Advertisement

Cancer and Metastasis Reviews

, Volume 26, Issue 3–4, pp 535–551 | Cite as

Dietary fat’gene interactions in cancer

  • Yong Q. ChenEmail author
  • Iris J. Edwards
  • Steven J. Kridel
  • Todd Thornburg
  • Isabelle M. Berquin
Article

Abstract

Epidemiologic studies have suggested for decades an association between dietary fat and cancer risk. A large body of work performed in tissue culture and xenograft models of cancer supports an important role of various types of fat in modulating the cancer phenotype. Yet, the molecular mechanisms underlining the effects of fat on cancer initiation and progression are largely unknown. The relationships between saturated fat, polyunsaturated fat, cholesterol or phytanic acid with cancer have been reviewed respectively. However, few have considered the relationship between all of these fats and cancer. The purpose of this review is to present a more cohesive view of dietary fat’gene interactions, and outline a working hypothesis of the intricate connection between fat, genes and cancer.

Keywords

Cancer Dietary fat Saturated fatty acids Polyunsaturated fatty acids Fatty acid synthase Acylation Lipid-mediated signal transduction Isoprenoids Cholesterol Bile acids Steroids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feinberg, A. P., & Tycko, B. (2004). The history of cancer epigenetics. Nature Reviews Cancer, 4, 143–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Feinberg, A. P. (2004). The epigenetics of cancer etiology. Seminars in Cancer Biology, 14, 427–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Lund, A. H., & van Lohuizen, M. (2004). Epigenetics and cancer. Genes and Development, 18, 2315–335.PubMedCrossRefGoogle Scholar
  4. 4.
    Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill Jr., A. H., Murphy, R. C., et al. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46, 839–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Kuhajda, F. P. (2006). Fatty acid synthase and cancer: New application of an old pathway. Cancer Research, 66, 5977–980.PubMedCrossRefGoogle Scholar
  6. 6.
    Ookhtens, M., Kannan, R., Lyon, I., & Baker, N. (1984). Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 247, R146’R153.Google Scholar
  7. 7.
    Wakil, S. J. (1989). Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry, 28, 4523–530.PubMedCrossRefGoogle Scholar
  8. 8.
    Kuhajda, F. P. (2000). Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition, 16, 202–08.PubMedCrossRefGoogle Scholar
  9. 9.
    Abu-Elheiga, L., Matzuk, M. M., Kordari, P., Oh, W., Shaikenov, T., Gu, Z., et al. (2005). Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proceedings of the National Academy of Sciences of the United States of America, 102, 12011–2016.PubMedCrossRefGoogle Scholar
  10. 10.
    Chirala, S. S., Chang, H., Matzuk, M., Abu-Elheiga, L., Mao, J., Mahon, K., et al. (2003). Fatty acid synthesis is essential in embryonic development: Fatty acid synthase null mutants and most of the heterozygotes die in utero. Proceedings of the National Academy of Sciences of the United States of America, 100, 6358–363.PubMedCrossRefGoogle Scholar
  11. 11.
    Chakravarthy, M. V., Pan, Z., Zhu, Y., Tordjman, K., Schneider, J. G., Coleman, T., et al. (2005). “New–hepatic fat activates PPAR[alpha] to maintain glucose, lipid, and cholesterol homeostasis. Cell Metabolism, 1, 309–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Mao, J., DeMayo, F. J., Li, H., Abu-Elheiga, L., Gu, Z., Shaikenov, T. E., et al. (2006). Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 103, 8552–557.PubMedCrossRefGoogle Scholar
  13. 13.
    Swinnen, J. V., Van Veldhoven, P. P., Timmermans, L., De Schrijver, E., Brusselmans, K., Vanderhoydonc, F., et al. (2003). Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochemical and Biophysical Research Communications, 302, 898–03.PubMedCrossRefGoogle Scholar
  14. 14.
    Epstein, J. I., Carmichael, M., & Partin, A. W. (1995). OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology, 45, 81–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Rossi, S., Graner, E., Febbo, P., Weinstein, L., Bhattacharya, N., Onody, T., et al. (2003). Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Molecular Cancer Research, 1, 707–15.PubMedGoogle Scholar
  16. 16.
    Pizer, E. S., Pflug, B. R., Bova, G. S., Han, W. F., Udan, M. S., & Nelson, J. B. (2001). Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate, 47, 102–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Alo, P. L., Visca, P., Marci, A., Mangoni, A., Botti, C., & Di Tondo, U. (1996). Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer, 77, 474–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Kridel, S. J., Axelrod, F., Rozenkrantz, N., & Smith, J. W. (2004). Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Research, 64, 2070–075.PubMedCrossRefGoogle Scholar
  19. 19.
    Pizer, E. S., Wood, F. D., Heine, H. S., Romantsev, F. E., Pasternack, G. R., & Kuhajda, F. P. (1996). Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Research, 56, 1189–193.PubMedGoogle Scholar
  20. 20.
    Wang, H. Q., Altomare, D. A., Skele, K. L., Poulikakos, P. I., Kuhajda, F. P., Di Cristofano, A., et al. (2005). Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene, 24, 3574–582.PubMedCrossRefGoogle Scholar
  21. 21.
    Alli, P. M., Pinn, M. L., Jaffee, E. M., McFadden, J. M., & Kuhajda, F. P. (2005). Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene, 24, 39–6.PubMedCrossRefGoogle Scholar
  22. 22.
    De Schrijver, E., Brusselmans, K., Heyns, W., Verhoeven, G., & Swinnen, J. V. (2003). RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Research, 63, 3799–804.PubMedGoogle Scholar
  23. 23.
    Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8, 311–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Brusselmans, K., De Schrijver, E., Verhoeven, G., & Swinnen, J. V. (2005). RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Research, 65, 6719–725.PubMedCrossRefGoogle Scholar
  25. 25.
    Chajes, V., Cambot, M., Moreau, K., Lenoir, G. M., & Joulin, V. (2006). Acetyl-CoA carboxylase {alpha} is essential to breast cancer cell survival. Cancer Research, 66, 5287–294.PubMedCrossRefGoogle Scholar
  26. 26.
    Pizer, E. S., Thupari, J., Han, W. F., Pinn, M. L., Chrest, F. J., Frehywot, G. L., et al. (2000). Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Research, 60, 213–18.PubMedGoogle Scholar
  27. 27.
    Swinnen, J. V., Brusselmans, K., & Verhoeven, G. (2006). Increased lipogenesis in cancer cells: New players, novel targets. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 358–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Swinnen, J. V., & Verhoeven, G. (1998). Androgens and the control of lipid metabolism in human prostate cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 65, 191–98.PubMedCrossRefGoogle Scholar
  29. 29.
    Chalbos, D., Chambon, M., Ailhaud, G., & Rochefort, H. (1987). Fatty acid synthetase and its mRNA are induced by progestins in breast cancer cells. Journal of Biological Chemistry, 262, 9923–926.PubMedGoogle Scholar
  30. 30.
    Van de Sande, T., De Schrijver, E., Heyns, W., Verhoeven, G., & Swinnen, J. V. (2002). Role of the phosphatidylinositol 3¢-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Research, 62, 642–46.PubMedGoogle Scholar
  31. 31.
    Bandyopadhyay, S., Pai, S. K., Watabe, M., Gross, S. C., Hirota, S., Hosobe, S., et al. (2005). FAS expression inversely correlates with PTEN level in prostate cancer and a PI 3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis. Oncogene, 24, 5389–395.PubMedCrossRefGoogle Scholar
  32. 32.
    Van de Sande, T., Roskams, T., Lerut, E., Joniau, S., Van Poppel, H., Verhoeven, G., et al. (2005). High-level expression of fatty acid synthase in human prostate cancer tissues is linked to activation and nuclear localization of Akt/PKB. Journal of Pathology, 206, 214–19.PubMedCrossRefGoogle Scholar
  33. 33.
