Cancer and Metastasis Reviews

, 26:525 | Cite as

Cyclooxygenases, prostanoids, and tumor progression

  • Man-Tzu Wang
  • Kenneth V. Honn
  • Daotai Nie


In response to various growth factors, hormones or cytokines, arachidonic acid can be mobilized from phospholipids pools and converted to bioactive eicosanoids through cyclooxygenase (COX), lipoxygenase (LOX) or P-450 epoxygenase pathway. The COX pathway generates five major prostanoids (prostaglandin D2, prostaglandin E2, prostaglandin F, prostaglandin I2 and thromboxane A2) that play important roles in diverse biological processes. Studies suggest that different prostanoids and their own synthase can play distinct roles in tumor progression and cancer metastasis. COX-2 and PGE2 synthase have been most well documented in the regulation of various aspects of tumor progression and metastasis. PGE2, for example, can stimulate angiogenesis or other signaling pathways by binding to its receptors termed EPs. Therefore, targeting downstream prostanoids may provide a new avenue to impede tumor progression. In this review, aberrant expression and functions of several prostanoid synthetic enzymes in cancer will be discussed. The possible regulation of tumor progression by prostaglandins and their receptors will also be discussed.


Cyclooxygenase Prostanoids Tumor progression Metastasis 


  1. 1.
    Nie, D., Che, M., Grignon, D., Tang, K., & Honn, K. V. (2001). Role of eicosanoids in prostate cancer progression. Cancer and Metastasis Reviews, 20, 195–06.PubMedCrossRefGoogle Scholar
  2. 2.
    Shinohara, H., Balboa, M. A., Johnson, C. A., Balsinde, J., & Dennis, E. A. (1999). Regulation of delayed prostaglandin production in activated P388D1 macrophages by group IV cytosolic and group V secretory phospholipase A2s. Journal of Biological Chemistry, 274, 12263–2268.PubMedCrossRefGoogle Scholar
  3. 3.
    Hara, S., Miyata, A., Yokoyama, C., Inoue, H., Brugger, R., Lottspeich, F., et al. (1994). Isolation and molecular cloning of prostacyclin synthase from bovine endothelial cells. Journal of Biological Chemistry, 269, 19897–9903.PubMedGoogle Scholar
  4. 4.
    Kuwamoto, S., Inoue, H., Tone, Y., Izumi, Y., & Tanabe, T. (1997). Inverse gene expression of prostacyclin and thromboxane synthases in resident and activated peritoneal macrophages. FEBS Letters, 409, 242–46.PubMedCrossRefGoogle Scholar
  5. 5.
    Suzuki, T., Watanabe, K., Kanaoka, Y., Sato, T., & Hayaishi, O. (1997). Induction of hematopoietic prostaglandin D synthase in human megakaryocytic cells by phorbol ester. Biochemical and Biophysical Research Communications, 241, 288–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Jakobsson, P. J., Thoren, S., Morgenstern, R., & Samuelsson, B. (1999). Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proceedings of the National Academy of Sciences of the United States of America, 96, 7220–225.PubMedCrossRefGoogle Scholar
  7. 7.
    Bonvalet, J. P., Pradelles, P., & Farman, N. (1987). Segmental synthesis and actions of prostaglandins along the nephron. American Journal of Physiology, 253, F377–87.PubMedGoogle Scholar
  8. 8.
    Smith, W. L. (1992). Prostanoid biosynthesis and mechanisms of action. American Journal of Physiology, 263, F181–91.PubMedGoogle Scholar
  9. 9.
    Narumiya, S., Sugimoto, Y., & Ushikubi, F. (1999). Prostanoid receptors: structures, properties, and functions. Physiological Reviews, 79, 1193–226.PubMedGoogle Scholar
  10. 10.
    Chandrasekharan, N. V., Dai, H., Roos, K. L., Evanson, N. K., Tomsik, J., Elton, T. S., et al. (2002). COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proceedings of the National Academy of Sciences of the United States of America, 99, 13926–3931.PubMedCrossRefGoogle Scholar
  11. 11.
