Cancer and Metastasis Reviews

, Volume 27, Issue 1, pp 31–40 | Cite as

Inflammation, inflammatory cells and angiogenesis: decisions and indecisions

  • Douglas M. NoonanEmail author
  • Andrea De Lerma Barbaro
  • Nicola Vannini
  • Lorenzo Mortara
  • Adriana Albini


Endothelial-immune cell cross-talk goes well beyond leukocyte and lymphocyte trafficking, since immune cells are able to intimately regulate vessel formation and function. Here we review the evidence that most immune cells are capable of polarization towards a dichotomous activity either inducing or inhibiting angiogenesis. In addition to the well-known roles of tumor associated macrophages, we find that neutrophils, myeloid-derived suppressor and dendritic cells clearly have the potential for influencing tumor angiogenesis. Further, the physiological functions of NK cells suggest that these cells may also show a potentially important role in pro- or anti-angiogenesis regulation within the tumor microenvironment. At the same time many angiogenic factors influence the activity and function of immune cells that generally favor tumor survival and tolerance. Thus the immune system itself represents a major pharmaceutical target and links angiogenesis inhibition to immunotherapy.


Angiogenesis Immune cells Inflammation Cardiovasculature 



The authors were supported by grants from the AIRC, MUIR Cofin, Compagnia San Paolo, Funds of the University of Insubria. Nicola Vannini is in the Immunopathology and Degenerative disease PhD program at the faculty of Medicine, University of Insubria, Varese.


  1. 1.
    Kerbel, R., & Folkman, J. (2002). Clinical translation of angiogenesis inhibitors. Nature Reviews. Cancer, 2, 727–739.PubMedGoogle Scholar
  2. 2.
    Viloria-Petit, A., Crombet, T., Jothy, S., Hicklin, D., Bohlen, P., Schlaeppi, J. M., et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: A role for altered tumor angiogenesis. Cancer Research, 61, 5090–5101.PubMedGoogle Scholar
  3. 3.
    Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8, 299–309.PubMedGoogle Scholar
  4. 4.
    Dorrell, M. I., Aguilar, E., Scheppke, L., Barnett, F. H., & Friedlander, M. (2007). Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 967–972.PubMedGoogle Scholar
  5. 5.
    Folkman, J. (2007). Angiogenesis: An organizing principle for drug discovery? Nature Reviews Drug Discovery, 6, 273–286.PubMedGoogle Scholar
  6. 6.
    Folkman, J. (2006). Angiogenesis. Annual Review of Medicine, 57, 1–18.PubMedGoogle Scholar
  7. 7.
    Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.PubMedGoogle Scholar
  8. 8.
    Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.PubMedGoogle Scholar
  9. 9.
    Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4, 71–78.PubMedGoogle Scholar
  10. 10.
    Orimo, A., & Weinberg, R. A. (2006). Stromal fibroblasts in cancer: A novel tumor-promoting cell type. Cell Cycle, 5, 1597–1601.PubMedGoogle Scholar
  11. 11.
    Brigati, C., Noonan, D. M., Albini, A., & Benelli, R. (2002). Tumors and inflammatory infiltrates: Friends or foes? Clinical & Experimental Metastasis, 19, 247–258.Google Scholar
  12. 12.
    Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.PubMedGoogle Scholar
  13. 13.
    de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer, 6, 24–37.PubMedGoogle Scholar
  14. 14.
    Lin, E. Y., & Pollard, J. W. (2004). Macrophages: Modulators of breast cancer progression. Novartis Foundation Symposium, 256, 158–168 discussion 168–172, 259–169.PubMedGoogle Scholar
  15. 15.
    Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 107, 2112–2122.PubMedGoogle Scholar
  16. 16.
    Murdoch, C., Muthana, M., & Lewis, C. E. (2005). Hypoxia regulates macrophage functions in inflammation. Journal of Immunology, 175, 6257–6263.Google Scholar
  17. 17.
    Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2, 161–174.PubMedGoogle Scholar
  18. 18.
    Balkwill, F. (2006). TNF-alpha in promotion and progression of cancer. Cancer and Metastasis Reviews, 25, 409–416.PubMedGoogle Scholar
  19. 19.
    Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by l-arginine metabolism. Nature Reviews. Immunology, 5, 641–654.PubMedGoogle Scholar
  20. 20.
    Sawano, A., Iwai, S., Sakurai, Y., Ito, M., Shitara, K., Nakahata, T., et al. (2001). Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood, 97, 785–791.PubMedGoogle Scholar
  21. 21.