    Yang, Y.-A., Han, W. F., Morin, P. J., Chrest, F. J., & Pizer, E. S. (2002). Activation of fatty acid synthesis during neoplastic transformation: Role of mitogen-activated protein kinase and phosphatidylinositol 3-Kinase. Experimental Cell Research, 279, 80–0.PubMedCrossRefGoogle Scholar
  34. 34.
    Menendez, J. A., Vellon, L., Mehmi, I., Oza, B. P., Ropero, S., Colomer, R., et al. (2004). Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 10715–0720.PubMedCrossRefGoogle Scholar
  35. 35.
    Worgall, T. S., Sturley, S. L., Seo, T., Osborne, T. F., & Deckelbaum, R. J. (1998). Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of mature sterol regulatory element-binding protein. Journal of Biological Chemistry, 273, 25537–5540.PubMedCrossRefGoogle Scholar
  36. 36.
    Teran-Garcia, M., Adamson, A. W., Yu, G., Rufo, C., Suchankova, G., Dreesen, T. D., et al. (2007). Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): Evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c. Biochemical Journal, 402, 591–00.PubMedCrossRefGoogle Scholar
  37. 37.
    Graner, E., Tang, D., Rossi, S., Baron, A., Migita, T., & Weinstein, L. J., et al. (2004). The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell, 5, 253–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Shah, U. S., Dhir, R., Gollin, S. M., Chandran, U. R., Lewis, D., Acquafondata, M., et al. (2006). Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Human Pathology, 37, 401–09.PubMedCrossRefGoogle Scholar
  39. 39.
    Little, J. L., Wheeler, F. B., Fels, D. F., Koumenis, C., & Kridel, S. J. (2007). Inhibition of fatty acid synthase induces endoplasmic rericulum stress in tumor cells. Cancer Research, 67, 1262–269.PubMedCrossRefGoogle Scholar
  40. 40.
    Stoffel, W. (1971). Sphingolipids. Annual Review of Biochemistry, 40, 57–2.PubMedCrossRefGoogle Scholar
  41. 41.
    Nusse, R. (2003). Wnts and Hedgehogs: Lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development, 130, 5297–305.PubMedCrossRefGoogle Scholar
  42. 42.
    Mann, R. K., & Beachy, P. A. (2004). Novel lipid modifications of secreted protein signals. Annual Review of Biochemistry, 73, 891–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Resh, M. D. (2006). Trafficking and signaling by fatty-acylated and prenylated proteins. Nature Chemical Biology, 2, 584–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Resh, M. D. (2006). Use of analogs and inhibitors to study the functional significance of protein palmitoylation. Methods, 40, 191–97.PubMedCrossRefGoogle Scholar
  45. 45.
    Giovannucci, E., Rimm, E. B., Colditz, G. A., Stampfer, M. J., Ascherio, A., Chute, C. C., et al. (1993). A prospective study of dietary fat and risk of prostate cancer. Journal of the National Cancer Institute, 85, 1571–579.PubMedCrossRefGoogle Scholar
  46. 46.
    Hursting, S. D., Thornquist, M., & Henderson, M. M. (1990). Types of dietary fat and the incidence of cancer at five sites. Preventive Medicine, 19, 242–53.PubMedCrossRefGoogle Scholar
  47. 47.
    Saadatian-Elahi, M., Norat, T., Goudable, J., & Riboli, E. (2004). Biomarkers of dietary fatty acid intake and the risk of breast cancer: A meta-analysis. International Journal of Cancer, 111, 584–91.CrossRefGoogle Scholar
  48. 48.
    Crawford, M. A. (1992). The role of dietary fatty acids in biology: Their place in the evolution of the human brain. Nutrition Reviews, 50, 3–1.PubMedCrossRefGoogle Scholar
  49. 49.
    Davis, B. C., & Kris-Etherton, P. M. (2003). Achieving optimal essential fatty acid status in vegetarians: Current knowledge and practical implications. American Journal of Clinical Nutrition, 78, 640S–46S.PubMedGoogle Scholar
  50. 50.
    Arterburn, L. M., Hall, E. B., & Oken, H. (2006). Distribution, interconversion, and dose response of n-3 fatty acids in humans. American Journal of Clinical Nutrition, 83, 1467S–476S.PubMedGoogle Scholar
  51. 51.
    Park, Y., & Harris, W. S. (2003). Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. Journal of Lipid Research, 44, 455–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Augustus, A. S., Kako, Y., Yagyu, H., & Goldberg, I. J. (2003). Routes of FA delivery to cardiac muscle: Modulation of lipoprotein lipolysis alters uptake of TG-derived FA. American Journal of Physiology: Endocrinology and Metabolism, 284, E331’E339.PubMedGoogle Scholar
  53. 53.
    Gal, D., MacDonald, P. C., Porter, J. C., & Simpson, E. R. (1981). Cholesterol metabolism in cancer cells in monolayer culture. III. Low-density lipoprotein metabolism. International Journal of Cancer, 28, 315–19.CrossRefGoogle Scholar
  54. 54.
    Kaizer, L., Boyd, N. F., Kriukov, V., & Tritchler, D. (1989). Fish consumption and breast cancer risk: An ecological study. Nutrition and Cancer, 12, 61–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Sasaki, S., Horacsek, M., & Kesteloot, H. (1993). An ecological study of the relationship between dietary fat intake and breast cancer mortality. Preventive Medicine, 22, 187–02.PubMedCrossRefGoogle Scholar
  56. 56.
    Terry, P. D., Terry, J. B., & Rohan, T. E. (2004). Long-chain (n-3) fatty acid intake and risk of cancers of the breast and the prostate: Recent epidemiological studies, biological mechanisms, and directions for future research. Journal of Nutrition, 134, 3412S–420S.PubMedGoogle Scholar
  57. 57.
    Leitzmann, M. F., Stampfer, M. J., Michaud, D. S., Augustsson, K., Colditz, G. C., Willett, W. C., et al. (2004). Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. American Journal of Clinical Nutrition, 80, 204–16.PubMedGoogle Scholar
  58. 58.
    Caygill, C. P., Charlett, A., & Hill, M. J. (1996). Fat, fish, fish oil and cancer. British Journal of Cancer, 74, 159–64.PubMedGoogle Scholar
  59. 59.
    Yeh, C. C., Hsieh, L. L., Tang, R., Chang-Chieh, C. R., & Sung, F. C. (2003). Risk factors for colorectal cancer in Taiwan: A hospital-based case’control study. Journal of the Formosan Medical Association, 102, 305–12.PubMedGoogle Scholar
  60. 60.
    Yang, C. X., Takezaki, T., Hirose, K., Inoue, M., Huang, X. E., & Tajima, K. (2003). Fish consumption and colorectal cancer: A case’reference study in Japan. European Journal of Cancer Prevention, 12, 109–15.PubMedCrossRefGoogle Scholar
  61. 61.
    Terry, P. D., Rohan, T. E., & Wolk, A. (2003). Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: A review of the epidemiologic evidence. American Journal of Clinical Nutrition, 77, 532–43.PubMedGoogle Scholar
  62. 62.
    MacLean, C. H., Newberry, S. J., Mojica, W. A., Khanna, P., Issa, A. M., Suttorp, M. J., et al. (2006). Effects of omega-3 fatty acids on cancer risk: A systematic review. Journal of the American Medical Association, 295, 403–15.PubMedCrossRefGoogle Scholar
  63. 63.
    Engeset, D., Alsaker, E., Lund, E., Welch, A., Khaw, K. T., & Clavel-Chapelon, F., et al. (2006). Fish consumption and breast cancer risk. The European Prospective Investigation into Cancer and Nutrition (EPIC). International Journal of Cancer, 119, 175–82.CrossRefGoogle Scholar
  64. 64.
    Chen, Y. Q., Berquin, I. M., Daniel, L. W., Edwards, I. J., O’Flaherty, J. T., Thomas, M. J., et al. (2006). Omega-3 fatty acids and cancer risk. Journal of the American Medical Association, 296, 282.PubMedCrossRefGoogle Scholar
  65. 65.