    Park, J. Y., Pillinger, M. H., & Abramson, S. B. (2006). Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clinical Immunology, 119, 229–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Pai, R., Soreghan, B., Szabo, I. L., Pavelka, M., Baatar, D., & Tarnawski, A. S. (2002). Prostaglandin E2 transactivates EGF receptor: A novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nature Medicine, 8, 289–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Dubois, R. N., Abramson, S. B., Crofford, L., Gupta, R. A., Simon, L. S., Van De Putte, L. B., et al. (1998). Cyclooxygenase in biology and disease. FASEB Journal, 12, 1063–073.PubMedGoogle Scholar
  14. 14.
    Gupta, R. A., Tejada, L. V., Tong, B. J., Das, S. K., Morrow, J. D., Dey, S. K., et al. (2003). Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Research, 63, 906–11.PubMedGoogle Scholar
  15. 15.
    Patrignani, P., Tacconelli, S., Sciulli, M. G., & Capone, M. L. (2005). New insights into COX-2 biology and inhibition. Brain Research Brain Research Reviews, 48, 352–59.PubMedCrossRefGoogle Scholar
  16. 16.
    Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S., & DuBois, R. N. (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 107, 1183–188.PubMedGoogle Scholar
  17. 17.
    DuBois, R. N., Radhika, A., Reddy, B. S., & Entingh, A. J. (1996). Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterology, 110, 1259–262.PubMedCrossRefGoogle Scholar
  18. 18.
    Molina, M. A., Sitja-Arnau, M., Lemoine, M. G., Frazier, M. L., & Sinicrope, F. A. (1999). Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: Growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Research, 59, 4356–362.PubMedGoogle Scholar
  19. 19.
    Tucker, O. N., Dannenberg, A. J., Yang, E. K., Zhang, F., Teng, L., Daly, J. M., et al. (1999). Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Research, 59, 987–90.PubMedGoogle Scholar
  20. 20.
    Dubinett, S. M., Sharma, S., Huang, M., Dohadwala, M., Pold, M., & Mao, J. T. (2003). Cyclooxygenase-2 in lung cancer. Progress in Experimental Tumor Research, 37, 138–62.CrossRefGoogle Scholar
  21. 21.
    Achiwa, H., Yatabe, Y., Hida, T., Kuroishi, T., Kozaki, K., Nakamura, S., et al. (1999). Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas. Clinical Cancer Research, 5, 1001–005.PubMedGoogle Scholar
  22. 22.
    Hida, T., Yatabe, Y., Achiwa, H., Muramatsu, H., Kozaki, K., Nakamura, S., et al. (1998). Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Research, 58, 3761–764.PubMedGoogle Scholar
  23. 23.
    Takahashi, T., Kozaki, K., Yatabe, Y., Achiwa, H., & Hida, T. (2002). Increased expression of COX-2 in the development of human lung cancers. Journal of Environmental Pathology, Toxicology and Oncology, 21, 177–81.PubMedGoogle Scholar
  24. 24.
    Uefuji, K., Ichikura, T., Mochizuki, H., & Shinomiya, N. (1998). Expression of cyclooxygenase-2 protein in gastric adenocarcinoma. Journal of Surgical Oncology, 69, 168–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Uefuji, K., Ichikura, T., & Mochizuki, H. (2001). Expression of cyclooxygenase-2 in human gastric adenomas and adenocarcinomas. Journal of Surgical Oncology, 76, 26–0.PubMedCrossRefGoogle Scholar
  26. 26.
    Soydan, A. S., Gaffen, J. D., Weech, P. K., Tremblay, N. M., Kargman, S., O’Neill, G., et al. (1997). Cytosolic phospholipase A2, cyclo-oxygenases and arachidonate in human stomach tumours. European Journal of Cancer, 33, 1508–512.PubMedCrossRefGoogle Scholar
  27. 27.