    Barleon, B., Sozzani, S., Zhou, D., Weich, H. A., Mantovani, A., & Marme, D. (1996). Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood, 87, 3336–3343.PubMedGoogle Scholar
  22. 22.
    Clauss, M., Weich, H., Breier, G., Knies, U., Rockl, W., Waltenberger, J., et al. (1996). The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. Journal of Biological Chemistry, 271, 17629–17634.PubMedGoogle Scholar
  23. 23.
    Aplin, A. C., Gelati, M., Fogel, E., Carnevale, E., & Nicosia, R. F. (2006). Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiological Genomics, 27, 20–28.PubMedGoogle Scholar
  24. 24.
    Di Carlo, E., Forni, G., Lollini, P., Colombo, M. P., Modesti, A., & Musiani, P. (2001). The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood, 97, 339–345.PubMedGoogle Scholar
  25. 25.
    Heryanto, B., Girling, J. E., & Rogers, P. A. (2004). Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction, 127, 613–620.PubMedGoogle Scholar
  26. 26.
    Gargett, C. E., Lederman, F., Heryanto, B., Gambino, L. S., & Rogers, P. A. (2001). Focal vascular endothelial growth factor correlates with angiogenesis in human endometrium. Role of intravascular neutrophils. Human Reproduction, 16, 1065–1075.PubMedGoogle Scholar
  27. 27.
    Na, Y. J., Yang, S. H., Baek, D. W., Lee, D. H., Kim, K. H., Choi, Y. M., et al. (2006). Effects of peritoneal fluid from endometriosis patients on the release of vascular endothelial growth factor by neutrophils and monocytes. Human Reproduction, 21, 1846–1855.PubMedGoogle Scholar
  28. 28.
    Lin, Y. J., Lai, M. D., Lei, H. Y., & Wing, L. Y. (2006). Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology, 147, 1278–1286.PubMedGoogle Scholar
  29. 29.
    Schruefer, R., Sulyok, S., Schymeinsky, J., Peters, T., Scharffetter-Kochanek, K., & Walzog, B. (2006). The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice. Journal of Vascular Research, 43, 1–11.PubMedGoogle Scholar
  30. 30.
    Benelli, R., Barbero, A., Ferrini, S., Scapini, P., Cassatella, M., Bussolino, F., et al. (2000). Human Immunodeficiency Virus Transactivator Protein (Tat) stimulates chemotaxis, calcium mobilization, and activation of human polymorphonuclear leukocytes: Implications for Tat-mediated pathogenesis. Journal of Infectious Diseases, 182, 1643–1651.PubMedGoogle Scholar
  31. 31.
    Kibbey, M. C., Corcoran, M. L., Wahl, L. M., & Kleinman, H. K. (1994). Laminin SIKVAV peptide induced angiogenesis in vivo is potentiated by neutrophils. Journal of Cellular Physiology, 160, 185–193.PubMedGoogle Scholar
  32. 32.
    Benelli, R., Morini, M., Carrozzino, F., Ferrari, N., Minghelli, S., Santi, L., et al. (2002). Neutrophils as a key cellular target for angiostatin: Implications for regulation of angiogenesis and inflammation. FASEB Journal, 16, 267–269.PubMedGoogle Scholar
  33. 33.
    Scapini, P., Morini, M., Tecchio, C., Minghelli, S., Di Carlo, E., Tanghetti, E., et al. (2004). CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. Journal of Immunology, 172, 5034–5040.Google Scholar
  34. 34.
    Ohki, Y., Heissig, B., Sato, Y., Akiyama, H., Zhu, Z., Hicklin, D. J., et al. (2005). Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB Journal, 19, 2005–2007.PubMedGoogle Scholar
  35. 35.
    Coussens, L. M., & Werb, Z. (2001). Inflammatory cells and cancer: Think different!. Journal of Experimental Medicine, 193, F23–F26.PubMedGoogle Scholar
  36. 36.
    Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.PubMedGoogle Scholar
  37. 37.
    Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12493–12498.PubMedGoogle Scholar
  38. 38.
    Karin, M. (2005). Inflammation and cancer: The long reach of Ras. Nature Medicine, 11, 20–21.PubMedGoogle Scholar
  39. 39.
    Sparmann, A., & Bar-Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6, 447–458.PubMedGoogle Scholar
  40. 40.