    Larsson, S. C., Kumlin, M., Ingelman-Sundberg, M., & Wolk, A. (2004). Dietary long-chain n-3 fatty acids for the prevention of cancer: A review of potential mechanisms. American Journal of Clinical Nutrition, 79, 935–45.PubMedGoogle Scholar
  66. 66.
    Simonsen, N., van’t Veer, P., Strain, J. J., Martin-Moreno, J. M., Huttunen, J. K., Navajas, J. F., et al. (1998). Adipose tissue omega-3 and omega-6 fatty acid content and breast cancer in the EURAMIC study. European Community Multicenter Study on Antioxidants, Myocardial Infarction, and Breast Cancer. American Journal of Epidemiology, 147, 342–52.PubMedGoogle Scholar
  67. 67.
    Yang, Y. J., Lee, S. H., Hong, S. J., & Chung, B. C. (1999). Comparison of fatty acid profiles in the serum of patients with prostate cancer and benign prostatic hyperplasia. Clinical Biochemistry, 32, 405–09.PubMedCrossRefGoogle Scholar
  68. 68.
    Mamalakis, G., Kafatos, A., Kalogeropoulos, N., Andrikopoulos, N., Daskalopulos, G., & Kranidis, A. (2002). Prostate cancer vs hyperplasia: Relationships with prostatic and adipose tissue fatty acid composition. Prostaglandins, Leukotrienes and Essential Fatty Acids, 66, 467–77.CrossRefGoogle Scholar
  69. 69.
    Freeman, V. L., Meydani, M., Hur, K., & Flanigan, R. C. (2004). Inverse association between prostatic polyunsaturated fatty acid and risk of locally advanced prostate carcinoma. Cancer, 101, 2744–754.PubMedCrossRefGoogle Scholar
  70. 70.
    Norrish, A. E., Skeaff, C. M., Arribas, G. L., Sharpe, S. J., & Jackson, R. T. (1999). Prostate cancer risk and consumption of fish oils: A dietary biomarker-based case’control study. British Journal of Cancer, 81, 1238–242.PubMedCrossRefGoogle Scholar
  71. 71.
    Koh, W. P., Yuan, J. M., van den Berg, D., Lee, H. P., & Yu, M. C. (2004). Interaction between cyclooxygenase-2 gene polymorphism and dietary n-6 polyunsaturated fatty acids on colon cancer risk: The Singapore Chinese Health Study. British Journal of Cancer, 90, 1760–764.PubMedGoogle Scholar
  72. 72.
    Hedelin, M., Chang, E. T., Wiklund, F., Bellocco, R., Klint, A., Adolfsson, J., et al. (2007). Association of frequent consumption of fatty fish with prostate cancer risk is modified by COX-2 polymorphism. International Journal of Cancer, 120, 398–05.CrossRefGoogle Scholar
  73. 73.
    Siezen, C. L., van Leeuwen, A. I., Kram, N. R., Luken, M. E., van Kranen, H. J., & Kampman, E. (2005). Colorectal adenoma risk is modified by the interplay between polymorphisms in arachidonic acid pathway genes and fish consumption. Carcinogenesis, 26, 449–57.PubMedCrossRefGoogle Scholar
  74. 74.
    Gallicchio, L., McSorley, M. A., Newschaffer, C. J., Thuita, L. W., Huang, H. Y., Hoffman, S. C., et al. (2006). Nonsteroidal antiinflammatory drugs, cyclooxygenase polymorphisms, and the risk of developing breast carcinoma among women with benign breast disease. Cancer, 106, 1443–452.PubMedCrossRefGoogle Scholar
  75. 75.
    Langsenlehner, U., Yazdani-Biuki, B., Eder, T., Renner, W., Wascher, T. C., Paulweber, B., et al. (2006). The cyclooxygenase-2 (PTGS2) 8473T > C polymorphism is associated with breast cancer risk. Clinical Cancer Research, 12, 1392–394.PubMedCrossRefGoogle Scholar
  76. 76.
    Shahedi, K., Lindstrom, S., Zheng, S. L., Wiklund, F., Adolfsson, J., Sun, J., et al. (2006). Genetic variation in the COX-2 gene and the association with prostate cancer risk. International Journal of Cancer, 119, 668–72.CrossRefGoogle Scholar
  77. 77.
    Sansbury, L. B., Millikan, R. C., Schroeder, J. C., North, K. E., Moorman, P. G., Keku, T. O., et al. (2006). COX-2 polymorphism, use of nonsteroidal anti-inflammatory drugs, and risk of colon cancer in African Americans (United States). Cancer Causes Control, 17, 257–66.PubMedCrossRefGoogle Scholar
  78. 78.
    Ali, I. U., Luke, B. T., Dean, M., & Greenwald, P. (2005). Allellic variants in regulatory regions of cyclooxygenase-2: Association with advanced colorectal adenoma. British Journal of Cancer, 93, 953–59.PubMedCrossRefGoogle Scholar
  79. 79.
    Ulrich, C. M., Whitton, J., Yu, J. H., Sibert, J., Sparks, R., Potter, J. D., et al. (2005). PTGS2 (COX-2) –65G > C promoter variant reduces risk of colorectal adenoma among nonusers of nonsteroidal anti-inflammatory drugs. Cancer Epidemiology, Biomarkers & Prevention, 14, 616–19.CrossRefGoogle Scholar
  80. 80.
    Cox, D. G., Pontes, C., Guino, E., Navarro, M., Osorio, A., Canzian, F., et al. (2004). Polymorphisms in prostaglandin synthase 2/cyclooxygenase 2 (PTGS2/COX2) and risk of colorectal cancer. British Journal of Cancer, 91, 339–43.PubMedGoogle Scholar
  81. 81.
    Lin, H. J., Lakkides, K. M., Keku, T. O., Reddy, S. T., Louie, A. D., Kau, I. H., et al. (2002). Prostaglandin H synthase 2 variant (Val511Ala) in African Americans may reduce the risk for colorectal neoplasia. Cancer Epidemiology, Biomarkers & Prevention, 11, 1305–315.Google Scholar
  82. 82.
    Park, J. M., Choi, J. E., Chae, M. H., Lee, W. K., Cha, S. I., Son, J. W., et al. (2006). Relationship between cyclooxygenase 8473T > C polymorphism and the risk of lung cancer: A case’control study. BioMed Central Cancer, 6, 70.PubMedGoogle Scholar
  83. 83.
    Sorensen, M., Autrup, H., Tjonneland, A., Overvad, K., Raaschou-Nielsen, O., et al. (2005). A genetic polymorphism in prostaglandin synthase 2 (8473, T–> C) and the risk of lung cancer. Cancer Letters, 226, 49–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Hu, Z., Miao, X., Ma, H., Wang, X., Tan, W., Wei, Q., et al. (2005). A common polymorphism in the . 3’YTP. of cyclooxygenase 2/prostaglandin synthase 2 gene and risk of lung cancer in a Chinese population. Lung Cancer, 48, 11–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Campa, D., Zienolddiny, S., Maggini, V., Skaug, V., Haugen, A., & Canzian, F. (2004). Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis, 25, 229–35.PubMedCrossRefGoogle Scholar
  86. 86.
    Pereira, C., Sousa, H., Ferreira, P., Fragoso, M., Moreira-Dias, L., Lopes, C., et al. (2006). –65G > C COX-2 polymorphism may be a susceptibility marker for gastric adenocarcinoma in patients with atrophy or intestinal metaplasia. World Journal of Gastroenterology, 12, 5473–478.PubMedGoogle Scholar
  87. 87.
    Sakoda, L. C., Gao, Y. T., Chen, B. E., Chen, J., Rosenberg, P. S., Rashid, A., et al. (2006). Prostaglandin-endoperoxide synthase 2 (PTGS2) gene polymorphisms and risk of biliary tract cancer and gallstones: A population-based study in Shanghai, China. Carcinogenesis, 27, 1251–256.PubMedCrossRefGoogle Scholar
  88. 88.