    Kundu, N., Yang, Q., Dorsey, R., & Fulton, A. M. (2001). Increased cyclooxygenase-2 (cox-2) expression and activity in a murine model of metastatic breast cancer. International Journal of Cancer, 93, 681–86.CrossRefGoogle Scholar
  28. 28.
    Barnes, N., Haywood, P., Flint, P., Knox, W. F., & Bundred, N. J. (2006). Surviving expression in in situ and invasive breast cancer relates to COX-2 expression and DCIS recurrence. British Journal of Cancer, 94, 253–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Tang, D. W., Lin, S. C., Chang, K. W., Chi, C. W., Chang, C. S., & Liu, T. Y. (2003). Elevated expression of cyclooxygenase (COX)-2 in oral squamous cell carcinoma-evidence for COX-2 induction by areca quid ingredients in oral keratinocytes. Journal of Oral Pathology & Medicine, 32, 522–29.CrossRefGoogle Scholar
  30. 30.
    Zimmermann, K. C., Sarbia, M., Weber, A. A., Borchard, F., Gabbert, H. E., & Schror, K. (1999). Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Research, 59, 198–04.PubMedGoogle Scholar
  31. 31.
    Lee, L. M., Pan, C. C., Cheng, C. J., Chi, C. W., & Liu, T. Y. (2001). Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Research, 21, 1291–294.PubMedGoogle Scholar
  32. 32.
    Kirschenbaum, A., Klausner, A. P., Lee, R., Unger, P., Yao, S., Liu, X. H., et al. (2000). Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology, 56, 671–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Kirschenbaum, A., Liotta, D. R., Yao, S., Liu, X. H., Klausner, A. P., Unger, P., et al. (2000). Immunohistochemical localization of cyclooxygenase-1 and cyclooxygenase-2 in the human fetal and adult male reproductive tracts. Journal of Clinical Endocrinology and Metabolism, 85, 3436–441.PubMedCrossRefGoogle Scholar
  34. 34.
    Kandil, H. M., Tanner, G., Smalley, W., Halter, S., Radhika, A., & Dubois, R. N. (2001). Cyclooxygenase-2 expression in Barrett’s esophagus. Digestive Diseases and Sciences, 46, 785–89.PubMedCrossRefGoogle Scholar
  35. 35.
    Hasegawa, K., Ohashi, Y., Ishikawa, K., Yasue, A., Kato, R., Achiwa, Y., et al. (2005). Expression of cyclooxygenase-2 in uterine endometrial cancer and anti-tumor effects of a selective COX-2 inhibitor. International Journal of Oncology, 26, 1419–428.PubMedGoogle Scholar
  36. 36.
    Sheng, H., Williams, C. S., Shao, J., Liang, P., DuBois, R. N., & Beauchamp, R. D. (1998). Induction of cyclooxygenase-2 by activated Ha-ras oncogene in Rat-1 fibroblasts and the role of mitogen-activated protein kinase pathway. Journal of Biological Chemistry, 273, 22120–2127.PubMedCrossRefGoogle Scholar
  37. 37.
    Subbaramaiah, K., Altorki, N., Chung, W. J., Mestre, J. R., Sampat, A., & Dannenberg, A. J. (1999). Inhibition of cyclooxygenase-2 gene expression by p53. Journal of Biological Chemistry, 274, 10911–0915.PubMedCrossRefGoogle Scholar
  38. 38.
    Tsujii, M., Kawano, S., & DuBois, R. N. (1997). Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 94, 3336–340.PubMedCrossRefGoogle Scholar
  39. 39.
    Attiga, F. A., Fernandez, P. M., Weeraratna, A. T., Manyak, M. J., & Patierno, S. R. (2000). Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Research, 60, 4629–637.PubMedGoogle Scholar
  40. 40.
    Nardone, G., Rocco, A., Vaira, D., Staibano, S., Budillon, A., Tatangelo, F., et al. (2004). Expression of COX-2, mPGE-synthase1, MDR-1 (P-gp), and Bcl-xL: A molecular pathway of H pylori-related gastric carcinogenesis. Journal of Pathology, 202, 305–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Tanioka, T., Nakatani, Y., Semmyo, N., Murakami, M., & Kudo, I. (2000). Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. Journal of Biological Chemistry, 275, 32775–2782.PubMedCrossRefGoogle Scholar
  42. 42.