    Cassatella, M. A. (2006). On the production of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2L) by human neutrophils. Journal of Leukocyte Biology, 79, 1140–1149.PubMedGoogle Scholar
  41. 41.
    Tsuda, Y., Takahashi, H., Kobayashi, M., Hanafusa, T., Herndon, D. N., & Suzuki, F. (2004). Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity, 21, 215–226.PubMedGoogle Scholar
  42. 42.
    Benelli, R., Albini, A., & Noonan, D. (2003). Neutrophils and angiogenesis: Potential initiators of the angiogenic cascade. In M. Cassatella (Ed.) The neutrophil (vol. vol. 83, (pp. 167–181)). Basel: Karger.Google Scholar
  43. 43.
    Scapini, P., Nesi, L., Morini, M., Tanghetti, E., Belleri, M., Noonan, D., et al. (2002). Generation of biologically active angiostatin kringle 1–3 by activated human neutrophils. Journal of Immunology, 168, 5798–5804.Google Scholar
  44. 44.
    Kaipainen, A., Kieran, M. W., Huang, S., Butterfield, C., Bielenberg, D., Mostoslavsky, G., et al. (2007). PPARalpha deficiency in inflammatory cells suppresses tumor growth. PLoS ONE, 2, e260.PubMedGoogle Scholar
  45. 45.
    Cui, Z., Willingham, M. C., Hicks, A. M., Alexander-Miller, M. A., Howard, T. D., Hawkins, G. A., et al. (2003). Spontaneous regression of advanced cancer: Identification of a unique genetically determined, age-dependent trait in mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 6682–6687.PubMedGoogle Scholar
  46. 46.
    Hicks, A. M., Riedlinger, G., Willingham, M. C., Alexander-Miller, M. A., Von Kap-Herr, C., Pettenati, M. J., et al. (2006). Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 7753–7758.PubMedGoogle Scholar
  47. 47.
    Hicks, A. M., Willingham, M. C., Du, W., Pang, C. S., Old, L. J., & Cui, Z. (2006). Effector mechanisms of the anti-cancer immune responses of macrophages in SR/CR mice. Cancer Immunity, 6, 11.PubMedGoogle Scholar
  48. 48.
    Donà, M., Dell’Aica, I., Calabrese, F., Benelli, R., Morini, M., Albini, A., et al. (2003). Neutrophil restraint by green tea: Inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. Journal of Immunology, 170, 4335–4341.Google Scholar
  49. 49.
    Dell’Aica, I., Niero, R., Piazza, F., Cabrelle, A., Sartor, L., Colalto, C., et al. (2007). Hyperforin blocks neutrophil activation of matrix metalloproteinase-9, motility and recruitment, and restrains inflammation-triggered angiogenesis and lung fibrosis. Journal of Pharmacology and Experimental Therapeutics, 321, 492–500.PubMedGoogle Scholar
  50. 50.
    Dell’Aica, I., Sartor, L., Galletti, P., Giacomini, D., Quintavalla, A., Calabrese, F., et al. (2006). Inhibition of leukocyte elastase, polymorphonuclear chemoinvasion, and inflammation-triggered pulmonary fibrosis by a 4-alkyliden-beta-lactam with a galloyl moiety. Journal of Pharmacology and Experimental Therapeutics, 316, 539–546.PubMedGoogle Scholar
  51. 51.
    O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994). Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79, 315–328.PubMedGoogle Scholar
  52. 52.
    Benelli, R., Morini, M., Brigati, C., Noonan, D. M., & Albini, A. (2003). Angiostatin inhibits extracellular HIV-Tat-induced inflammatory angiogenesis. International Journal of Oncology, 22, 87–91.PubMedGoogle Scholar
  53. 53.
    Chavakis, T., Athanasopoulos, A., Rhee, J. S., Orlova, V., Schmidt-Woll, T., Bierhaus, A., et al. (2005). Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood, 105, 1036–1043.PubMedGoogle Scholar
  54. 54.
    Perri, S. R., Annabi, B., & Galipeau, J. (2007). Angiostatin inhibits monocyte/macrophage migration via disruption of actin cytoskeleton. FASEB Journal (in press).Google Scholar
  55. 55.
    Perri, S. R., Nalbantoglu, J., Annabi, B., Koty, Z., Lejeune, L., Francois, M., et al. (2005). Plasminogen kringle 5-engineered glioma cells block migration of tumor-associated macrophages and suppress tumor vascularization and progression. Cancer Research, 65, 8359–8365.PubMedGoogle Scholar
  56. 56.