    Kang, S., Kim, Y. B., Kim, M. H., Yoon, K. S., Kim, J. W., Park, N. H., et al. (2005). Polymorphism in the nuclear factor kappa-B binding promoter region of cyclooxygenase-2 is associated with an increased risk of bladder cancer. Cancer Letters, 217, 11–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Ulrich, C. M., Bigler, J., Sparks, R., Whitton, J., Sibert, J. G., Goode, E. L., et al. (2004). Polymorphisms in PTGS1 (=COX-1) and risk of colorectal polyps. Cancer Epidemiology, Biomarkers & Prevention, 13, 889–93.Google Scholar
  90. 90.
    Goodman, J. E., Bowman, E. D., Chanock, S. J., Alberg, A. J., & Harris, C. C. (2004). Arachidonate lipoxygenase (ALOX) and cyclooxygenase (COX) polymorphisms and colon cancer risk. Carcinogenesis, 25, 2467–472.PubMedCrossRefGoogle Scholar
  91. 91.
    Gong, Z., Hebert, J. R., Bostick, R. M., Deng, Z., Hurley, T. G., Dixon, D. A., et al. (2007). Common polymorphisms in 5-lipoxygenase and 12-lipoxygenase genes and the risk of incident, sporadic colorectal adenoma. Cancer, 109, 849–57.PubMedCrossRefGoogle Scholar
  92. 92.
    Reddy, B. S., Cohen, L. A., McCoy, G. D., Hill, P., Weisburger, J. H., & Wynder, E. L. (1980). Nutrition and its relationship to cancer. Advances in Cancer Research, 32, 237–45.PubMedCrossRefGoogle Scholar
  93. 93.
    Jurkowski, J. J., & Cave Jr., W. T. (1985). Dietary effects of menhaden oil on the growth and membrane lipid composition of rat mammary tumors. Journal of the National Cancer Institute, 74, 1145–150.PubMedGoogle Scholar
  94. 94.
    Braden, L. M., & Carroll, K. K. (1986). Dietary polyunsaturated fat in relation to mammary carcinogenesis in rats. Lipids, 21, 285–88.PubMedCrossRefGoogle Scholar
  95. 95.
    Gabor, H., Hillyard, L. A., & Abraham, S. (1985). Effect of dietary fat on growth kinetics of transplantable mammary adenocarcinoma in BALB/c mice. Journal of the National Cancer Institute, 74, 1299–305.PubMedGoogle Scholar
  96. 96.
    Rose, D. P., Hatala, M. A., Connolly, J. M., & Rayburn, J. (1993). Effect of diets containing different levels of linoleic acid on human breast cancer growth and lung metastasis in nude mice. Cancer Research, 53, 4686–690.PubMedGoogle Scholar
  97. 97.
    Rose, D. P., & Connolly, J. M. (1993). Effects of dietary omega-3 fatty acids on human breast cancer growth and metastases in nude mice. Journal of the National Cancer Institute, 85, 1743–747.PubMedCrossRefGoogle Scholar
  98. 98.
    Rose, D. P., Connolly, J. M., Rayburn, J., & Coleman, M. (1995). Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. Journal of the National Cancer Institute, 87, 587–92.PubMedCrossRefGoogle Scholar
  99. 99.
    Reddy, B. S., & Maruyama, H. (1986). Effect of dietary fish oil on azoxymethane-induced colon carcinogenesis in male F344 rats. Cancer Research, 46, 3367–370.PubMedGoogle Scholar
  100. 100.
    Minoura, T., Takata, T., Sakaguchi, M., Takada, H., Yamamura, M., Hioki, K., et al. (1988). Effect of dietary eicosapentaenoic acid on azoxymethane-induced colon carcinogenesis in rats. Cancer Research, 48, 4790–794.PubMedGoogle Scholar
  101. 101.
    Reddy, B. S., & Sugie, S. (1988). Effect of different levels of omega-3 and omega-6 fatty acids on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Research, 48, 6642–647.PubMedGoogle Scholar
  102. 102.
    Takahashi, M., Minamoto, T., Yamashita, N., Kato, T., Yazawa, K., & Esumi, H. (1994). Effect of docosahexaenoic acid on azoxymethane-induced colon carcinogenesis in rats. Cancer Letters, 83, 177–84.PubMedCrossRefGoogle Scholar
  103. 103.
    Hendrickse, C. W., Keighley, M. R., & Neoptolemos, J. P. (1995). Dietary omega-3 fats reduce proliferation and tumor yields at colorectal anastomosis in rats. Gastroenterology, 109, 431–39.PubMedCrossRefGoogle Scholar
  104. 104.
    Onogi, N., Okuno, M., Komaki, C., Moriwaki, H., Kawamori, T., Tanaka, T., et al. (1996). Suppressing effect of perilla oil on azoxymethane-induced foci of colonic aberrant crypts in rats. Carcinogenesis, 17, 1291–296.PubMedCrossRefGoogle Scholar
  105. 105.
    Komaki, C., Okuno, M., Onogi, N., Moriwaki, H., Kawamori, T., Tanaka, T., et al. (1996). Synergistic suppression of azoxymethane-induced foci of colonic aberrant crypts by the combination of beta-carotene and perilla oil in rats. Carcinogenesis, 17, 1897–901.PubMedCrossRefGoogle Scholar
  106. 106.
    Takahashi, M., Fukutake, M., Isoi, T., Fukuda, K., Sato, H., Yazawa, K., et al. (1997). Suppression of azoxymethane-induced rat colon carcinoma development by a fish oil component, docosahexaenoic acid (DHA). Carcinogenesis, 18, 1337–342.PubMedCrossRefGoogle Scholar
  107. 107.
    Paulsen, J. E., Stamm, T., & Alexander, J. (1998). A fish oil-derived concentrate enriched in eicosapentaenoic and docosahexaenoic acid as ethyl esters inhibits the formation and growth of aberrant crypt foci in rat colon. Pharmacology and Toxicology, 82, 28–3.PubMedCrossRefGoogle Scholar
  108. 108.
    Dwivedi, C., Muller, L. A., Goetz-Parten, D. E., Kasperson, K., & Mistry, V. V. (2003). Chemopreventive effects of dietary mustard oil on colon tumor development. Cancer Letter, 196, 29–4.CrossRefGoogle Scholar
  109. 109.
    Dwivedi, C., Natarajan, K., & Matthees, D. P. (2005). Chemopreventive effects of dietary flaxseed oil on colon tumor development. Nutrition and Cancer, 51, 52–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Bommareddy, A., Arasada, B. L., Mathees, D. P., & Dwivedi, C. (2006). Chemopreventive effects of dietary flaxseed on colon tumor development. Nutrition and Cancer, 54, 216–22.PubMedCrossRefGoogle Scholar
  111. 111.
    Williams, D., Verghese, M., Walker, L. T., Boateng, J., Shackelford, L., & Chawan, C. B. (2007). Flax seed oil and flax seed meal reduce the formation of aberrant crypt foci (ACF) in azoxymethane-induced colon cancer in Fisher 344 male rats. Food and Chemical Toxicology, 45, 153–59.PubMedCrossRefGoogle Scholar
  112. 112.
    Cannizzo Jr., F., & Broitman, S. A. (1989). Postpromotional effects of dietary marine or safflower oils on large bowel or pulmonary implants of CT-26 in mice. Cancer Research, 49, 4289–294.PubMedGoogle Scholar
  113. 113.
    Iigo, M., Nakagawa, T., Ishikawa, C., Iwahori, Y., Asamoto, M., Yazawa, K., et al. (1997). Inhibitory effects of docosahexaenoic acid on colon carcinoma 26 metastasis to the lung. British Journal of Cancer, 75, 650–55.PubMedGoogle Scholar
  114. 114.
    Paulsen, J. E., Elvsaas, I. K., Steffensen, I. L., & Alexander, J. (1997). A fish oil derived concentrate enriched in eicosapentaenoic and docosahexaenoic acid as ethyl ester suppresses the formation and growth of intestinal polyps in the Min mouse. Carcinogenesis, 18, 1905–910.PubMedCrossRefGoogle Scholar
  115. 115.