    Murakami, M., & Kudo, I. (2004). Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Progress in Lipid Research, 43, 3–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Forsberg, L., Leeb, L., Thoren, S., Morgenstern, R., & Jakobsson, P. (2000). Human glutathione dependent prostaglandin E synthase: Gene structure and regulation. FEBS Letters, 471, 78–2.PubMedCrossRefGoogle Scholar
  44. 44.
    Murakami, M., Naraba, H., Tanioka, T., Semmyo, N., Nakatani, Y., Kojima, F., et al. (2000). Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. Journal of Biological Chemistry, 275, 32783–2792.PubMedCrossRefGoogle Scholar
  45. 45.
    Guan, Y., Zhang, Y., Schneider, A., Riendeau, D., Mancini, J. A., Davis, L., et al. (2001). Urogenital distribution of a mouse membrane-associated prostaglandin E(2) synthase. American Journal of Physiology Renal Physiology, 281, F1173’F1177.PubMedGoogle Scholar
  46. 46.
    Filion, F., Bouchard, N., Goff, A. K., Lussier, J. G., & Sirois, J. (2001). Molecular cloning and induction of bovine prostaglandin E synthase by gonadotropins in ovarian follicles prior to ovulation in vivo. Journal of Biological Chemistry, 276, 34323–4330.PubMedCrossRefGoogle Scholar
  47. 47.
    Murakami, M., Nakatani, Y., Tanioka, T., & Kudo, I. (2002). Prostaglandin E synthase. Prostaglandins & Other Lipid Mediators, 68–9, 383–99.CrossRefGoogle Scholar
  48. 48.
    Watanabe, K., Kurihara, K., & Suzuki, T. (1999). Purification and characterization of membrane-bound prostaglandin E synthase from bovine heart. Biochimica Et Biophysica Acta, 1439, 406–14.PubMedGoogle Scholar
  49. 49.
    Backlund, M. G., Mann, J. R., Holla, V. R., Buchanan, F. G., Tai, H. H., Musiek, E. S., et al. (2005). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. Journal of Biological Chemistry, 280, 3217–223.PubMedCrossRefGoogle Scholar
  50. 50.
    Yan, M., Rerko, R. M., Platzer, P., Dawson, D., Willis, J., Tong, M., et al. (2004). 15-Hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a TGF-beta-induced suppressor of human gastrointestinal cancers. Proceedings of the National Academy of Sciences of the United States of America, 101, 17468–7473.PubMedCrossRefGoogle Scholar
  51. 51.
    Yoshimatsu, K., Altorki, N. K., Golijanin, D., Zhang, F., Jakobsson, P. J., Dannenberg, A. J., et al. (2001). Inducible prostaglandin E synthase is overexpressed in non-small cell lung cancer. Clinical Cancer Research, 7, 2669–674.PubMedGoogle Scholar
  52. 52.
    Wang, D., & DuBois, R. N. (2004). Cyclooxygenase 2-derived prostaglandin E2 regulates the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 101, 415–16.PubMedCrossRefGoogle Scholar
  53. 53.
    Chang, S. H., Liu, C. H., Conway, R., Han, D. K., Nithipatikom, K., Trifan, O. C., et al. (2004). Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 101, 591–96.PubMedCrossRefGoogle Scholar
  54. 54.
    Majima, M., Hayashi, I., Muramatsu, M., Katada, J., Yamashina, S., & Katori, M. (2000). Cyclo-oxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. British Journal of Pharmacology, 130, 641–49.PubMedCrossRefGoogle Scholar
  55. 55.
    Helliwell, R. J., Adams, L. F., & Mitchell, M. D. (2004). Prostaglandin synthases: Recent developments and a novel hypothesis. Prostaglandins, Leukotrienes and Essential Fatty Acids, 70, 101–13.CrossRefGoogle Scholar
  56. 56.
