Advertisement

Cancer and Metastasis Reviews

, Volume 27, Issue 1, pp 5–10 | Cite as

A “class action” against the microenvironment: do cancer cells cooperate in metastasis?

  • François-Clément BidardEmail author
  • Jean-Yves Pierga
  • Anne Vincent-Salomon
  • Marie-France Poupon
Article

Abstract

The authors review how cancer cells may cooperate in metastasis by means of microenvironmental changes. The main mechanisms underlying this cooperation are clustered migration of cancer cells, extracellular matrix degradation, paracrine loops of released signaling factors and/or induction of adhesion molecules on stromal cells. Another critical factor could be temporal cooperation: successive waves of cancer cells may induce progressive conditioning of the microenvironment. The “class action” of cancer cells against the microenvironment involves successive steps of the metastatic process: invasion of the primary tumor microenvironment, collective migration through the extracellular matrix, blood vessel disruption, vascular or lymphatic tumor emboli, establishment of a premetastatic niche by secreted factors and endothelial precursor recruitment, induction of cell adhesion molecule expression in endothelial cells, extravasation, micrometastasis dormancy and establishment of a new growth in distant sites. As a result, after completion of the metastatic process, the series of microenvironmental changes from the primary tumor to the metastatic site may promote colonization of metastases by nonmetastatic cancer cells of the primary tumor.

Keywords

Metastasis Microenvironment Collective migration Premetastatic niche Cooperation Colonization 

Notes

Acknowledgments

This work was funded by the Institut Curie and Inserm.