    Albini, A., Noonan, D. M., & Ferrari, N. (2007). Molecular pathways for cancer angioprevention. Clinical Cancer Research, 13, 4320–4325.PubMedGoogle Scholar
  57. 57.
    Albini, A., & Sporn, M. B. (2007). The tumour microenvironment as a target for chemoprevention. Nature Reviews. Cancer, 7, 139–147.PubMedGoogle Scholar
  58. 58.
    Noonan, D. M., Benelli, R., & Albini, A. (2007). Angiogenesis and cancer prevention: A vision. Recent Results in Cancer Research, 174, 219–224.PubMedGoogle Scholar
  59. 59.
    Albini, A., Tosetti, F., Benelli, R., & Noonan, D. M. (2005). Tumor inflammatory angiogenesis and its chemoprevention. Cancer Research, 65, 10637–10641.PubMedGoogle Scholar
  60. 60.
    Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431–436.PubMedGoogle Scholar
  61. 61.
    Goebel, S., Huang, M., Davis, W. C., Jennings, M., Siahaan, T. J., Alexander, J. S., et al. (2006). VEGF-A stimulation of leukocyte adhesion to colonic microvascular endothelium: Implications for inflammatory bowel disease. American Journal of Physiology: Gastrointestinal and Liver Physiology, 290, G648–G654.PubMedGoogle Scholar
  62. 62.
    Melder, R. J., Koenig, G. C., Munn, L. L., & Jain, R. K. (1996). Adhesion of activated natural killer cells to tumor necrosis factor-alpha-treated endothelium under physiological flow conditions. Natural Immunity, 15, 154–163.PubMedGoogle Scholar
  63. 63.
    Ferrara, N. (1996). Natural killer cells, adhesion and tumor angiogenesis. Nature Medicine, 2, 971–972.PubMedGoogle Scholar
  64. 64.
    Sgadari, C., Angiolillo, A. L., & Tosato, G. (1996). Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 87, 3877–3882.PubMedGoogle Scholar
  65. 65.
    Yao, L., Sgadari, C., Furuke, K., Bloom, E. T., Teruya-Feldstein, J., & Tosato, G. (1999). Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood, 93, 1612–1621.PubMedGoogle Scholar
  66. 66.
    Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., et al. (2006). Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature Medicine, 12, 1065–1074.PubMedGoogle Scholar
  67. 67.
    Chaouat, G., Ledee-Bataille, N., Chea, K. B., & Dubanchet, S. (2005). Cytokines and implantation. Chemical Immunology and Allergy, 88, 34–63.PubMedCrossRefGoogle Scholar
  68. 68.
    Chaouat, G., Ledee-Bataille, N., & Dubanchet, S. (2007). Immune cells in uteroplacental tissues throughout pregnancy: A brief review. Reproductive Biomedicine Online, 14, 256–266.PubMedCrossRefGoogle Scholar
  69. 69.
    Coudert, J. D., Zimmer, J., Tomasello, E., Cebecauer, M., Colonna, M., Vivier, E., et al. (2005). Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood, 106, 1711–1717.PubMedGoogle Scholar
  70. 70.
    Loza, M. J., Peters, S. P., Zangrilli, J. G., & Perussia, B. (2002). Distinction between IL-13+ and IFN-gamma+ natural killer cells and regulation of their pool size by IL-4. European Journal of Immunology, 32, 413–423.PubMedGoogle Scholar
  71. 71.
    Marcenaro, E., Della Chiesa, M., Bellora, F., Parolini, S., Millo, R., Moretta, L., et al. (2005). IL-12 or IL-4 prime human NK cells to mediate functionally divergent interactions with dendritic cells or tumors. Journal of Immunology, 174, 3992–3998.Google Scholar
  72. 72.
    Keskin, D. B., Allan, D. S., Rybalov, B., Andzelm, M. M., Stern, J. N., Kopcow, H. D., et al. (2007). TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 3378–3383.PubMedGoogle Scholar
  73. 73.
    Carrega, P., Morandi, B., Costa, R., Frumento, G., Forte, G., Altavilla, G., et al. (2007). Natural killer cells infiltrating human non-small cell lung cancer are enriched in CD56brightCD16-cells and display an impaired capability to kill tumor cells. Cancer (in press).Google Scholar
  74. 74.