    Boudreau, M. D., Sohn, K. H., Rhee, S. H., Lee, S. W., Hunt, J. D., & Hwang, D. H. (2001). Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: Mediation through cyclooxygenase-independent pathways. Cancer Research, 61, 1386–391.PubMedGoogle Scholar
  116. 116.
    Calviello, G., Di Nicuolo, F., Gragnoli, S., Piccioni, E., Serini, S., Maggiano, N., et al. (2004). n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis, 25, 2303–310.PubMedCrossRefGoogle Scholar
  117. 117.
    Oikarinen, S. I., Pajari, A. M., Salminen, I., Heinonen, S. M., Adlercreutz, H., & Mutanen, M. (2005). Effects of a flaxseed mixture and plant oils rich in alpha-linolenic acid on the adenoma formation in multiple intestinal neoplasia (Min) mice. British Journal of Nutrition, 94, 510–18.PubMedCrossRefGoogle Scholar
  118. 118.
    Iwamoto, S., Senzaki, H., Kiyozuka, Y., Ogura, E., Takada, H., Hioki, K., et al. (1998). Effects of fatty acids on liver metastasis of ACL-15 rat colon cancer cells. Nutrition and Cancer, 31, 143–50.PubMedCrossRefGoogle Scholar
  119. 119.
    Kontogiannea, M., Gupta, A., Ntanios, F., Graham, T., Jones, P., & Meterissian, S. (2000). omega-3 fatty acids decrease endothelial adhesion of human colorectal carcinoma cells. Journal of Surgical Research, 92, 201–05.PubMedCrossRefGoogle Scholar
  120. 120.
    Karmali, R. A., Reichel, P., Cohen, L. A., Terano, T., Hirai, A., Tamura, Y., et al. (1987). The effects of dietary omega-3 fatty acids on the DU-145 transplantable human prostatic tumor. Anticancer Research, 7, 1173–179.PubMedGoogle Scholar
  121. 121.
    Wang, Y., Corr, J. G., Thaler, H. T., Tao, Y., Fair, W. R., & Heston, W. D. (1995). Decreased growth of established human prostate LNCaP tumors in nude mice fed a low-fat diet. Journal of the National Cancer Institute, 87, 1456–462.PubMedCrossRefGoogle Scholar
  122. 122.
    Clinton, S. K., Palmer, S. S., Spriggs, C. E., & Visek, W. J. (1988). Growth of Dunning transplantable prostate adenocarcinomas in rats fed diets with various fat contents. Journal of Nutrition, 118, 908–14.PubMedGoogle Scholar
  123. 123.
    Rose, D. P., Connolly, J. M., & Coleman, M. (1996). Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clinical Cancer Research, 2, 1751–756.PubMedGoogle Scholar
  124. 124.
    Hardman, W. E., Avula, C. P., Fernandes, G., & Cameron, I. L. (2001). Three percent dietary fish oil concentrate increased efficacy of doxorubicin against MDA-MB 231 breast cancer xenografts. Clinical Cancer Research, 7, 2041–049.PubMedGoogle Scholar
  125. 125.
    Shao, Y., Pardini, L., & Pardini, R. S. (1995). Dietary menhaden oil enhances mitomycin C antitumor activity toward human mammary carcinoma MX-1. Lipids, 30, 1035–045.PubMedCrossRefGoogle Scholar
  126. 126.
    Needleman, P., Raz, A., Minkes, M. S., Ferrendelli, J. A., & Sprecher, H. (1979). Triene prostaglandins: Prostacyclin and thromboxane biosynthesis and unique biological properties. Proceedings of the National Academy of Sciences of the United States of America, 76, 944–48.PubMedCrossRefGoogle Scholar
  127. 127.
    Sinicrope, F. A. (2006). Targeting cyclooxygenase-2 for prevention and therapy of colorectal cancer. Molecular Carcinogenesis, 45, 447–54.PubMedCrossRefGoogle Scholar
  128. 128.
    Kobayashi, N., Barnard, R. J., Henning, S. M., Elashoff, D., Reddy, S. T., Cohen, P., et al. (2006). Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. Clinical Cancer Research, 12, 4662–670.PubMedCrossRefGoogle Scholar
  129. 129.
    Brown, M. D., Hart, C. A., Gazi, E., Bagley, S., & Clarke, N. W. (2006). Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs. British Journal of Cancer, 94, 842–53.PubMedCrossRefGoogle Scholar
  130. 130.
    Swamy, M. V., Cooma, I., Patlolla, J. M., Simi, B., Reddy, B. S., & Rao, C. V. (2004). Modulation of cyclooxygenase-2 activities by the combined action of celecoxib and decosahexaenoic acid: Novel strategies for colon cancer prevention and treatment. Molecular Cancer Therapeutics, 3, 215–21.PubMedGoogle Scholar
  131. 131.
    Form, D. M., & Auerbach, R. (1983). PGE2 and angiogenesis. Proceedings of the Society for Experimental Biology and Medicine, 172, 214–18.PubMedGoogle Scholar
  132. 132.
    McCarty, M. F. (1996). Fish oil may impede tumour angiogenesis and invasiveness by down-regulating protein kinase C and modulating eicosanoid production. Medical Hypotheses, 46, 107–15.PubMedCrossRefGoogle Scholar
  133. 133.
    Rose, D. P., & Connolly, J. M. (1999). Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology & Therapeutics, 83, 217–44.CrossRefGoogle Scholar
  134. 134.
    Reddy, B. S., Simi, B., Patel, N., Aliaga, C., & Rao, C. V. (1996). Effect of amount and types of dietary fat on intestinal bacterial 7 alpha-dehydroxylase and phosphatidylinositol-specific phospholipase C and colonic mucosal diacylglycerol kinase and PKC activities during stages of colon tumor promotion. Cancer Research, 56, 2314–320.PubMedGoogle Scholar
  135. 135.
    Singh, J., Hamid, R., & Reddy, B. S. (1997). Dietary fat and colon cancer: Modulating effect of types and amount of dietary fat on ras-p21 function during promotion and progression stages of colon cancer. Cancer Research, 57, 253–58.PubMedGoogle Scholar
  136. 136.
    Collett, E. D., Davidson, L. A., Fan, Y. Y., Lupton, J. R., & Chapkin, R. S. (2001). n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. American Journal of Physiology: Cell Physiology, 280, C1066’C1075.PubMedGoogle Scholar
  137. 137.
    Liu, G., Bibus, D. M., Bode, A. M., Ma, W. Y., Holman, R. T., & Dong, Z. (2001). Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 7510–515.PubMedCrossRefGoogle Scholar
  138. 138.
    Hardman, W. E. (2002). Omega-3 fatty acids to augment cancer therapy. Journal of Nutrition, 132, 3508S–512S.PubMedGoogle Scholar
  139. 139.
    Serhan, C. N., Hong, S., Gronert, K., Colgan, S. P., Devchand, P. R., Mirick, G., et al. (2002). Resolvins: A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. Journal of Experimental Medicine, 196, 1025–037.PubMedCrossRefGoogle Scholar
  140. 140.
    Serhan, C. N., Arita, M., Hong, S., & Gotlinger, K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids, 39, 1125–132.PubMedCrossRefGoogle Scholar
  141. 141.
    Serhan, C. N., & Savill, J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunology, 6, 1191–197.PubMedCrossRefGoogle Scholar
  142. 142.
    Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–67.PubMedCrossRefGoogle Scholar
  143. 143.
    Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431–36.PubMedCrossRefGoogle Scholar
  144. 144.
    Clevers, H. (2004). At the crossroads of inflammation and cancer. Cell, 118, 671–74.PubMedCrossRefGoogle Scholar
  145. 145.
    Chabot, M. C., Schmitt, J. D., Bullock, B. C., & Wykle, R. L. (1987). Reacylation of platelet activating factor with eicosapentaenoic acid in fish-oil-enriched monkey neutrophils. Biochimica et Biophysica Acta, 922, 214–20.PubMedGoogle Scholar
  146. 146.
