Cancer and Metastasis Reviews

, Volume 27, Issue 2, pp 205–214

PTPL1: a large phosphatase with a split personality



Protein tyrosine phosphatase, PTPL1, (also known as PTPN13, FAP-1, PTP-BAS, PTP1E) is a non-receptor type PTP and, at 270 kDa, is the largest phosphatase within this group. In addition to the well-conserved PTP domain, PTPL1 contains at least 7 putative macromolecular interaction domains. This structural complexity indicates that PTPL1 may modulate diverse cellular functions, perhaps exerting both positive and negative effects. In accordance with this idea, while certain studies suggest that PTPL1 can act as a tumor-promoting gene other experimental studies have suggested that PTPL1 may function as a tumor suppressor. The role of PTPL1 in the cancer cell is therefore likely to be both complex and context dependent with possible roles including the modulation of growth, stress-response, and cytoskeletal remodeling pathways. Understanding the nature of molecular complexes containing PTPL1, its interaction partners, substrates, regulation and subcellular localization are key to unraveling the complex personality of this protein phosphatase.


PTPL1 FAP1 PTPN13 Cancer Tumor suppressor Tumor promoter 



Ewing’s Sarcoma Family of Tumors


band 4.1/ezrin/radixin/moesin


Inhibitor of nuclear factor kappa-B alpha


Kinase non-catalytic C-lobe domain


PTPL1-associated RhoGAP1




Phosphatidylinositol biphosphates


Phosphatidylinositol triphosphates


Protein kinase-A


Protein Tyrosine Phosphatase


Tandem-PH-domain-containing proteins


Tumor necrosis factor-receptor


Thyroid Hormone Receptor-interacting Protein 6


  1. 1.
    Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117(6), 699–711.PubMedCrossRefGoogle Scholar
  2. 2.
    Dube, N., & Tremblay, M. L. (2005). Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. Biochimica et Biophysica Acta, 1754(1–2), 108–117.PubMedGoogle Scholar
  3. 3.
    Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17(1), 23–30.CrossRefGoogle Scholar
  4. 4.
    Ostman, A., Hellberg, C., & Bohmer, F. D. (2006). Protein-tyrosine phosphatases and cancer. Nature Reviews Cancer, 6(4), 307–320.PubMedCrossRefGoogle Scholar
  5. 5.
    Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews. Molecular Cell Biology, 7(11), 833–846.PubMedCrossRefGoogle Scholar
  6. 6.
    Banville, D., Ahmad, S., Stocco, R., & Shen, S. H. (1994). A novel protein-tyrosine phosphatase with homology to both the cytoskeletal proteins of the band 4.1 family and junction-associated guanylate kinases. Journal of Biological Chemistry, 269(35), 22320–22327.PubMedGoogle Scholar
  7. 7.
    Maekawa, K., Imagawa, N., Nagamatsu, M., & Harada, S. (1994). Molecular cloning of a novel protein-tyrosine phosphatase containing a membrane-binding domain and GLGF repeats. FEBS Letters, 337(2), 200–206.PubMedCrossRefGoogle Scholar
  8. 8.
    Saras, J., Claesson-Welsh, L., Heldin, C. H., & Gonez, L. J. (1994). Cloning and characterization of PTPL1, a protein tyrosine phosphatase with similarities to cytoskeletal-associated proteins. Journal of Biological Chemistry, 269(39), 24082–24089.PubMedGoogle Scholar
  9. 9.
    Sato, T., Irie, S., Kitada, S., & Reed, J. C. (1995). FAP-1: A protein tyrosine phosphatase that associates with Fas. Science, 268(5209), 411–415.PubMedCrossRefGoogle Scholar
  10. 10.
    Andersen, J. N., Jansen, P. G., Echwald, S. M., Mortensen, O. H., Fukada, T., Del Vecchio, R., et al. (2004). A genomic perspective on protein tyrosine phosphatases: Gene structure, pseudogenes, and genetic disease linkage. FASEB Journal, 18(1), 8–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Chishti, A. H., Kim, A. C., Marfatia, S. M., Lutchman, M., Hanspal, M., Jindal, H., et al. (1998). The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends in Biochemical Science, 23(8), 281–282.CrossRefGoogle Scholar
