Schneider, R. A., Bannister, J., Myers, F. A., Thorne, A. W., Crane-Robinson, C., et al. (2004). Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nature Cell Biology, 6, 73–77.PubMedCrossRefGoogle Scholar
  65. 65.
    Christensen, J., Agger, K., Cloos, P. A., Pasini, D., Rose, S., Sennels, L., et al. (2007). RBP2 belongs to a family of demethylases, specific for tri- and dimethylated lysine 4 on histone 3. Cell, 128, 1063–1076.PubMedCrossRefGoogle Scholar
  66. 66.
    Lorincz, M. C., Dickerson, D. R., Schmitt, M., & Groudine, M. (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural Molecular Biology, 11, 1068–1075.PubMedCrossRefGoogle Scholar
  67. 67.
    Schübeler, D., MacAlpine, D. M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van Leeuwen, F., et al. (2004). The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Development, 18, 1263–1271.PubMedCrossRefGoogle Scholar
  68. 68.
    Parnell, T. J., & Geyer, P. K. (2000). Differences in insulator properties revealed by enhancer blocking assays on episomes. EMBO Journal, 19, 5864–5874.PubMedCrossRefGoogle Scholar
  69. 69.
    Cook, P. R. (2003). Nongenic transcription, gene regulation and action at a distance. Cell Science, 116, 4483–4491.CrossRefGoogle Scholar
  70. 70.
    Blanton, J., Gaszner, M., & Schedl, P. (2003). Protein–protein interactions and the pairing of boundary elements in vivo. Genes and Development, 17, 664–675.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhao, K., Hart, C. M., & Laemmli, U. K. (1995). Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell, 81, 879–889.PubMedCrossRefGoogle Scholar
  72. 72.
    Cai, H., & Levine, M. (1995). Modulation of enhancer–promoter interactions by insulators in the Drosophila embryo. Nature, 376, 533–536.PubMedCrossRefGoogle Scholar
  73. 73.
    Ghosh, D., Gerasimova, T. I., & Corces, V. G. (2001). Interactions between the Su(Hw) and mod(mdg4) proteins required for gypsy insulator function. EMBO Journal, 20, 2518–2527.PubMedCrossRefGoogle Scholar
  74. 74.
    Kellum, R., & Schedl, P. (1991). A position-effect assay for boundaries of higher order chromosomal domains. Cell, 64, 941–950.PubMedCrossRefGoogle Scholar
  75. 75.
    Reither, S., Li, F., Gowher, H., & Jeltsch, A. (2003). Catalytic mechanism of DNA-(cytosine-C5)-methyltransferases revisited: Covalent intermediate formation is not essential for methyl group transfer by the murine Dnmt3a enzyme. Journal of Molecular Biology, 329, 675–684.PubMedCrossRefGoogle Scholar
  76. 76.
    Christman, J. K. (2002). 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21, 5483–5491.PubMedCrossRefGoogle Scholar
  77. 77.
    Cedar, H., & Verdine, G. L. (1999). Gene expression: the amazing demethylase. Nature, 397, 568–569.PubMedCrossRefGoogle Scholar
  78. 78.
    Cervoni, N., Detich, N., Seo, S. B., Chakravarti, D., & Szyf, M. (2002). The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. Journal of Biological Chemistry, 277, 25026–25031.PubMedCrossRefGoogle Scholar
  79. 79.
    Weiss, A., & Cedar, H. (1997). The role of DNA demethylation during development. Genes Cells, 2, 481–486.PubMedCrossRefGoogle Scholar
  80. 80.
    Roberts, R. J., & Cheng, X. (1998). Base flipping. Annual Review of Biochemistry, 67, 181–198.PubMedCrossRefGoogle Scholar
  81. 81.
    Kapoor, A., Agius, F., & Zhu, J.-K. (2005). Preventing transcriptional gene silencing by active DNA demethylation. FEBS Letters, 579, 5889–5898.PubMedCrossRefGoogle Scholar
  82. 82.
    Jost, J. P., & Bruhat, A. (1997). The formation of DNA methylation patterns and the silencing of genes. Progress in Nucleic Acid Research and Molecular Biology, 57, 217–248.PubMedCrossRefGoogle Scholar
  83. 83.