    Martin-Chouly, C. A., Menier, V., Hichami, A., Youmine, H., Noel, F., Pedrono, F., et al. (2000). Modulation of PAF production by incorporation of arachidonic acid and eicosapentaenoic acid in phospholipids of human leukemic monocyte-like cells THP-1. Prostaglandins & Other Lipid Mediators, 60, 127–35.CrossRefGoogle Scholar
  147. 147.
    Pickett, W. C., & Ramesha, C. S. (1987). Ether phospholipids in control and 20:4-depleted rat PMN: Additional evidence for a 1-O-alkyl-2–0:4-sn-glycerol-3-phosphocholine specific phospholipase A2. Agents Actions, 21, 390–92.PubMedCrossRefGoogle Scholar
  148. 148.
    Montrucchio, G., Sapino, A., Bussolati, B., Ghisolfi, G., Rizea-Savu, S., Silvestro, L., et al. (1998). Potential angiogenic role of platelet-activating factor in human breast cancer. American Journal of Pathology, 153, 1589–596.PubMedGoogle Scholar
  149. 149.
    Bussolino, F., Arese, M., Montrucchio, G., Barra, L., Primo, L., Benelli, R., et al. (1995). Platelet activating factor produced in vitro by Kaposi’s sarcoma cells induces and sustains in vivo angiogenesis. Journal of Clinical Investigation, 96, 940–52.PubMedCrossRefGoogle Scholar
  150. 150.
    Montrucchio, G., Lupia, E., Battaglia, E., Passerini, G., Bussolino, F., Emanuelli, G., et al. (1994). Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis. Journal of Experimental Medicine, 180, 377–82.PubMedCrossRefGoogle Scholar
  151. 151.
    Sirois, M. G., & Edelman, E. R. (1997). VEGF effect on vascular permeability is mediated by synthesis of platelet-activating factor. American Journal of Physiology, 272, H2746’H2756.PubMedGoogle Scholar
  152. 152.
    Welsch, C. W. (1995). Review of the effects of dietary fat on experimental mammary gland tumorigenesis: Role of lipid peroxidation. Free Radical Biology & Medicine, 18, 757–73.CrossRefGoogle Scholar
  153. 153.
    Chajes, V., Sattler, W., Stranzl, A., & Kostner, G. M. (1995). Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: Relationship to peroxides and vitamin-E. Breast Cancer Research and Treatment, 34, 199–12.PubMedCrossRefGoogle Scholar
  154. 154.
    Lhuillery, C., Cognault, S., Germain, E., Jourdan, M. L., & Bougnoux, P. (1997). Suppression of the promoter effect of polyunsaturated fatty acids by the absence of dietary vitamin E in experimental mammary carcinoma. Cancer Letters, 114, 233–34.PubMedCrossRefGoogle Scholar
  155. 155.
    Dommels, Y. E., Haring, M. M., Keestra, N. G., Alink, G. M., van Bladeren, P. J., & van Ommen, B. (2003). The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE(2) synthesis and cytotoxicity in human colorectal carcinoma cell lines. Carcinogenesis, 24, 385–92.PubMedCrossRefGoogle Scholar
  156. 156.
    Suchanek, K. M., May, F. J., Lee, W. J., Holman, N. A., & Roberts-Thomson, S. J. (2002). Peroxisome proliferator-activated receptor beta expression in human breast epithelial cell lines of tumorigenic and non-tumorigenic origin. International Journal of Biochemistry & Cell Biology, 34, 1051–058.CrossRefGoogle Scholar
  157. 157.
    Stephen, R. L., Gustafsson, M. C., Jarvis, M., Tatoud, R., Marshall, B. R., Knight, D., et al. (2004). Activation of peroxisome proliferator-activated receptor delta stimulates the proliferation of human breast and prostate cancer cell lines. Cancer Research, 64, 3162–170.PubMedCrossRefGoogle Scholar
  158. 158.
    Mueller, E., Smith, M., Sarraf, P., Kroll, T., Aiyer, A., & Kaufman, D. S., et al. (2000). Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 97, 10990–0995.PubMedCrossRefGoogle Scholar
  159. 159.
    Elstner, E., Muller, C., Koshizuka, K., Williamson, E. A., Park, D., Asou, H., et al. (1998). Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proceedings of the National Academy of Sciences of the United States of America, 95, 8806–811.PubMedCrossRefGoogle Scholar
  160. 160.
    Takashima, T., Fujiwara, Y., Higuchi, K., Arakawa, T., Yano, Y., Hasuma, T., et al. (2001). PPAR-gamma ligands inhibit growth of human esophageal adenocarcinoma cells through induction of apoptosis, cell cycle arrest and reduction of ornithine decarboxylase activity. International Journal of Oncology, 19, 465–71.PubMedGoogle Scholar
  161. 161.
    Sarraf, P., Mueller, E., Smith, W. M., Wright, H. M., Kum, J. B., Aaltonen, L. A., et al. (1999). Loss-of-function mutations in PPAR gamma associated with human colon cancer. Molecular Cell, 3, 799–04.PubMedCrossRefGoogle Scholar
  162. 162.
    Elstner, E., Williamson, E. A., Zang, C., Fritz, J., Heber, D., & Fenner, M., et al. (2002). Novel therapeutic approach: Ligands for PPARgamma and retinoid receptors induce apoptosis in bcl-2-positive human breast cancer cells. Breast Cancer Research and Treatment, 74, 155–65.PubMedCrossRefGoogle Scholar
  163. 163.
    Webb, J. H. (1901). Cancer, its nature and treatment. Lancet, 2, 976.CrossRefGoogle Scholar
  164. 164.
    White, C. (1909). On the occurrence of crystals in tumours. Journal of Pathology and Bacteriology, 13, 3–0.CrossRefGoogle Scholar
  165. 165.
    Freeman, M. R., & Solomon, K. R. (2004). Cholesterol and prostate cancer. Journal of Cellular Biochemistry, 91, 54–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Bravi, F., Scotti, L., Bosetti, C., Talamini, R., Negri, E., Montella, M., et al. (2006). Self-reported history of hypercholesterolaemia and gallstones and the risk of prostate cancer. Annals of Oncology, 17, 1014–017.PubMedCrossRefGoogle Scholar
  167. 167.
    Poynter, J. N., Gruber, S. B., Higgins, P. D., Almog, R., Bonner, J. D., Rennert, H. S., et al. (2005). Statins and the risk of colorectal cancer. New England Journal of Medicine, 352, 2184–192.PubMedCrossRefGoogle Scholar
  168. 168.
    Shannon, J., Tewoderos, S., Garzotto, M., Beer, T. M., Derenick, R., Palma, A., et al. (2005). Statins and prostate cancer risk: A case’control study. American Journal of Epidemiology, 162, 318–25.PubMedCrossRefGoogle Scholar
  169. 169.
    Platz, E. A., Leitzmann, M. F., Visvanathan, K., Rimm, E. B., Stampfer, M. J., Willett, W. C., et al. (2006). Statin drugs and risk of advanced prostate cancer. Journal of the National Cancer Institute, 98, 1819–825.PubMedCrossRefGoogle Scholar
  170. 170.
    Dale, K. M., Coleman, C. I., Henyan, N. N., Kluger, J., & White, C. M. (2006). Statins and cancer risk—A meta-analysis. Journal of the American Medical Association, 295, 74–0.PubMedCrossRefGoogle Scholar
  171. 171.
    Quest, A. F., Leyton, L., & Parraga, M. (2004). Caveolins, caveolae, and lipid rafts in cellular transport, signaling, and disease. Biochemistry and Cell Biology, 82, 129–44.PubMedCrossRefGoogle Scholar
  172. 172.
    Cohen, A. W., Hnasko, R., Schubert, W., & Lisanti, M. P. (2004). Role of caveolae and caveolins in health and disease. Physiological Reviews, 84, 1341–379.PubMedCrossRefGoogle Scholar
  173. 173.