  12. 12.
    Ciccarelli, F. D., Bork, P., & Kerkhoff, E. (2003). The KIND module: a putative signalling domain evolved from the C lobe of the protein kinase fold. Trends in Biochemical Science, 28(7), 349–352.CrossRefGoogle Scholar
  13. 13.
    Bompard, G., Martin, M., Roy, C., Vignon, F., & Freiss, G. (2003). Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. Journal of Cell Science, 116(Pt 12), 2519–2530.PubMedCrossRefGoogle Scholar
  14. 14.
    Herrmann, L., Dittmar, T., & Erdmann, K. S. (2003). The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis. Molecular Biology of the Cell, 14(1), 230–240.PubMedCrossRefGoogle Scholar
  15. 15.
    Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake, P. G., Iversen, L. F., Olsen, O. H., et al. (2001). Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and Cellular Biology, 21(21), 7117–7136.PubMedCrossRefGoogle Scholar
  16. 16.
    Villa, F., Deak, M., Bloomberg, G. B., Alessi, D. R., & van Aalten, D. M. (2005). Crystal structure of the PTPL1/FAP-1 human tyrosine phosphatase mutated in colorectal cancer: Evidence for a second phosphotyrosine substrate recognition pocket. Journal of Biological Chemistry, 280(9), 8180–8187.PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshida, S., Harada, H., Nagai, H., Fukino, K., Teramoto, A., & Emi, M. (2002). Head-to-head juxtaposition of Fas-associated phosphatase-1 (FAP-1) and c-Jun NH2-terminal kinase 3 (JNK3) genes: Genomic structure and seven polymorphisms of the FAP-1 gene. Journal of Human Genetics, 47(11), 614–619.PubMedCrossRefGoogle Scholar
  18. 18.
    Irie, S., Li, Y., Kanki, H., Ohyama, T., Deaven, L. L., Somlo, S., et al. (2001). Identification of two Fas-associated phosphatase-1 (FAP-1) promoters in human cancer cells. DNA Sequence, 11(6), 519–526.PubMedCrossRefGoogle Scholar
  19. 19.
    Abaan, O. D., Levenson, A., Khan, O., Furth, P. A., Uren, A., & Toretsky, J. A. (2005). PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing’s Sarcoma tumorigenesis. Oncogene, 24(16), 2715–2722.PubMedCrossRefGoogle Scholar
  20. 20.
    Kachel, N., Erdmann, K. S., Kremer, W., Wolff, P., Gronwald, W., Heumann, R., et al. (2003). Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. Journal of Molecular Biology, 334(1), 143–155.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhu, J. H., Chen, R., Yi, W., Cantin, G. T., Fearns, C., Yang, Y., et al. (2008). Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene (in press).Google Scholar
  22. 22.
    Nedachi, T., & Conti, M. (2004). Potential role of protein tyrosine phosphatase nonreceptor type 13 in the control of oocyte meiotic maturation. Development, 131(20), 4987–4998.PubMedCrossRefGoogle Scholar
  23. 23.
    Dromard, M., Bompard, G., Glondu-Lassis, M., Puech, C., Chalbos, D., & Freiss, G. (2007). The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation. Cancer Research, 67(14), 6806–6813.PubMedCrossRefGoogle Scholar
  24. 24.
    Balla, T. (2005). Inositol–lipid binding motifs: signal integrators through protein–lipid and protein–protein interactions. Journal of Cell Science, 118(Pt 10), 2093–2104.PubMedCrossRefGoogle Scholar
  25. 25.
    Kimber, W. A., Deak, M., Prescott, A. R., & Alessi, D. R. (2003). Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1. Biochemical Journal, 376(Pt 2), 525–535.PubMedCrossRefGoogle Scholar
  26. 26.
    Maekawa, K., Imagawa, N., Naito, A., Harada, S., Yoshie, O., & Takagi, S. (1999). Association of protein-tyrosine phosphatase PTP-BAS with the transcription-factor-inhibitory protein IkappaBalpha through interaction between the PDZ1 domain and ankyrin repeats. Biochemical Journal, 337(Pt 2), 179–184.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang, W., Tong, Q., Conrad, K., Wozney, J., Cheung, J., & Miller, B. A. (2007). Regulation of the TRP channel TRPM2 by the tyrosine phosphatase PTPL1. American Journal of Physiology Cell Physiology, 292, C1746–C1758.PubMedCrossRefGoogle Scholar