    Morini, M., Albini, A., Lorusso, G., Moelling, K., Lu, B., Cilli, M., et al. (2004). Prevention of angiogenesis by naked DNA IL-12 gene transfer: Angioprevention by immunogene therapy. Gene Therapy, 11, 284–291.PubMedGoogle Scholar
  75. 75.
    Shi, X., Cao, S., Mitsuhashi, M., Xiang, Z., & Ma, X. (2004). Genome-wide analysis of molecular changes in IL-12-induced control of mammary carcinoma via IFN-gamma-independent mechanisms. Journal of Immunology, 172, 4111–4122.Google Scholar
  76. 76.
    Faggioli, F., Soldati, S., Scanziani, E., Cato, E. M., Adorni, F., Vezzoni, P., et al. (2007). Effects of IL-12 gene therapy on spontaneous transgenic and transplanted breast tumors. Breast Cancer Research and Treatment (in press).Google Scholar
  77. 77.
    Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: Recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16, 53–65.PubMedGoogle Scholar
  78. 78.
    Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 116, 2777–2790.PubMedGoogle Scholar
  79. 79.
    Yang, L., DeBusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6, 409–421.PubMedGoogle Scholar
  80. 80.
    Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., et al. (2000). Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood, 96, 3838–3846.PubMedGoogle Scholar
  81. 81.
    Song, X., Krelin, Y., Dvorkin, T., Bjorkdahl, O., Segal, S., Dinarello, C. A., et al. (2005). CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. Journal of Immunology, 175, 8200–8208.Google Scholar
  82. 82.
    Bunt, S. K., Sinha, P., Clements, V. K., Leips, J., & Ostrand-Rosenberg, S. (2006). Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. Journal of Immunology, 176, 284–290.Google Scholar
  83. 83.
    Valenti, R., Huber, V., Filipazzi, P., Pilla, L., Sovena, G., Villa, A., et al. (2006). Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Research, 66, 9290–9298.PubMedGoogle Scholar
  84. 84.
    O’Garra, A., & Vieira, P. (2004). Regulatory T cells and mechanisms of immune system control. Nature Medicine, 10, 801–805.PubMedGoogle Scholar
  85. 85.
    Marie, J. C., Letterio, J. J., Gavin, M., & Rudensky, A. Y. (2005). TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. Journal of Experimental Medicine, 201, 1061–1067.PubMedGoogle Scholar
  86. 86.
    Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., et al. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66, 1123–1131.PubMedGoogle Scholar
  87. 87.
    Qin, Z., & Blankenstein, T. (2000). CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity, 12, 677–686.PubMedGoogle Scholar
  88. 88.
    Qin, Z., Schwartzkopff, J., Pradera, F., Kammertoens, T., Seliger, B., Pircher, H., et al. (2003). A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Research, 63, 4095–4100.PubMedGoogle Scholar
  89. 89.
    Gupta, S., Joshi, K., Wig, J. D., & Arora, S. K. (2007). Intratumoral FOXP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis. Acta Oncológica, 46, 792–797.PubMedGoogle Scholar
  90. 90.
    Degli-Esposti, M. A., & Smyth, M. J. (2005). Close encounters of different kinds: Dendritic cells and NK cells take centre stage. Nature Reviews. Immunology, 5, 112–124.PubMedGoogle Scholar
  91. 91.
    Ludwig, I. S., Geijtenbeek, T. B., & van Kooyk, Y. (2006). Two way communication between neutrophils and dendritic cells. Current Opinion in Pharmacology, 6, 408–413.PubMedGoogle Scholar
  92. 92.
    Tettamanti, G., Malagoli, D., Benelli, R., Albini, A., Grimaldi, A., Perletti, G., et al. (2006). Growth factors and chemokines: A comparative functional approach between invertebrates and vertebrates. Current Medicinal Chemistry, 13, 2737–2750.PubMedGoogle Scholar
  93. 93.
    Sozzani, S., Rusnati, M., Riboldi, E., Mitola, S., & Presta, M. (2007). Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends in Immunology, 28, 385–392.Google Scholar
  94. 94.
    Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine, 2, 1096–1103.PubMedGoogle Scholar
  95. 95.
    Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6, 1755–1766.PubMedGoogle Scholar
  96. 96.
    Dikov, M. M., Ohm, J. E., Ray, N., Tchekneva, E. E., Burlison, J., Moghanaki, D., et al. (2005). Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. Journal of Immunology, 174, 215–222.Google Scholar
  97. 97.