    Li, Y., Zhang, H., Litingtung, Y., & Chiang, C. (2006). Cholesterol modification restricts the spread of Shh gradient in the limb bud. Proceedings of the National Academy of Sciences of the United States of America, 103, 6548–553.PubMedCrossRefGoogle Scholar
  174. 174.
    Mullor, J. L., Sanchez, P., & Altaba, A. R. (2002). Pathways and consequences: Hedgehog signaling in human disease. Trends in Cell Biology, 12, 562–69.PubMedCrossRefGoogle Scholar
  175. 175.
    Ruiz i Altaba, A., Sanchez, P., & Dahmane, N. (2002). Gli and hedgehog in cancer: Tumours, embryos and stem cells. Nature Reviews Cancer, 2, 361–72.PubMedCrossRefGoogle Scholar
  176. 176.
    Karhadkar, S. S., Bova, G. S., Abdallah, N., Dhara, S., Gardner, D., Maitra, A., et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature, 431, 707–12.PubMedCrossRefGoogle Scholar
  177. 177.
    Wakabayashi, Y., Mao, J. H., Brown, K., Girardi, M., & Balmain, A. (2007). Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the Patched gene in FVB mice. Nature, 445, 761–65.PubMedCrossRefGoogle Scholar
  178. 178.
    Benetka, W., Koranda, M., & Eisenhaber, F. (2006). Protein prenylation: An (almost) comprehensive overview on discovery history, enzymology, and significance in physiology and disease. Monatshefte Fur Chemie, 137, 1241–281.CrossRefGoogle Scholar
  179. 179.
    Gelb, M. H., Brunsveld, L., Hrycyna, C. A., Michaelis, S., Tamanoi, F., Van Voorhis, W. C., et al. (2006). Therapeutic intervention based on protein prenylation and associated modifications. Nature Chemical Biology, 2, 518–28.PubMedCrossRefGoogle Scholar
  180. 180.
    Sebti, S. M. (2005). Protein farnesylation: Implications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell, 7, 297–00.PubMedCrossRefGoogle Scholar
  181. 181.
    Basso, A. D., Kirschmeier, P., & Bishop, W. R. (2006). Farnesyl transferase inhibitors. Journal of Lipid Research, 47, 15–1.PubMedCrossRefGoogle Scholar
  182. 182.
    Fritz, G. (2005). HMG-CoA reductase inhibitors (statins) as anticancer drugs (review). International Journal of Oncology, 27, 1401–409.PubMedGoogle Scholar
  183. 183.
    Illingworth, D. R., & Bacon, S. (1989). Treatment of heterozygous familial hypercholesterolemia with lipid-lowering drugs. Arteriosclerosis, 9, I121’I134.PubMedGoogle Scholar
  184. 184.
    Wolf, G. (2002). Intestinal bile acids can bind to and activate the vitamin D receptor. Nutrition Reviews, 60, 281–83.PubMedCrossRefGoogle Scholar
  185. 185.
    Bernstein, H., Bernstein, C., Payne, C. M., Dvorakova, K., & Garewal, H. (2005). Bile acids as carcinogens in human gastrointestinal cancers. Mutation Research, 589, 47–5.PubMedCrossRefGoogle Scholar
  186. 186.
    Im, E. O., Choi, Y. H., Paik, K. J., Suh, H., Jin, Y., Kim, K. W., et al. (2001). Novel bile acid derivatives induce apoptosis via a p53-independent pathway in human breast carcinoma cells. Cancer Letters, 163, 83–3.PubMedCrossRefGoogle Scholar
  187. 187.
    Kim, N. D., Im, E. O., Choi, Y. H., & Yoo, Y. H. (2002). Synthetic bile acids: Novel mediators of apoptosis. Journal of Biochemistry and Molecular Biology, 35, 134–41.PubMedGoogle Scholar
  188. 188.
    Yager, J. D., & Davidson, N. E. (2006). Estrogen carcinogenesis in breast cancer. New England Journal of Medicine, 354, 270–82.PubMedCrossRefGoogle Scholar
  189. 189.
    Cordera, F., & Jordan, V. C. (2006). Steroid receptors and their role in the biology and control of breast cancer growth. Seminars in Oncology, 33, 631–41.PubMedCrossRefGoogle Scholar
  190. 190.
    Roy, V., & Perez, E. A. (2006). New therapies in the treatment of breast cancer. Seminars in Oncology, 33, S3’S8.PubMedCrossRefGoogle Scholar
  191. 191.
    Judd, H. L., Shamonki, I. M., Frumar, A. M., & Lagasse, L. D. (1982). Origin of serum estradiol in postmenopausal women. Obstetrics & Gynecology, 59, 680–86.Google Scholar
  192. 192.
    Huggins, C., & Hodges, C. V. (1941). Studies on prostatic cancer, I: The effect of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Research, 1, 293–97.Google Scholar
  193. 193.
    Sharifi, N., Gulley, J. L., & Dahut, W. L. (2005). Androgen deprivation therapy for prostate cancer. Journal of the American Medical Association, 294, 238–44.PubMedCrossRefGoogle Scholar
  194. 194.
    Tilley, W. D., Buchanan, G., Hickey, T. E., & Bentel, J. M. (1996). Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clinical Cancer Research, 2, 277–85.PubMedGoogle Scholar
  195. 195.
    Taplin, M. E., Bubley, G. J., Shuster, T. D., Frantz, M. E., Spooner, A. E., Ogata, G. K., et al. (1995). Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. New England Journal of Medicine, 332, 1393–398.PubMedCrossRefGoogle Scholar
  196. 196.
    Marcelli, M., Ittmann, M., Mariani, S., Sutherland, R., Nigam, R., Murthy, L., et al. (2000). Androgen receptor mutations in prostate cancer. Cancer Research, 60, 944–49.PubMedGoogle Scholar
  197. 197.
    Mononen, N., Syrjakoski, K., Matikainen, M., Tammela, T. L., Schleutker, J., Kallioniemi, O. P., et al. (2000). Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Research, 60, 6479–481.PubMedGoogle Scholar
  198. 198.
    Taplin, M. E., Bubley, G. J., Ko, Y. J., Small, E. J., Upton, M., & Rajeshkumar, B., et al. (1999). Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Research, 59, 2511–515.PubMedGoogle Scholar
  199. 199.
    Zhao, X. Y., Malloy, P. J., Krishnan, A. V., Swami, S., Navone, N. M., Peehl, D. M., et al. (2000). Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nature Medicine, 6, 703–06.PubMedCrossRefGoogle Scholar
  200. 200.
    Lindstrom, S., Zheng, S. L., Wiklund, F., Jonsson, B. A., Adami, H. O., Balter, K. A., et al. (2006). Systematic replication study of reported genetic associations in prostate cancer: Strong support for genetic variation in the androgen pathway. Prostate, 66, 1729–743.PubMedCrossRefGoogle Scholar
  201. 201.
    Demark-Wahnefried, W., Price, D. T., Polascik, T. J., Robertson, C. N., Anderson, E. E., Paulson, D. F., et al. (2001). Pilot study of dietary fat restriction and flaxseed supplementation in men with prostate cancer before surgery: Exploring the effects on hormonal levels, prostate-specific antigen, and histopathologic features. Urology, 58, 47–2.PubMedCrossRefGoogle Scholar
  202. 202.
    Lips, P. (2006). Vitamin D physiology. Progress in Biophysics and Molecular Biology, 92, 4–.PubMedCrossRefGoogle Scholar
  203. 203.
    Schwartz, G. G., & Skinner, H. G. (2007). Vitamin D status and cancer: New insights. Current Opinion in Clinical Nutrition and Metabolic Care, 10, 6–1.PubMedGoogle Scholar
  204. 204.
    Schwartz, G. G., Wang, M. H., Zang, M., Singh, R. K., & Siegal, G. P. (1997). 1 alpha,25-Dihydroxyvitamin D (calcitriol) inhibits the invasiveness of human prostate cancer cells. Cancer Epidemiology, Biomarkers & Prevention, 6, 727–32.Google Scholar
  205. 205.