  28. 28.
    Saras, J., Engstrom, U., Gonez, L. J., & Heldin, C. H. (1997). Characterization of the interactions between PDZ domains of the protein-tyrosine phosphatase PTPL1 and the carboxyl-terminal tail of Fas. Journal of Biological Chemistry, 272(34), 20979–20981.PubMedCrossRefGoogle Scholar
  29. 29.
    Yanagisawa, J., Takahashi, M., Kanki, H., Yano-Yanagisawa, H., Tazunoki, T., Sawa, E., et al. (1997). The molecular interaction of Fas and FAP-1. A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis. Journal of Biological Chemistry, 272(13), 8539–8545.PubMedCrossRefGoogle Scholar
  30. 30.
    Irie, S., Hachiya, T., Rabizadeh, S., Maruyama, W., Mukai, J., Li, Y., et al. (1999). Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-kappaB activation. FEBS Letters, 460(2), 191–198.PubMedCrossRefGoogle Scholar
  31. 31.
    Murthy, K. K., Clark, K., Fortin, Y., Shen, S. H., & Banville, D. (1999). ZRP-1, a zyxin-related protein, interacts with the second PDZ domain of the cytosolic protein tyrosine phosphatase hPTP1E. Journal of Biological Chemistry, 274(29), 20679–20687.PubMedCrossRefGoogle Scholar
  32. 32.
    Saras, J., Franzen, P., Aspenstrom, P., Hellman, U., Gonez, L. J., & Heldin, C. H. (1997). A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1. Journal of Biological Chemistry, 272(39), 24333–24338.PubMedCrossRefGoogle Scholar
  33. 33.
    Lin, D., Gish, G. D., Songyang, Z., & Pawson, T. (1999). The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. Journal of Biological Chemistry, 274(6), 3726–3733.PubMedCrossRefGoogle Scholar
  34. 34.
    Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 94(5), 1680–1685.PubMedCrossRefGoogle Scholar
  35. 35.
    Tiganis, T., & Bennett, A. M. (2007). Protein tyrosine phosphatase function: the substrate perspective. Biochemical Journal, 402(1), 1–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Nakai, Y., Irie, S., & Sato, T. A. (2000). Identification of IkappaBalpha as a substrate of Fas-associated phosphatase-1. European Journal of Biochemistry, 267(24), 7170–7175.PubMedCrossRefGoogle Scholar
  37. 37.
    Nakahira, M., Tanaka, T., Robson, B. E., Mizgerd, J. P., & Grusby, M. J. (2007). Regulation of signal transducer and activator of transcription signaling by the tyrosine phosphatase PTP-BL. Immunity, 26(2), 163–176.PubMedCrossRefGoogle Scholar
  38. 38.
    Wansink, D. G., Peters, W., Schaafsma, I., Sutmuller, R. P., Oerlemans, F., Adema, G. J., et al. (2004). Mild impairment of motor nerve repair in mice lacking PTP-BL tyrosine phosphatase activity. Physiological Genomics, 19(1), 50–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Lorber, B., Hendriks, W. J., Van der Zee, C. E., Berry, M., & Logan, A. (2005). Effects of LAR and PTP-BL phosphatase deficiency on adult mouse retinal cells activated by lens injury. European Journal of Neuroscience, 21(9), 2375–2383.PubMedCrossRefGoogle Scholar
  40. 40.
    Uren, A., & Toretsky, J. A. (2005). Ewing’s sarcoma oncoprotein EWS-FLI1: The perfect target without a therapeutic agent. Future Oncology, 1(4), 521–528.PubMedCrossRefGoogle Scholar
  41. 41.
    Baer, C., Nees, M., Breit, S., Selle, B., Kulozik, A. E., Schaefer, K. L., et al. (2004). Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma. International Journal of Cancer, 110(5), 687–694.CrossRefGoogle Scholar
  42. 42.
    Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., et al. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6), 673–679.PubMedCrossRefGoogle Scholar
  43. 43.
    Lessnick, S. L., Dacwag, C. S., & Golub, T. R. (2002). The Ewing’s sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell, 1(4), 393–401.PubMedCrossRefGoogle Scholar