    Watanabe, K. (2002). Prostaglandin F synthase. Prostaglandins & Other Lipid Mediators, 68–9, 401–07.CrossRefGoogle Scholar
  57. 57.
    Suzuki-Yamamoto, T., Toida, K., Tsuruo, Y., Watanabe, K., & Ishimura, K. (2000). Immunocytochemical localization of lung-type prostaglandin F synthase in the rat spinal cord. Brain Research, 877, 391–95.PubMedCrossRefGoogle Scholar
  58. 58.
    Madore, E., Harvey, N., Parent, J., Chapdelaine, P., Arosh, J. A., & Fortier, M. A. (2003). An aldose reductase with 20 alpha-hydroxysteroid dehydrogenase activity is most likely the enzyme responsible for the production of prostaglandin f2 alpha in the bovine endometrium. Journal of Biological Chemistry, 278, 11205–1212.PubMedCrossRefGoogle Scholar
  59. 59.
    Nishizawa, M., Nakajima, T., Yasuda, K., Kanzaki, H., Sasaguri, Y., Watanabe, K., et al. (2000). Close kinship of human 20alpha-hydroxysteroid dehydrogenase gene with three aldo-keto reductase genes. Genes Cells, 5, 111–25.PubMedCrossRefGoogle Scholar
  60. 60.
    Narko, K., Ritvos, O., & Ristimaki, A. (1997). Induction of cyclooxygenase-2 and prostaglandin F2alpha receptor expression by interleukin-1beta in cultured human granulosa-luteal cells. Endocrinology, 138, 3638–644.PubMedCrossRefGoogle Scholar
  61. 61.
    Sales, K. J., Milne, S. A., Williams, A. R., Anderson, R. A., & Jabbour, H. N. (2004). Expression, localization, and signaling of prostaglandin F2 alpha receptor in human endometrial adenocarcinoma: regulation of proliferation by activation of the epidermal growth factor receptor and mitogen-activated protein kinase signaling pathways. Journal of Clinical Endocrinology and Metabolism, 89, 986–93.PubMedCrossRefGoogle Scholar
  62. 62.
    Sales, K. J., List, T., Boddy, S. C., Williams, A. R., Anderson, R. A., Naor, Z., et al. (2005). A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Research, 65, 7707–716.PubMedGoogle Scholar
  63. 63.
    Sales, K. J., Maudsley, S., & Jabbour, H. N. (2004). Elevated prostaglandin EP2 receptor in endometrial adenocarcinoma cells promotes vascular endothelial growth factor expression via cyclic 3–5–adenosine monophosphate-mediated transactivation of the epidermal growth factor receptor and extracellular signal-regulated kinase 1/2 signaling pathways. Molecular Endocrinology, 18, 1533–545.PubMedCrossRefGoogle Scholar
  64. 64.
    Reiter, R. A., Peskar, B. A., & Sinzinger, H. (2004). Defects in the prostaglandin system—what is known? Prostaglandins, Leukotrienes and Essential Fatty Acids, 71, 347–50.CrossRefGoogle Scholar
  65. 65.
    Nakayama, T. (2005). Prostacyclin synthase gene: Genetic polymorphisms and prevention of some cardiovascular diseases. Current Medicinal Chemistry Cardiovascular Hematology Agents, 3, 157–64.CrossRefGoogle Scholar
  66. 66.
    Lim, H., & Dey, S. K. (2002). A novel pathway of prostacyclin signaling-hanging out with nuclear receptors. Endocrinology, 143, 3207–210.PubMedCrossRefGoogle Scholar
  67. 67.
    Gupta, R. A., Tan, J., Krause, W. F., Geraci, M. W., Willson, T. M., Dey, S. K., et al. (2000). Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 97, 13275–3280.PubMedCrossRefGoogle Scholar
  68. 68.