    Jost, J. P., Siegmann, M., Sun, L. J., & Leung, R. (1995). Mechanisms of DNA demethylation in chicken embryos: purification and properties of a 5-methylcytosine-DNA glycosylase. Journal of Biological Chemistry, 270, 9734–9739.PubMedCrossRefGoogle Scholar
  84. 84.
    Weiss, A., Keshet, I., Razin, A., & Cedar, H. (1996). DNA demethylation in vitro: Involvement of RNA. Cell, 86, 709–718.PubMedCrossRefGoogle Scholar
  85. 85.
    Swisher, J. F. A., Rand, E., Cedar, H., & Pyle, A. M. (1998). Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts. Nucleic Acids Research, 26, 5573–5580.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhu, B., Zheng, Y., Angliker, H., Schwarz, S., Siegmann, M., Thiry, S., et al. (2000). 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Research, 28, 4157–4165.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhu, B., Zheng, Y., Hess, D., Angliker, H., Schwarz, S., Siegmann, M., et al. (2000). 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proceedings of the National Academy of Sciences of the USA, 97, 5135–5139.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhu, B., Benjamin, D., Zheng, Y., Angliker, H., Thiry, S., Siegmann, M., et al. (2001). Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proceedings of the National Academy of Sciences of the USA, 98, 5031–5036.PubMedCrossRefGoogle Scholar
  89. 89.
    Jost, J. P. (1993). Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proceedings of the National Academy of Sciences of the USA, 90, 4684–4688.PubMedCrossRefGoogle Scholar
  90. 90.
    Jost, J. P., Schwarz, S., Hess, D., Angliker, H., Fuller-Pace, F. V., Stahl, H. S., et al. (1999). A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein–RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Research, 27, 3245–3252.PubMedCrossRefGoogle Scholar
  91. 91.
    Vairapandi, M., & Duker, N. J. (1993). Enzymic removal of 5-methylcytosine from DNA by a human DNA-glycosylase. Nucleic Acids Research, 21, 5323–5327.PubMedCrossRefGoogle Scholar
  92. 92.
    Vairapandi, M., Liebermann, D. A., Hoffman, B., & Duker, N. J. (2000). Human DNA-demethylating activity: A glycosylase associated with RNA and PCNA. Journal of Cellular Biochemistry, 79, 249–260.PubMedCrossRefGoogle Scholar
  93. 93.
    Maga, G., & Hubscher, U. (2003). Proliferating cell nuclear antigen (PCNA): a dancer with many partners. Journal of Cell Science, 116, 3051–3060.PubMedCrossRefGoogle Scholar
  94. 94.
    Hsieh, C. L. (1999). Evidence that protein binding specifies sites of DNA demethylation. Molecular and Cellular Biology, 19, 46–56.PubMedGoogle Scholar
  95. 95.
    Goelz, S. E., Vogelstein, B., Hamilton, S. R., & Feinberg, A. P. (1985). Hypomethylation of DNA from benign and malignant human colon neoplasms. Science, 228, 187–190.PubMedCrossRefGoogle Scholar
  96. 96.
    Gaudet, F., Hodgson, J. G., Eden, A., Jakson-Grusby, L., Dausman, J., Gray, J. W., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300, 489–492.PubMedCrossRefGoogle Scholar
  97. 97.
    Gjerset, R. A., & Martin Jr., D. W. (1982). Presence of DNA demethylating activity in the nucleus of murine erythroleukemic cells. Journal of Biological Chemistry, 257, 8581–8583.PubMedGoogle Scholar
  98. 98.
    Ghoshal, K., Majumder, S., Datta, J., Motiwala, T., Bai, S., Sharma, S. M., et al. (2004). Role of human ribosomal RNA (rRNA) promoter methylation and of methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. Journal of Biological Chemistry, 279, 6783–6793.PubMedCrossRefGoogle Scholar
  99. 99.