  44. 44.
    Houston, A., & O’Connell, J. (2004). The Fas signalling pathway and its role in the pathogenesis of cancer. Current Opinion in Pharmacology, 4(4), 321–326.PubMedCrossRefGoogle Scholar
  45. 45.
    Ungefroren, H., Voss, M., Jansen, M., Roeder, C., Henne-Bruns, D., Kremer, B., et al. (1998). Human pancreatic adenocarcinomas express Fas and Fas ligand yet are resistant to Fas-mediated apoptosis. Cancer Research, 58(8), 1741–1749.PubMedGoogle Scholar
  46. 46.
    Ungefroren, H., Kruse, M. L., Trauzold, A., Roeschmann, S., Roeder, C., Arlt, A., et al. (2001). FAP-1 in pancreatic cancer cells: functional and mechanistic studies on its inhibitory role in CD95-mediated apoptosis. Journal of Cell Science, 114(Pt 15), 2735–2746.PubMedGoogle Scholar
  47. 47.
    Ivanov, V. N., Lopez Bergami, P., Maulit, G., Sato, T. A., Sassoon, D., & Ronai, Z. (2003). FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Molecular and Cellular Biology, 23(10), 3623–3635.PubMedCrossRefGoogle Scholar
  48. 48.
    Meinhold-Heerlein, I., Stenner-Liewen, F., Liewen, H., Kitada, S., Krajewska, M., Krajewski, S., et al. (2001). Expression and potential role of Fas-associated phosphatase-1 in ovarian cancer. American Journal of Pathology, 158(4), 1335–1344.PubMedGoogle Scholar
  49. 49.
    Yao, H., Song, E., Chen, J., & Hamar, P. (2004). Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer. British Journal of Cancer, 91(9), 1718–1725.PubMedGoogle Scholar
  50. 50.
    Wieckowski, E., Atarashi, Y., Stanson, J., Sato, T. A., & Whiteside, T. L. (2007). FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis. Journal of Cellular Biochemistry, 100(1), 16–28.PubMedCrossRefGoogle Scholar
  51. 51.
    Lee, S. H., Shin, M. S., Lee, H. S., Bae, J. H., Lee, H. K., Kim, H. S., et al. (2001). Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Human Pathology, 32(3), 250–256.PubMedCrossRefGoogle Scholar
  52. 52.
    Lee, S. H., Shin, M. S., Lee, J. Y., Park, W. S., Kim, S. Y., Jang, J. J., et al. (1999). In vivo expression of soluble Fas and FAP-1: possible mechanisms of Fas resistance in human hepatoblastomas. Journal of Pathology, 188(2), 207–212.PubMedCrossRefGoogle Scholar
  53. 53.
    Eberle, A., Reinehr, R., Becker, S., & Haussinger, D. (2005). Fluorescence resonance energy transfer analysis of proapoptotic CD95-EGF receptor interactions in Huh7 cells. Hepatology, 41(2), 315–326.PubMedCrossRefGoogle Scholar
  54. 54.
    Barker, P. A. (2004). p75NTR is positively promiscuous: novel partners and new insights. Neuron, 42(4), 529–533.PubMedCrossRefGoogle Scholar
  55. 55.
    Mamidipudi, V., & Wooten, M. W. (2002). Dual role for p75(NTR) signaling in survival and cell death: Can intracellular mediators provide an explanation? Journal of Neuroscience Research, 68(4), 373–384.PubMedCrossRefGoogle Scholar
  56. 56.
    Ohrt, T., Mancini, A., Tamura, T., & Niedenthal, R. (2004). c-Cbl binds to tyrosine-phosphorylated neurotrophin receptor p75 and induces its ubiquitination. Cell Signal, 16(11), 1291–1298.PubMedCrossRefGoogle Scholar
  57. 57.
    Imbert, V., Rupec, R. A., Livolsi, A., Pahl, H. L., Traenckner, E. B., Mueller-Dieckmann, C., et al. (1996). Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell, 86(5), 787–798.PubMedCrossRefGoogle Scholar
  58. 58.
    Kawai, H., Nie, L., & Yuan, Z. M. (2002). Inactivation of NF-kappaB-dependent cell survival, a novel mechanism for the proapoptotic function of c-Abl. Molecular and Cellular Biology, 22(17), 6079–6088.PubMedCrossRefGoogle Scholar
  59. 59.
    Fan, C., Yang, J., & Engelhardt, J. F. (2002). Temporal pattern of NFkappaB activation influences apoptotic cell fate in a stimuli-dependent fashion. Journal of Cell Science, 115(24), 4843–4853.PubMedCrossRefGoogle Scholar