    Tong, B. J., Tan, J., Tajeda, L., Das, S. K., Chapman, J. A., DuBois, R. N., et al. (2000). Heightened expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor-delta in human endometrial adenocarcinoma. Neoplasia, 2, 483–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Tanabe, T., & Ullrich, V. (1995). Prostacyclin and thromboxane synthases. Journal of Lipid Mediators Cell Signal, 12, 243–55.CrossRefGoogle Scholar
  70. 70.
    Miyata, A., Yokoyama, C., Ihara, H., Bandoh, S., Takeda, O., Takahashi, E., et al. (1994). Characterization of the human gene (TBXAS1) encoding thromboxane synthase. European Journal of Biochemistry, 224, 273–79.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee, K. D., Baek, S. J., & Shen, R. F. (1994). Cloning and characterization of the human thromboxane synthase gene promoter. Biochemical and Biophysical Research Communications, 201, 379–87.PubMedCrossRefGoogle Scholar
  72. 72.
    Nanayama, T., Hara, S., Inoue, H., Yokoyama, C., & Tanabe, T. (1995). Regulation of two isozymes of prostaglandin endoperoxide synthase and thromboxane synthase in human monoblastoid cell line U937. Prostaglandins, 49, 371–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Kajita, S., Ruebel, K. H., Casey, M. B., Nakamura, N., & Lloyd, R. V. (2005). Role of COX-2, thromboxane A2 synthase, and prostaglandin I2 synthase in papillary thyroid carcinoma growth. Modern Pathology, 18, 221–27.PubMedCrossRefGoogle Scholar
  74. 74.
    Pinto, S., Gori, L., Gallo, O., Boccuzzi, S., Paniccia, R., & Abbate, R. (1993). Increased thromboxane A2 production at primary tumor site in metastasizing squamous cell carcinoma of the larynx. Prostaglandins, Leukotrienes and Essential Fatty Acids, 49, 527–30.CrossRefGoogle Scholar
  75. 75.
    Bryant, J. (1994). Correlation between metastatic patterns in renal cell carcinoma and tissue distribution of thromboxane synthetase. Acta oncológica, 33, 708–09.PubMedGoogle Scholar
  76. 76.
    Nie, D., Che, M., Zacharek, A., Qiao, Y., Li, L., Li, X., et al. (2004). Differential expression of thromboxane synthase in prostate carcinoma: Role in tumor cell motility. American Journal of Pathology, 164, 429–39.PubMedGoogle Scholar
  77. 77.
    Giese, A., Hagel, C., Kim, E. L., Zapf, S., Djawaheri, J., Berens, M. E., et al. (1999). Thromboxane synthase regulates the migratory phenotype of human glioma cells. Neuro-Oncology, 1, 3–3.PubMedCrossRefGoogle Scholar
  78. 78.
    McDonough, W., Tran, N., Giese, A., Norman, S. A., & Berens, M. E. (1998). Altered gene expression in human astrocytoma cells selected for migration: I. Thromboxane synthase. Journal of Neuropathology and Experimental Neurology, 57, 449–55.PubMedCrossRefGoogle Scholar
  79. 79.
    Rodrigues, S., Nguyen, Q. D., Faivre, S., Bruyneel, E., Thim, L., Westley, B., et al. (2001). Activation of cellular invasion by trefoil peptides and src is mediated by cyclooxygenase- and thromboxane A2 receptor-dependent signaling pathways. FASEB Journal, 15, 1517–528.PubMedCrossRefGoogle Scholar
  80. 80.
    Yoshizato, K., Zapf, S., Westphal, M., Berens, M. E., & Giese, A. (2002). Thromboxane synthase inhibitors induce apoptosis in migration-arrested glioma cells. Neurosurgery, 50, 343–54.PubMedCrossRefGoogle Scholar
  81. 81.
    Robert, A., Nezamis, J. E., Lancaster, C., & Hanchar, A. J. (1979). Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology, 77, 433–43.PubMedGoogle Scholar
  82. 82.