    Laxmanan, S., Robertson, S. W., Wang, E., Lau, J. S., Briscoe, D. M., & Mukhopadhyay, D. (2005). Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochemical and Biophysical Research Communications, 334, 193–198.PubMedGoogle Scholar
  98. 98.
    Okunishi, K., Dohi, M., Nakagome, K., Tanaka, R., Mizuno, S., Matsumoto, K., et al. (2005). A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. Journal of Immunology, 175, 4745–4753.Google Scholar
  99. 99.
    Marteau, F., Gonzalez, N. S., Communi, D., Goldman, M., Boeynaems, J. M., & Communi, D. (2005). Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood, 106, 3860–3866.PubMedGoogle Scholar
  100. 100.
    Xia, C. Q., & Kao, K. J. (2003). Effect of CXC chemokine platelet factor 4 on differentiation and function of monocyte-derived dendritic cells. International Immunology, 15, 1007–1015.PubMedGoogle Scholar
  101. 101.
    Shellenberger, T. D., Wang, M., Gujrati, M., Jayakumar, A., Strieter, R. M., Burdick, M. D., et al. (2004). BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Research, 64, 8262–8270.PubMedGoogle Scholar
  102. 102.
    Renkl, A. C., Wussler, J., Ahrens, T., Thoma, K., Kon, S., Uede, T., et al. (2005). Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood, 106, 946–955.PubMedGoogle Scholar
  103. 103.
    Shinohara, M. L., Lu, L., Bu, J., Werneck, M. B., Kobayashi, K. S., Glimcher, L. H., et al. (2006). Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nature Immunology, 7, 498–506.PubMedGoogle Scholar
  104. 104.
    Weiss, J. M., Renkl, A. C., Maier, C. S., Kimmig, M., Liaw, L., Ahrens, T., et al. (2001). Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. Journal of Experimental Medicine, 194, 1219–1229.PubMedGoogle Scholar
  105. 105.
    Riboldi, E., Musso, T., Moroni, E., Urbinati, C., Bernasconi, S., Rusnati, M., et al. (2005). Cutting edge: Proangiogenic properties of alternatively activated dendritic cells. Journal of Immunology, 175, 2788–2792.Google Scholar
  106. 106.
    Geissmann, F., Revy, P., Brousse, N., Lepelletier, Y., Folli, C., Durandy, A., et al. (2003). Retinoids regulate survival and antigen presentation by immature dendritic cells. Journal of Experimental Medicine, 198, 623–634.PubMedGoogle Scholar
  107. 107.
    Curiel, T. J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., et al. (2004). Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Research, 64, 5535–5538.PubMedGoogle Scholar
  108. 108.
    Bourbie-Vaudaine, S., Blanchard, N., Hivroz, C., & Romeo, P. H. (2006). Dendritic cells can turn CD4+ T lymphocytes into vascular endothelial growth factor-carrying cells by intercellular neuropilin-1 transfer. Journal of Immunology, 177, 1460–1469.Google Scholar
  109. 109.
    Coukos, G., Benencia, F., Buckanovich, R. J., & Conejo-Garcia, J. R. (2005). The role of dendritic cell precursors in tumour vasculogenesis. British Journal of Cancer, 92, 1182–1187.PubMedGoogle Scholar
  110. 110.
    De Palma, M., & Naldini, L. (2006). Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochimica et Biophysica Acta, 1766, 159–166.PubMedGoogle Scholar
  111. 111.
    Morelli, A. E., & Thomson, A. W. (2007). Tolerogenic dendritic cells and the quest for transplant tolerance. Nature Reviews. Immunology, 7, 610–621.PubMedGoogle Scholar
  112. 112.
    Macpherson, A. J., & Harris, N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nature Reviews. Immunology, 4, 478–485.PubMedGoogle Scholar
  113. 113.
    Hooper, L. V., Stappenbeck, T. S., Hong, C. V., & Gordon, J. I. (2003). Angiogenins: A new class of microbicidal proteins involved in innate immunity. Nature Immunology, 4, 269–273.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Douglas M. Noonan
    • 1
    Email author
  • Andrea De Lerma Barbaro
    • 1
  • Nicola Vannini
    • 1
    • 2
  • Lorenzo Mortara
    • 1
  • Adriana Albini
    • 2
  1. 1.Department of Clinical and Biological SciencesUniversità degli Studi Dell’InsubriaVareseItaly
  2. 2.IRCCS MultiMedicaScience and Technological PoleMilanItaly

Personalised recommendations