    Zhu, Y., Brown, H. N., Zhang, Y., Holford, T. R., & Zheng, T. (2005). Genotypes and haplotypes of the methyl-CpG-binding domain 2 modify breast cancer risk dependent upon menopausal status. Breast Cancer Research, 7, R745–R752.PubMedCrossRefGoogle Scholar
  100. 100.
    Fang, J. Y., Cheng, Z. H., Chen, Y. X., Lu, R., Yang, L., Zhu, H. Y., et al. (2004). Expression of Dnmt1, demethylase, MeCP2 and methylation of tumor-related genes in human gastric cancer. World Journal of Gastroenterologist, 10, 3394–3398.Google Scholar
  101. 101.
    Sansom, O. J., Berger, J., Bishop, S. M., Hendrich, B., Bird, A., & Clarke, A. R. (2003). Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genetics, 34, 145–147 (also, see supplementary data).PubMedCrossRefGoogle Scholar
  102. 102.
    Berger, J., Sansom, O., Clarke, A., & Bird, A. (2007). MBD2 is required for correct spatial gene expression in the gut. Molecular and Cellular Biology, 27, 4049–4057.PubMedCrossRefGoogle Scholar
  103. 103.
    Galetzka, D., Weis, E., Tralau, T., Seidmann, L., & Haaf, T. (2007). Sex-specific windows for high mRNA expression of DNA methyltransferases 1 and 3A and methyl-CpG-binding domain proteins 2 and 4 in human fetal gonads. Molecular Reproduction and Development, 74, 233–241.PubMedCrossRefGoogle Scholar
  104. 104.
    Mayer, W., Niveleau, A., Walter, J., Fundele, R., & Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature, 403, 501–502.PubMedCrossRefGoogle Scholar
  105. 105.
    Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., et al. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the USA, 98, 13734–13738.PubMedCrossRefGoogle Scholar
  106. 106.
    Beaujean, N., Taylor, J. E., McGarry, M., Gardner, J. O., Wilmut, I., Loi, P., et al. (2004). The effect of interspecific oocytes on demethylation of sperm DNA. Proceedings of the National Academy of Sciences of the USA, 101, 7636–7640.PubMedCrossRefGoogle Scholar
  107. 107.
    Kang, Y. K., Koo, D., Park, J. S., Choi, Y., Lee, K., & Han, Y. (2001). Influence of oocyte nuclei on demethylation of donor genome in cloned bovine embryos. FEBS Letters, 499, 55–58.PubMedCrossRefGoogle Scholar
  108. 108.
    Wischnewski, F., Friese, O., Pantel, K., & Schwarzenbach, H. (2007). Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. Molecular Cancer Research, 5, 749–759.PubMedCrossRefGoogle Scholar
  109. 109.
    Bird, A. (2003). IL2 transcription unleashed by active DNA demethylation. Nature Immunology, 4, 208–209.PubMedCrossRefGoogle Scholar
  110. 110.
    Erlanson, D., Dhen, L., & Verdin, G. L. (1993). Enzymatic DNA methylation through a locally unpaired intermediate. Journal of the American Chemical Society, 115, 12583–12584.CrossRefGoogle Scholar
  111. 111.
    Chen, L., MacMillan, A. M., Cheng, W., Ezaz-Nikpay, K., Lane, W. S., & Verdin, G. L. (1991). Direct identification of the active site nucleophile in a DNA (cytosine-5-methyltransferase). Biochemistry, 30, 11018–11025.PubMedCrossRefGoogle Scholar
  112. 112.
    Santi, D. V., Garrett, C. E., & Barr, P. J. (1983). On the mechanism of inhibition of DNA-cytosine methyltransferase by cytosine analogs. Cell, 33, 9–10.PubMedCrossRefGoogle Scholar
  113. 113.
    Wilson, V. L., & Jones, P. A. (1983). Inhibition of DNA methylation by chemical carcinogens in vitro. Cell, 32, 239–246.PubMedCrossRefGoogle Scholar
  114. 114.
    Klimasauskas, S., Kumar, S., Robert, R. J., & Cheng, X. (1994). HhaI methyltransferase flips its target base out of the DNA helix. Cell, 76, 357–369.PubMedCrossRefGoogle Scholar
  115. 115.