  60. 60.
    Foehr, E. D., Lorente, G., Vincent, V., Nikolich, K., & Urfer, R. (2005). FAS associated phosphatase (FAP-1) blocks apoptosis of astrocytomas through dephosphorylation of FAS. Journal of Neurooncology, 74(3), 241–248.CrossRefGoogle Scholar
  61. 61.
    Hogan, A., Yakubchyk, Y., Chabot, J., Obagi, C., Daher, E., Maekawa, K., et al. (2004). The phosphoinositol 3,4-bisphosphate-binding protein TAPP1 interacts with syntrophins and regulates actin cytoskeletal organization. Journal of Biological Chemistry, 279(51), 53717–53724.PubMedCrossRefGoogle Scholar
  62. 62.
    Kullander, K., & Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. Nature Reviews. Molecular and Cellular Biology, 3(7), 475–486.CrossRefGoogle Scholar
  63. 63.
    Palmer, A., Zimmer, M., Erdmann, K. S., Eulenburg, V., Porthin, A., Heumann, R., et al. (2002). EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Molecular Cell, 9(4), 725–737.PubMedCrossRefGoogle Scholar
  64. 64.
    Myagmar, B. E., Umikawa, M., Asato, T., Taira, K., Oshiro, M., Hino, A., et al. (2005). PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector. Biochemical and Biophysical Research Communications, 329(3), 1046–1052.PubMedCrossRefGoogle Scholar
  65. 65.
    Lai, Y. J., Lin, W. C., & Lin, F. T. (2007). PTPL1/FAP-1 negatively regulates TRIP6 function in lysophosphatidic acid-induced cell migration. Journal of Biological Chemistry, 282(33), 24381–24387.PubMedCrossRefGoogle Scholar
  66. 66.
    Miyazaki, T., Atarashi, Y., Yasumura, S., Minatoya, I., Ogawa, K., Iwamoto, M., et al. (2006). Fas-associated phosphatase-1 promotes Fas-mediated apoptosis in human colon cancer cells: novel function of FAP-1. Journal of Gastroenterology and Hepatology, 21(1 Pt 1), 84–91.PubMedCrossRefGoogle Scholar
  67. 67.
    Tillman, D. M., Harwood, F. G., Gibson, A. A., & Houghton, J. A. (1998). Expression of genes that regulate Fas signalling and Fas-mediated apoptosis in colon carcinoma cells. Cell Death Differentiation, 5(5), 450–457.CrossRefGoogle Scholar
  68. 68.
    Ying, J., Li, H., Cui, Y., Wong, A. H., Langford, C., & Tao, Q. (2006). Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia, 20(6), 1173–1175.PubMedCrossRefGoogle Scholar
  69. 69.
    Yeh, S. H., Wu, D. C., Tsai, C. Y., Kuo, T. J., Yu, W. C., Chang, Y. S., et al. (2006). Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clinical Cancer Research, 12(4), 1097–1108.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang, Z., Shen, D., Parsons, D. W., Bardelli, A., Sager, J., Szabo, S., et al. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science, 304(5674), 1164–1166.PubMedCrossRefGoogle Scholar
  71. 71.
    Freiss, G., Puech, C., & Vignon, F. (1998). Extinction of insulin-like growth factor-I mitogenic signaling by antiestrogen-stimulated Fas-associated protein tyrosine phosphatase-1 in human breast cancer cells. Molecular Endocrinology, 12(4), 568–579.PubMedCrossRefGoogle Scholar
  72. 72.
    Bompard, G., Puech, C., Prebois, C., Vignon, F., & Freiss, G. (2002). Protein-tyrosine phosphatase PTPL1/FAP-1 triggers apoptosis in human breast cancer cells. Journal of Biological Chemistry, 277(49), 47861–47869.PubMedCrossRefGoogle Scholar
  73. 73.
    Cuppen, E., Nagata, S., Wieringa, B., & Hendriks, W. (1997). No evidence for involvement of mouse protein-tyrosine phosphatase-BAS-like Fas-associated phosphatase-1 in Fas-mediated apoptosis. Journal of Biological Chemistry, 272(48), 30215–30220.PubMedCrossRefGoogle Scholar
  74. 74.
    Stuible, M., Zhao, L., Aubry, I., Schmidt-Arras, D., Bohmer, F. D., Li, C. J., et al. (2007). Cellular inhibition of protein tyrosine phosphatase 1B by uncharged thioxothiazolidinone derivatives. Chembiochem, 8(2), 179–186.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonUSA

Personalised recommendations