    Takafuji, V. A., Evans, A., Lynch, K. R., & Roche, J. K. (2002). PGE(2) receptors and synthesis in human gastric mucosa: perturbation in cancer. Prostaglandins, Leukotrienes and Essential Fatty Acids, 66, 71–1.CrossRefGoogle Scholar
  83. 83.
    Marnett, L. J., & DuBois, R. N. (2002). COX-2: A target for colon cancer prevention. Annual Review of Pharmacology and Toxicology, 42, 55–0.PubMedCrossRefGoogle Scholar
  84. 84.
    Forman, B. M., Chen, J., & Evans, R. M. (1996). The peroxisome proliferator-activated receptors: Ligands and activators. Annals of the New York Academy of Sciences, 804, 266–75.PubMedCrossRefGoogle Scholar
  85. 85.
    Sonoshita, M., Takaku, K., Oshima, M., Sugihara, K., & Taketo, M. M. (2002). Cyclooxygenase-2 expression in fibroblasts and endothelial cells of intestinal polyps. Cancer Research, 62, 6846–849.PubMedGoogle Scholar
  86. 86.
    Chell, S. D., Witherden, I. R., Dobson, R. R., Moorghen, M., Herman, A. A., Qualtrough, D., et al. (2006). Increased EP4 receptor expression in colorectal cancer progression promotes cell growth and anchorage independence. Cancer Research, 66, 3106–113.PubMedCrossRefGoogle Scholar
  87. 87.
    Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M., & Gutkind, J. S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 310, 1504–510.PubMedCrossRefGoogle Scholar
  88. 88.
    Sheng, H., Shao, J., Washington, M. K., & DuBois, R. N. (2001). Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. Journal of Biological Chemistry, 276, 18075–8081.PubMedCrossRefGoogle Scholar
  89. 89.
    Dorn, G. W., 2nd, Sens, D., Chaikhouni, A., Mais, D., & Halushka, P. V. (1987). Cultured human vascular smooth muscle cells with functional thromboxane A2 receptors: Measurement of U46619-induced 45calcium efflux. Circulation Research, 60, 952–56.PubMedGoogle Scholar
  90. 90.
    Pakala, R., Willerson, J. T., & Benedict, C. R. (1997). Effect of serotonin, thromboxane A2, and specific receptor antagonists on vascular smooth muscle cell proliferation. Circulation, 96, 2280–286.PubMedGoogle Scholar
  91. 91.
    FitzGerald, G. A. (1991). Mechanisms of platelet activation: Thromboxane A2 as an amplifying signal for other agonists. American Journal of Cardiology, 68, 11B–5B.PubMedCrossRefGoogle Scholar
  92. 92.
    Ali, S., Davis, M. G., Becker, M. W., & Dorn, G. W., 2nd (1993). Thromboxane A2 stimulates vascular smooth muscle hypertrophy by up-regulating the synthesis and release of endogenous basic fibroblast growth factor. Journal of Biological Chemistry, 268, 17397–7403.PubMedGoogle Scholar
  93. 93.
    Hirata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R., Nakanishi, S., et al. (1991). Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature, 349, 617–20.PubMedCrossRefGoogle Scholar
  94. 94.
    Raychowdhury, M. K., Yukawa, M., Collins, L. J., McGrail, S. H., Kent, K. C., & Ware, J. A. (1995). Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. Journal of Biological Chemistry, 270, 7011.PubMedCrossRefGoogle Scholar
  95. 95.
    Miggin, S. M., & Kinsella, B. T. (1998). Expression and tissue distribution of the mRNAs encoding the human thromboxane A2 receptor (TP) alpha and beta isoforms. Biochimica Et Biophysica Acta, 1425, 543–59.PubMedGoogle Scholar
  96. 96.
    Breyer, R. M., Bagdassarian, C. K., Myers, S. A., & Breyer, M. D. (2001). Prostanoid receptors: Subtypes and signaling. Annual Review of Pharmacology and Toxicology, 41, 661–90.PubMedCrossRefGoogle Scholar
  97. 97.