    Wu, P., Qiu, C., Sohail, A., Zhang, X., Bhagwat, A. S., & Cheng, X. (2003). Mismatch repair in methylated DNA: Structure and activity of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4. Journal of Biological Chemistry, 278, 5285–5291.PubMedCrossRefGoogle Scholar
  116. 116.
    Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857–869.PubMedCrossRefGoogle Scholar
  117. 117.
    Claus, R., Almstedt, M., & Lubbert, M. (2005). Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents. Seminars in Oncology, 32, 511–520.PubMedCrossRefGoogle Scholar
  118. 118.
    Wijermans, P., Lubbert, M., Verhoef, G., Bosly, A., Ravoet, C., Andre, M., et al. (2000). Low-Dose 5-Aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: A multicenter phase II study in elderly patients. Journal of Clinical Oncology, 18, 956–965.PubMedGoogle Scholar
  119. 119.
    Yoo, C. B., & Jones, P. A. (2006). Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery, 5, 37–50.PubMedCrossRefGoogle Scholar
  120. 120.
    Mihich, E., & Jaenisch, R. (2004). Sixteenth annual pezcoller symposium: Stem cells and epigenesis in cancer. Cancer Research, 64, 8474–8477.PubMedCrossRefGoogle Scholar
  121. 121.
    Sato, N., Maehara, N., Su, G. H., & Goggins, M. (2003). Effects of 5-aza-2′-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. Journal of the National Cancer Institute, 95, 327–330.PubMedCrossRefGoogle Scholar
  122. 122.
    Pulukuri, S. M., Estes, N., Patel, J., & Rao, J. S. (2007). Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Research, 67, 930–939.PubMedCrossRefGoogle Scholar
  123. 123.
    Lucarelli, M., Fuso, A., Strom, R., & Scarpa, S. (2001). The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. Journal of Biological Chemistry, 276, 7500–7506.PubMedCrossRefGoogle Scholar
  124. 124.
    El Kharroubi, A., Piras, G., & Stewart, C. L. (2001). DNA demethylation reactivates a subset of imprinted genes in uni-parental mouse embryonic fibroblasts. Journal of Biological Chemistry, 276, 8674–8680.PubMedCrossRefGoogle Scholar
  125. 125.
    Santoso, B., Ortiz, B. D., & Winoto, A. (2000). Control of organ-specific demethylation by an element of the T-cell receptor-alpha locus control region. Journal of Biological Chemistry, 275, 1952–1858.PubMedCrossRefGoogle Scholar
  126. 126.
    Ferguson, A. T., Vertino, P. M., Spitzner, J. R., Baylin, S. B., Muller, M. T., & Davidson, N. E. (1997). Role of estrogen receptor gene demethylation and DNA methyltransferase-DNA adduct formation in 5-aza-2′-deoxycytidine induced cytotoxicity in human breast cancer cells. Journal of Biological Chemistry, 272, 32260–32266.PubMedCrossRefGoogle Scholar
  127. 127.
    Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase DNMT1 associates with histone deacetylase activity. Nature Genetics, 24, 88–91.PubMedCrossRefGoogle Scholar
  128. 128.
    Wittschieben, B. O., Otero, G., de Bizemont, T., Fellows, J., Erdjument-Bromage, H., Ohba, R., et al. (1999). A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Molecular Cell, 4, 123–128.PubMedCrossRefGoogle Scholar
  129. 129.
    Scaltriti, M., Belloni, L., Caporali, A., Davalli, P., Remondini, D., Rizzi, F., et al. (2006). Molecular classification of green tea catechin-sensitive and green tea catechin-resistant prostate cancer in the TRAMP mice model by quantitative real-time PCR gene profiling. Carcinogenesis, 27, 1047–1053.PubMedCrossRefGoogle Scholar
  130. 130.
    Lund, P., Weisshaupt, K., Mikeska, T., Jammas, D., Chen, X., Kuban, R. J., et al. (2006). Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene, 25, 4890–4903.PubMedCrossRefGoogle Scholar
  131. 131.
    Kundu, T. K., & Rao, M. R. S. (1999). CpG islands in chromatin organization and gene expression. Journal of Biochemistry, 125, 217–222.PubMedGoogle Scholar
  132. 132.