References

  1. 1.
    Bockhorn, M., Jain, R. K., & Munn, L. L. (2007). Active versus passive mechanisms in metastasis: Do cancer cells crawl into vessels, or are they pushed? Lancet Oncology, 8, 444–448.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoon, D. S., Kitago, M., Kim, J., Mori, T., Piris, A., Szyfelbein, K., et al. (2006). Molecular mechanisms of metastasis. Cancer and Metastasis Reviews, 25, 203–220.PubMedCrossRefGoogle Scholar
  3. 3.
    Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.PubMedCrossRefGoogle Scholar
  4. 4.
    Steeg, P. S. (2006). Tumor metastasis: Mechanistic insights and clinical challenges. Nature Medicine, 12, 895–904.PubMedCrossRefGoogle Scholar
  5. 5.
    Fidler, I. J. (2002). Critical determinants of metastasis. Seminars in Cancer Biology, 12, 89–96.PubMedCrossRefGoogle Scholar
  6. 6.
    Fidler, I. J., & Kripke, M. L. (2003). Genomic analysis of primary tumors does not address the prevalence of metastatic cells in the population. Nature Genetics, 34, 23.PubMedCrossRefGoogle Scholar
  7. 7.
    Weiss, L. (2000). Metastasis of cancer: A conceptual history from antiquity to the 1990s. Cancer and Metastasis Reviews, 19, 193–383.CrossRefGoogle Scholar
  8. 8.
    Kapoor, P., Saunders, M. M., Li, Z., Zhou, Z., Sheaffer, N., Kunze, E. L., et al. (2004). Breast cancer metastatic potential: Correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. International Journal of Cancer, 111, 693–697.CrossRefGoogle Scholar
  9. 9.
    el-Sabban, M. E., & Pauli, B. U. (1994–1995). Adhesion-mediated gap junctional communication between lung-metastatic cancer cells and endothelium. Invasion Metastasis, 14, 164–176.Google Scholar
  10. 10.
    Opdenakker, G., & Van Damme, J. (2004). The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. International Journal of Developmental Biology, 48, 519–527.PubMedCrossRefGoogle Scholar
  11. 11.
    Axelrod, R., Axelrod, D. E., & Pienta, K. J. (2006). Evolution of cooperation among tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 13474–13479.PubMedCrossRefGoogle Scholar
  12. 12.
    Glinsky, V. V. (2006). Intravascular cell-to-cell adhesive interactions and bone metastasis. Cancer and Metastasis Reviews, 25, 531–540.PubMedCrossRefGoogle Scholar
  13. 13.
    Kerbel, R. S. (1994–1995). Impact of multicellular resistance on the survival of solid tumors, including micrometastases. Invasion Metastasis, 14, 50–60.Google Scholar
  14. 14.
    Nicolson, G. L. (1984). Generation of phenotypic diversity and progression in metastatic tumor cells. Cancer and Metastasis Reviews, 3, 25–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Wittekind, C., & Neid, M. (2005). Cancer invasion and metastasis. Oncology, 69, 14–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Yamaguchi, H., Wyckoff, J., & Condeelis, J. (2005). Cell migration in tumors. Current Opinion in Cell Biology, 17, 559–564.PubMedCrossRefGoogle Scholar
  17. 17.
    Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews. Molecular Cell Biology, 7, 131–142.PubMedCrossRefGoogle Scholar
  18. 18.
    Zaman, M. H., Trapani, L. M., Sieminski, A. L., Mackellar, D., Gong, H., Kamm, R. D., et al. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell–matrix adhesion and proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 103, 10889–10894.PubMedCrossRefGoogle Scholar
  19. 19.
    Jodele, S., Blavier, L., Yoon, J. M., & DeClerck, Y. A. (2006). Modifying the soil to affect the seed: Role of stromal-derived matrix metalloproteinases in cancer progression. Cancer and Metastasis Reviews, 25, 35–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Anderson, A. R., Weaver, A. M., Cummings, P. T., & Quaranta, V. (2006). Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 27, 905–915.CrossRefGoogle Scholar
  21. 21.
    Palecek, S. P., Huttenlocher, A., Horwitz, A. F., & Lauffenburger, D. A. (1998). Physical and biochemical regulation of integrin release during rear detachment of migrating cells. Journal of Cell Science, 111, 929–940.PubMedGoogle Scholar
  22. 22.
    Kirfel, G., Rigort, A., Borm, B., & Herzog, V. (2004). Cell migration: mechanisms of rear detachment and the formation of migration tracks. European Journal of Cell Biology, 83, 717–724.PubMedCrossRefGoogle Scholar
  23. 23.
    Friedl, P., Maaser, K., Klein, C. E., Niggemann, B., Krohne, G., & Zänker, K. S. (1997). Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Research, 57, 2061–2070.PubMedGoogle Scholar
  24. 24.
    Hegerfeldt, Y., Tusch, M., Bröcker, E. B., & Friedl, P. (2002). Collective cell movement in primary melanoma explants: plasticity of cell–cell interaction, beta1-integrin function, and migration strategies. Cancer Research, 62, 2125–2130.PubMedGoogle Scholar
  25. 25.
    Brakebusch, C., & Fässler, R. (2005). Beta 1 integrin function in vivo: adhesion, migration and more. Cancer and Metastasis Reviews, 24, 403–411.PubMedCrossRefGoogle Scholar
  26. 26.
    Christiansen, J. J., & Rajasekaran, A. K. (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Research, 66, 8319–8326.PubMedCrossRefGoogle Scholar
  27. 27.
    Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80, 1529–1537.PubMedCrossRefGoogle Scholar
  28. 28.
    Gupta, A., Deshpande, C. G., & Badve, S. (2003). Role of E-cadherins in development of lymphatic tumor emboli. Cancer, 97, 2341–2347.PubMedCrossRefGoogle Scholar
  29. 29.
    Galaup, A., Cazes, A., Le Jan, S., Philippe, J., Connault, E., Le Coz, E., et al. (2006). Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proceedings of the National Academy of Sciences of the United States of America, 103, 18721–18726.PubMedCrossRefGoogle Scholar
  30. 30.
    Siclari, V. A., Guise, T. A., & Chirgwin, J. M. (2006). Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer and Metastasis Reviews, 25, 621–633.PubMedCrossRefGoogle Scholar
  31. 31.
    Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., et al. (2004). Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New England Journal of Medicine, 351, 781–791.PubMedCrossRefGoogle Scholar
  32. 32.
    Cristofanilli, M., Broglio, K. R., Guarneri, V., Jackson, S., Fritsche, H. A., Islam, R., et al. (2007). Circulating tumor cells in metastatic breast cancer: Biologic staging beyond tumor burden. Clinical Breast Cancer, 7, 471–479.PubMedCrossRefGoogle Scholar