    Needleman, P., Wyche, A., & Raz, A. (1979). Platelet and blood vessel arachidonate metabolism and interactions. Journal of Clinical Investigation, 63, 345–49.PubMedCrossRefGoogle Scholar
  98. 98.
    Cogolludo, A., Moreno, L., Bosca, L., Tamargo, J., & Perez-Vizcaino, F. (2003). Thromboxane A2-induced inhibition of voltage-gated K+ channels and pulmonary vasoconstriction: role of protein kinase Czeta. Circulation Research, 93, 656–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Sullivan, P., & Smyth, E. M. (2002). Heterodimerization of the a and b isoforms of the human thromboxane receptor. Arteriosclerosis Thrombosis Vascular Biology, 22, 878.Google Scholar
  100. 100.
    Chen, G. G., Lee, T. W., Yip, J. H., Xu, H., Lee, I. K., Mok, T. S., et al. (2005). Increased thromboxane B(2) levels are associated with lipid peroxidation and Bcl-2 expression in human lung carcinoma. Cancer Letters.Google Scholar
  101. 101.
    Watkins, G., Douglas-Jones, A., Mansel, R. E., & Jiang, W. G. (2005). Expression of thromboxane synthase, TBXAS1 and the thromboxane A2 receptor, TBXA2R, in human breast cancer. International Seminars Surgical Oncology, 2, 23.CrossRefGoogle Scholar
  102. 102.
    Ristimaki, A., Sivula, A., Lundin, J., Lundin, M., Salminen, T., Haglund, C., et al. (2002). Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Research, 62, 632–35.PubMedGoogle Scholar
  103. 103.
    Liu, C. H., Chang, S. H., Narko, K., Trifan, O. C., Wu, M. T., Smith, E., et al. (2001). Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. Journal of Biological Chemistry, 276, 18563–8569.PubMedCrossRefGoogle Scholar
  104. 104.
    Johnson, T. W., Anderson, K. E., Lazovich, D., & Folsom, A. R. (2002). Association of aspirin and nonsteroidal anti-inflammatory drug use with breast cancer. Cancer Epidemiology Biomarkers & Prevention, 11, 1586–591.Google Scholar
  105. 105.
    Harris, R. E., Chlebowski, R. T., Jackson, R. D., Frid, D. J., Ascenseo, J. L., Anderson, G., et al. (2003). Breast cancer and nonsteroidal anti-inflammatory drugs: Prospective results from the Women’s Health Initiative. Cancer Research, 63, 6096–101.PubMedGoogle Scholar
  106. 106.
    Blair, C. K., Sweeney, C., Anderson, K. E., & Folsom, A. R. (2006). NSAID use and survival after breast cancer diagnosis in post-menopausal women. Breast Cancer Research and Treatment.Google Scholar
  107. 107.
    Ratliff, T. L. (2005). Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: A critical review of non-selective COX-2 blockade (review). Journal of Urology, 174, 787–88.Google Scholar
  108. 108.
    Howe, L. R., Subbaramaiah, K., Brown, A. M., & Dannenberg, A. J. (2001). Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocrine Related Cancer, 8, 97–14.PubMedCrossRefGoogle Scholar
  109. 109.
    Takeuchi, K., Tanaka, A., Hayashi, Y., & Yokota, A. (2005). COX inhibition and NSAID-induced gastric damage—roles in various pathogenic events. Current Topics in Medicinal Chemistry, 5, 475–86.PubMedCrossRefGoogle Scholar
  110. 110.
    Wang, D., & Dubois, R. N. (2005). Prostaglandins and cancer. Gut, 55, 115–22.PubMedCrossRefGoogle Scholar
  111. 111.
    Lenzer, J. (2005). FDA advisers warn: COX 2 inhibitors increase risk of heart attack and stroke. BMJ, 330, 440.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Medical Microbiology, Immunology, and Cell BiologySouthern Illinois University School of Medicine and Cancer InstituteSpringfieldUSA
  2. 2.Department of PathologyWayne State University School of MedicineDetroitUSA

Personalised recommendations