    Bock, C., Paulsen, M., Tierling, S., Mikeska, T., Lengauer, T., & Walter, J. (2006). CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genetics, 2, e26. doi: 10.1371/journal.pgen.0020026.PubMedCrossRefGoogle Scholar
  133. 133.
    Das, R., Dimitrova, N., Xuan, Z., Rollins, R. A., Haghighi, F., Edwards, J. R., et al. (2006). Computational prediction of methylation status in human genomic sequences. Proceedings of the National Academy of Sciences of the USA, 103, 10713–10716.PubMedCrossRefGoogle Scholar
  134. 134.
    Rollins, R. A., Haghighi, F., Edwards, J. R., Das, R., Zhang, M. Q., Ju, J., et al. (2006). Large-scale structure of genomic methylation patterns. Genome Research, 16, 157–163.PubMedCrossRefGoogle Scholar
  135. 135.
    Salisbury, C. M., & Cravatt, B. E. (2007). Activity based probes for profiling of histone deacetylase complexes. Proceedings of the National Academy of Sciences of the USA, 104, 1171–1176.PubMedCrossRefGoogle Scholar
  136. 136.
    Delaval, K., Govin, J., Cerqueira, F., Rousseaux, S., Khochbin, S., & Feil, R. (2007). Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO Journal, 26, 720–729.PubMedCrossRefGoogle Scholar
  137. 137.
    Frank, D., Keshet, I., Shani, M., Levine, A., Razin, A., & Ceder, H. (1991). Demethylation of CpG islands in embryonic cells. Nature, 351, 239–241.PubMedCrossRefGoogle Scholar
  138. 138.
    Paroush, Z., Keshet, I., Yisraeli, J., & Ceder, H. (1990). Dynamics of demethylation and activation of the alpha-actin gene in myoblasts. Cell, 63, 1229–1237.PubMedCrossRefGoogle Scholar
  139. 139.
    Wiechen, K., Diatchenko, L., Agoulink, A., Scharff, K. M., Schober, H., Arlt, K., et al. (2001). Caveolin-1 is down regulated in human ovarian carcinoma and Acts as candidate tumour suppressor gene. American Journal of Pathology, 159, 1635–1643.PubMedGoogle Scholar
  140. 140.
    Cui, J., Rohr, L. R., Swanson, G., Speights, V. O., Maxwell, T., & Brothman, A. R. (2001). Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate, 46, 249–256.PubMedCrossRefGoogle Scholar
  141. 141.
    Liu, J., Ikeguchi, M., Nakamura, S., & Kaibara, N. (2002). Re-expression of the Cadherin–Catenin complex in lymph nodes with metastasis in advanced gastric cancer: the relationship with patient survival. Journal of Experimental and Clinical Cancer Research, 21, 65–71.Google Scholar
  142. 142.
    Foger, N., Marhaba, R., & Zoller, M. (2000). Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. Journal of Cell Science, 114, 1169–1178.Google Scholar
  143. 143.
    Kito, H., Suzuki, H., Ichikawa, T., Sekita, N., Kamia, N., Akakura, K., et al. (2001). Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer. Prostate, 49, 110–115.PubMedCrossRefGoogle Scholar
  144. 144.
    Lou, W., Krill, D., Dhir, R., Becich, M. J., Dong, J.-T., Frierson Jr., H. F., et al. (1999). Methylation of CD44 metastasis suppressor gene in human prostate cancer. Cancer Research, 59, 2329–2331.PubMedGoogle Scholar
  145. 145.
    Hasegawa, M., Nelson, H. H., Peters, E., Ringstrom, E., Posner, M., & Kelsey, K. T. (2002). Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene, 21, 4231–4236.PubMedCrossRefGoogle Scholar
  146. 146.
    Hyman, R. (2002). Lack of a consistent relationship between demethylation of the CD44 promoter and CD44 expression. Immunogenetics, 53, 914–924.PubMedCrossRefGoogle Scholar
  147. 147.