  33. 33.
    Wiedswang, G., & Naume, B. (2007). Can detection of circulating tumor cells in peripheral blood provide prognostic data in breast cancer? Nature Clinical Practice. Oncology, 4, 154–155.PubMedCrossRefGoogle Scholar
  34. 34.
    Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., et al. (1998). Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.PubMedGoogle Scholar
  35. 35.
    Cameron, M. D., Schmidt, E. E., Kerkvliet, N., Nadkarni, K. V., Morris, V. L., Groom, A. C., et al. (2000). Temporal progression of metastasis in lung: Cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Research, 60, 2541–2546.PubMedGoogle Scholar
  36. 36.
    Ito, S., Nakanishi, H., Ikehara, Y., Kato, T., Kasai, Y., Ito, K., et al. (2001). Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. International Journal of Cancer, 93, 212–217.CrossRefGoogle Scholar
  37. 37.
    Weiss, L. (1996). Metastatic inefficiency: Intravascular and intraperitoneal implantation of cancer cells. Cancer Treatment and Research, 82, 1–11.PubMedGoogle Scholar
  38. 38.
    Khatib, A. M., Fallavollita, L., Wancewicz, E. V., Monia, B. P., & Brodt, P. (2002). Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Research, 62, 5393–5398.PubMedGoogle Scholar
  39. 39.
    Khatib, A. M., Kontogiannea, M., Fallavollita, L., Jamison, B., Meterissian, S., & Brodt, P. (1999). Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Research, 59, 1356–1361.PubMedGoogle Scholar
  40. 40.
    Khatib, A. M., Auguste, P., Fallavollita, L., Wang, N., Samani, A., Kontogiannea, M., et al. (2005). Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. American Journal of Pathology, 167, 749–759.PubMedGoogle Scholar
  41. 41.
    Auguste, P., Fallavollita, L., Wang, N., Burnier, J., Bikfalvi, A., & Brodt, P. (2007). The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. American Journal of Pathology, 170, 1781–1792.PubMedCrossRefGoogle Scholar
  42. 42.
    Lafrenie, R., Shaughnessy, S. G., & Orr, F. W. (1992). Cancer cell interactions with injured or activated endothelium. Cancer and Metastasis Reviews, 11, 377–388.PubMedCrossRefGoogle Scholar
  43. 43.
    Orr, F. W., Wang, H. H., Lafrenie, R. M., Scherbarth, S., & Nance, D. M. (2000). Interactions between cancer cells and the endothelium in metastasis. Journal of Pathology, 190, 310–329.PubMedCrossRefGoogle Scholar
  44. 44.
    Ruiter, D. J., van Krieken, J. H., van Muijen, G. N., & de Waal, R. M. (2001). Tumour metastasis: Is tissue an issue? Lancet Oncology, 2, 109–112.PubMedCrossRefGoogle Scholar
  45. 45.
    Glinsky, V. V., Glinsky, G. V., Glinskii, O. V., Huxley, V. H., Turk, J. R., Mossine, V. V., et al. (2003). Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Research, 63, 3805–3811.PubMedGoogle Scholar
  46. 46.
    Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8, 1369–1375.PubMedCrossRefGoogle Scholar
  47. 47.
    Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.PubMedCrossRefGoogle Scholar
  48. 48.
    Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the ‘pre-metastatic niche’: Within bone and beyond. Cancer and Metastasis Reviews, 25, 521–529.PubMedCrossRefGoogle Scholar
  49. 49.
    Braun, S., Vogl, F. D., Naume, B., Janni, W., Osborne, M. P., Coombes, R. C., et al. (2005). A pooled analysis of bone marrow micrometastasis in breast cancer. New England Journal of Medicine, 353, 793–802.PubMedCrossRefGoogle Scholar
  50. 50.
    Wiedswang, G., Borgen, E., Kåresen, R., Kvalheim, G., Nesland, J. M., Qvist, H., et al. (2003). Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. Journal of Clinical Oncology, 21, 3469–3478.PubMedCrossRefGoogle Scholar
  51. 51.
    Bidard, F. C., Vincent-Salomon, A., Gomme, S., Thiery, J. P., Sigal-Zafrani, B., De Rycke, Y., et al. (2007). Bone marrow micrometastasis are a powerful prognostic factor in women with stage I to III breast cancer. (Abstract). AACR annual meeting.Google Scholar
  52. 52.
    Wiedswang, G., Borgen, E., Karesen, R., Qvist, H., Janbu, J., Kvalheim, G., et al. (2004). Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome. Clinical Cancer Research, 10, 5342–5348.PubMedCrossRefGoogle Scholar
  53. 53.
    Gangnus, R., Langer, S., Breit, E., Pantel, K., & Speicher, M. R. (2004). Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clinical Cancer Research, 10, 3457–3464.PubMedCrossRefGoogle Scholar
  54. 54.
    Braun, S., Hepp, F., Sommer, H. L., & Pantel, K. (1999). Tumor-antigen heterogeneity of disseminated breast cancer cells: Implications for immunotherapy of minimal residual disease. International Journal of Cancer, 84, 1–5.CrossRefGoogle Scholar
  55. 55.
    Schmidt-Kittler, O., Ragg, T., Daskalakis, A., Granzow, M., Ahr, A., Blankenstein, T. J., et al. (2003). From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 100, 7737–7742.PubMedCrossRefGoogle Scholar
  56. 56.
    Wiedswang, G., Borgen, E., Schirmer, C., Kåresen, R., Kvalheim, G., Nesland, J. M., et al. (2006). Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. International Journal of Cancer, 118, 2013–1019.CrossRefGoogle Scholar
  57. 57.
    Bidard, F. C., Auger, N., Rosty, C., Assayag, F., Di Santo, J. P., & Poupon, M. F. (2007). Specific colonization of metastases by non metastasizing circulating tumor cells. (Abstract). AACR annual meeting.Google Scholar
  58. 58.
    Miller, F. R. (1983). Tumor subpopulation interactions in metastasis. Invasion Metastasis, 3, 234–242.PubMedGoogle Scholar
  59. 59.
    Bernards, R., & Weinberg, R. A. (2002). A progression puzzle. Nature, 418, 823.PubMedCrossRefGoogle Scholar
  60. 60.
    Inamura, K., Shimoji, T., Ninomiya, H., Hiramatsu, M., Okui, M., Satoh, Y., et al. (2007). A metastatic signature in entire lung adenocarcinomas irrespective of morphological heterogeneity. Human Pathology, 38, 702–709.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • François-Clément Bidard
    • 1
    • 2
    Email author
  • Jean-Yves Pierga
    • 2
  • Anne Vincent-Salomon
    • 3
  • Marie-France Poupon
    • 1
  1. 1.Department of Translational ResearchInstitut CurieParisFrance
  2. 2.Department of Medical OncologyInstitut CurieParisFrance
  3. 3.Department of PathologyInstitut CurieParisFrance

Personalised recommendations