    Shiras, A., Bhosale, A., Patekar, A., Shepal, V., & Shastry, P. (2002). Differential expression of CD44(s) and variant isoforms v3, v10 in three-dimensional cultures of mouse melanoma cell lines. Clinical & Experimental Metastasis, 19, 445–455.CrossRefGoogle Scholar
  148. 148.
    Bankfalvi, A., KraBort, M., Buchwalow, I. B., Vegh, A., Felszeghy, E., & Piffko, J. (2002). Gains and loses of adhesion molecules (CD44, E-Cadherin, and b-Catenin) during oral carcinogenesis and tumour progression. Journal of Pathology, 198, 343–351.PubMedCrossRefGoogle Scholar
  149. 149.
    Weber, G. F., Bronson, R. T., Ilagan, J., Cantor, H., Schmits, R., & Mak, T. W. (2002). Absence of the CD44 gene prevents sarcoma metastasis. Cancer Research, 62, 2281–2286.PubMedGoogle Scholar
  150. 150.
    Verkaik, N. S., Trapman, J., Romijn, J. C., Van Der Kwast, T. H., & Van Steenbrugge, G. J. (1999). Down regulation of CD44 expression in human prostatic carcinoma cell lines is correlated with DNA hypermethylation. International Journal of Cancer, 80, 439–443.CrossRefGoogle Scholar
  151. 151.
    Kogerman, P., Sy, M.-S., & Culp, L. A. (1997). Counter-selection for over expressed human CD44s primary tumour versus lung metastases in mouse fibrosarcoma model. Oncogene, 15, 1407–1416.PubMedCrossRefGoogle Scholar
  152. 152.
    Shiratori, H., Koshino, T., Uesugi, M., Nitto, H., & Saito, T. (2001). Acceleration of lung metastasis by up-regulation of CD44 expression in osteosarcoma-derived cell transplanted mice. Cancer Letters, 170, 177–182.PubMedCrossRefGoogle Scholar
  153. 153.
    Ribeiro-Filho, L. A., Franks, J., Sasaki, M., Shiina, H., Li, L.-C., Nojima, D., et al. (2002). CpG hypermethylation of promoter region and Inactivation of E-cadherin gene in human bladder cancer. Molecular Carcinogenesis, 34, 187–198.PubMedCrossRefGoogle Scholar
  154. 154.
    Karube, H., Masuda, H., Ishii, Y., & Takayama, T. (2002). E-Cadherin expression is inversely proportional to tumour size in experimental liver metastasis. Journal of Surgical Research, 106, 173–178.PubMedCrossRefGoogle Scholar
  155. 155.
    Alpaugh, M. L., Tomlinson, J. S., Kasraeian, S., & Barsky, S. H. (2002). Cooperative role of E-Cadherin sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumour emboli in inflammatory breast carcinoma. Oncogene, 21, 3631–3643.PubMedCrossRefGoogle Scholar
  156. 156.
    Ikeguchi, M., Makino, M., & Kaibara, N. (2001). Clinical significance of E-Cadherin–Cateninn complex expression in metastatic foci of colorectal carcinoma. Journal of Surgical Research, 77, 201–207.Google Scholar
  157. 157.
    Kase, S., Sugio, K., Yamazaki, K., Okamoto, T., Yano, T., & Sugimachi, K. (2000). Expression of E-Cadherin and b-Catenin in human non-small cell lung cancer and the clinical significance. Clinical Cancer Research, 6, 4784–4796.Google Scholar
  158. 158.
    Kleer, C. G., van Golen, K. L., Braun, T., & Merajver, S. D. (2001). Persistant E-Cadherin expression in inflammatory breast cancer. Modern Pathology, 14, 458–464.PubMedCrossRefGoogle Scholar
  159. 159.
    Jiang, W. G., & Mansel, R. E. (2000). E-cadherin complex and its abnormalities in human breast cancer. Surgical Oncology, 9, 151–171.PubMedCrossRefGoogle Scholar
  160. 160.
    Cavalli, L. R., Urban, C. A., Dai, D., de Assis, S., Tavares, D. C., Rone, J. D., et al. (2003). Genetic and epigenetic alterations in sentinel lymph nodes metastatic lesions compared to their corresponding primary breast tumors. Cancer Genetics and Cytogenetics, 146, 33–40.PubMedCrossRefGoogle Scholar
  161. 161.
    Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.PubMedCrossRefGoogle Scholar
  162. 162.
    Dong, E., Guidotti, A., Grayson, D. R., & Costa, E. (2007). Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proceedings of the National Academy of Sciences of the USA, 104, 4676–4681.PubMedCrossRefGoogle Scholar
  163. 163.
    Wong, I. H. (2001). Methylation profiling of human cancers in blood: molecular monitoring and prognostication (Review). International Journal of Oncology, 19, 1319–1324.PubMedGoogle Scholar
  164. 164.
    Baylin, S. B., & Ohm, J. E. (2006). Epigenetic gene silencing in cancer—A mechanism for early oncogenic pathway addiction. Nature Reviews, Cancer, 6, 107–116.CrossRefGoogle Scholar
  165. 165.
    Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128, 683–692.PubMedCrossRefGoogle Scholar
  166. 166.
    Zhu, X., Leav, I., Leung, Y. K., Wu, M., Liu, Q., Gao, Y., et al. (2004). Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. American Journal of Pathology, 164, 2003–2012.PubMedGoogle Scholar
  167. 167.
    Zhu, J., & Yao, X. (2007). Use of DNA methylation for cancer detection and molecular classification. Journal of Biochemistry and Molecular Biology, 40, 135–141.PubMedGoogle Scholar
  168. 168.
    Li, L. C., Okino, S. T., & Dahiya, R. (2004). DNA methylation in prostate cancer (Review). Biochimica et Biophysica Acta, 1704, 87–102.PubMedGoogle Scholar
  169. 169.
    Fang, M. Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H., et al. (2003). Tea polyphenol Epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer Cell lines. Cancer Research, 63, 7563–7570.PubMedGoogle Scholar
  170. 170.
    Pakneshan, P., Szyf, M., Farias-Eisner, R., & Rabbani, S. A. (2004). Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. Journal of Biological Chemistry, 279, 31735–31744.PubMedCrossRefGoogle Scholar
  171. 171.
    Peterson, C. L., & Logie, C. (2000). Recruitment of chromatin remodeling machines. Journal of Cellular Biochemistry, 78, 179–185.PubMedCrossRefGoogle Scholar
  172. 172.
    Rhee, I., Jair, K.-W., Yen, R.-W. C., Lengauer, C., Herman, J. G., Kinzler, K. W., et al. (2000). CpG methylation is maintained in human cancer cells lacking DNMT1. Nature, 404, 1003–1007.PubMedCrossRefGoogle Scholar
  173. 173.
    Razin, A., Cedar, H., & Riggs, A. D. (1984). DNA methylation, biochemistry, and biological significance. New York: Springer.Google Scholar
  174. 174.
    Adams, R. L. P., & Burdon, R. H. (1985). Molecular biology of DNA methylation. New York: Springer.Google Scholar
  175. 175.
    Jost, J.-P., & Saluz, H. P. (1993). DNA methylation: Molecular biology and biological significance. Berlin: Birkhäuser.Google Scholar
  176. 176.
    Shell, S., Park, S. M., Radjabi, A. R., Schickel, R., Kistner, E. O., Jewell, D. A., et al. (2007). Let-7 expression defines two differentiation stages of cancer. Proceedings of the National Academy of Sciences of the USA, 104, 11400–11405.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Samir Kumar Patra
    • 1
  • Aditi Patra
    • 1
    • 2
  • Federica Rizzi
    • 3
    • 4
  • Tapash Chandra Ghosh
    • 5
  • Saverio Bettuzzi
    • 3
    • 4
  1. 1.Cancer Epigenetics ResearchNadiaIndia
  2. 2.Venkateshwara HatcheriesSalt Lake CityIndia
  3. 3.Department of Medicina SperimentaleUniversity of ParmaParmaItaly
  4. 4.Istituto Nazionale Biostrutture e Biosistemi (INBB)RomeItaly
  5. 5.Bioinformatics CentreBose InstituteKolkataIndia

Personalised recommendations