    Lokeshwar, B. L., Schwartz, G. G., Selzer, M. G., Burnstein, K. L., Zhuang, S. H., Block, N. L., et al. (1999). Inhibition of prostate cancer metastasis in vivo: A comparison of 1,23-dihydroxyvitamin D (calcitriol) and EB1089. Cancer Epidemiology, Biomarkers & Prevention, 8, 241–48.Google Scholar
  206. 206.
    Zhao, X. Y., & Feldman, D. (2001). The role of vitamin D in prostate cancer. Steroids, 66, 293–00.PubMedCrossRefGoogle Scholar
  207. 207.
    Blutt, S. E., Allegretto, E. A., Pike, J. W., & Weigel, N. L. (1997). 1,25-dihydroxyvitamin D3 and 9-cis-retinoic acid act synergistically to inhibit the growth of LNCaP prostate cells and cause accumulation of cells in G1. Endocrinology, 138, 1491–497.PubMedCrossRefGoogle Scholar
  208. 208.
    Verlinden, L., Verstuyf, A., Convents, R., Marcelis, S., Van Camp, M., & Bouillon, R. (1998). Action of 1,25(OH)2D3 on the cell cycle genes, cyclin D1, p21 and p27 in MCF-7 cells. Molecular and Cellular Endocrinology, 142, 57–5.PubMedCrossRefGoogle Scholar
  209. 209.
    Brown, P. J., Mei, G., Gibberd, F. B., Burston, D., Mayne, P. D., McClinchy, J. E., et al. (1993). Diet and refsums disease—The determination of phytanic acid and phytol in certain foods and the application of this knowledge to the choice of suitable convenience foods for patients with refsums disease. Journal of Human Nutrition and Dietetics, 6, 295–05.CrossRefGoogle Scholar
  210. 210.
    Bostwick, D. G., Burke, H. B., Djakiew, D., Euling, S., Ho, S. M., Landolph, J., et al. (2004). Human prostate cancer risk factors. Cancer, 101, 2371–490.PubMedCrossRefGoogle Scholar
  211. 211.
    Chan, J. M., Stampfer, M. J., Ma, J., Gann, P. H., Gaziano, J. M., & Giovannucci, E. L. (2001). Dairy products, calcium, and prostate cancer risk in the Physicians’–Health Study. American Journal of Clinical Nutrition, 74, 549–54.PubMedGoogle Scholar
  212. 212.
    Giovannucci, E. (1998). Dietary influences of 1,25(OH)2 vitamin D and prostate cancer: A hypothesis. Cancer Causes Control, 9, 567–82.PubMedCrossRefGoogle Scholar
  213. 213.
    Giovannucci, E., Rimm, E. B., Wolk, A., Ascherio, A., Stampfer, M., Colditz, G. A., et al. (1998). Calcium and fructose intake in relation to risk of prostate cancer. Cancer Research, 58, 442–47.PubMedGoogle Scholar
  214. 214.
    Xu, J., Thornburg, T., Turner, A. R., Vitolins, M., Case, D., Shadle, J., et al. (2005). Serum levels of phytanic acid are associated with prostate cancer risk. Prostate, 63, 209–14.PubMedCrossRefGoogle Scholar
  215. 215.
    Hayes, R. B., Ziegler, R. G., Gridley, G., Swanson, C., Greenberg, R. S., Swanson, G. M., et al. (1999). Dietary factors and risks for prostate cancer among blacks and whites in the United States. Cancer Epidemiology Biomarkers & Prevention, 8, 25–4.Google Scholar
  216. 216.
    Thornburg, T. T. A., Chen, Y. Q., Vitolins, M., Chang, B., & Xu., J. (2006). Phytanic acid, AMACR and prostate cancer risk. Future Oncology, 2, 213–23.PubMedCrossRefGoogle Scholar
  217. 217.
    Xu, J. C., Stolk, J. A., Zhang, X. Q., Silva, S. J., Houghton, R. L., Matsumura, M., et al. (2000). Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Research, 60, 1677–682.PubMedGoogle Scholar
  218. 218.
    Jiang, Z., Woda, B. A., Rock, K. L., Xu, Y. D., Savas, L., Khan, A., et al. (2001). P504S-A new molecular marker for the detection of prostate carcinoma. American Journal of Surgical Pathology, 25, 1397–404.PubMedCrossRefGoogle Scholar
  219. 219.
    Jiang, Z., Li, C. Z., Fischer, A., Dresser, K., & Woda, B. A. (2005). Using an AMACR (P504S)/34 beta E12/p63 cocktail for the detection of small focal prostate carcinoma in needle biopsy specimens. American Journal of Clinical Pathology, 123, 231–36.PubMedCrossRefGoogle Scholar
  220. 220.
    Rubin, M. A., Zhou, M., Dhanasekaran, S. M., Varambally, S., Barrette, T. R., Sanda, M. G., et al. (2002). alpha-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. Journal of The American Medical Association, 287, 1662–670.PubMedCrossRefGoogle Scholar
  221. 221.
    Luo, J., Zha, S., Gage, W. R., Dunn, T. A., Hicks, J. L., Bennett, C. J., et al. (2002). alpha-Methylacyl-CoA racemase: A new molecular marker for prostate cancer. Cancer Research, 62, 2220–226.PubMedGoogle Scholar
  222. 222.
    Suzue, K., Montag, A. G., Tretiakova, M., Yang, X. M. J., & Sahoo, S. (2005). Altered expression of alpha-methylacyl-coenzyme A racemase in prostatic adenocarcinoma following hormone therapy. American Journal of Clinical Pathology, 123, 553–61.PubMedCrossRefGoogle Scholar
  223. 223.
    Kumar-Sinha, C., Shah, R. B., Laxman, B., Tomlins, S. A., Harwood, J., Schmitz, W., et al. (2004). Elevated alpha-methylacyl-CoA racemase enzymatic activity in prostate cancer. American Journal of Pathology, 164, 787–93.PubMedGoogle Scholar
  224. 224.
    Mubiru, J. N., Valente, A. J., & Troyer, D. A. (2005). A variant of the alpha-methyl-acyl-CoA racemase gene created by a deletion in exon 5 and its expression in prostate cancer. Prostate, 65, 117–23.PubMedCrossRefGoogle Scholar
  225. 225.
    Zhou, M., Chinnaiyan, A. M., Kleer, C. G., Lucas, P. C., & Rubin, M. A. (2002). Alpha-methylacyl-CoA racemase—A novel tumor marker over-expressed in several human cancers and their precursor lesions. American Journal of Surgical Pathology, 26, 926–31.PubMedCrossRefGoogle Scholar
  226. 226.
    Zhou, M., Jiang, Z., & Epstein, J. I. (2003). Expression and diagnostic utility of alpha-methylacyl-CoA-racemase (P504S) in foamy gland and pseudohyperplastic prostate cancer. American Journal of Surgical Pathology, 27, 772–78.PubMedCrossRefGoogle Scholar
  227. 227.
    Molinie, V., Herve, J. M., Lebret, T., Lugagne-Delpon, P. M., Saporta, F., Yonneau, L., et al. (2004). Value of the antibody cocktail anti p63 anti p504s for the diagnosis of prostatic cancer. Annales De Pathologie, 24, 6–6.PubMedCrossRefGoogle Scholar
  228. 228.
    Molinie, V., Fromont, G., Sibony, M., Vieillefond, A., Vassiliu, V., Cochand-Priollet, B., et al. (2004). Diagnostic utility of a p63/alpha-methyl-CoA-racemase (p504s) cocktail in atypical foci in the prostate. Modern Pathology, 17, 1180–190.PubMedCrossRefGoogle Scholar
  229. 229.
    Zhou, M., Aydin, H., Kanane, H., Epstein, J. I. (2004). How often does alpha-methylacyl-CoA-racemase contribute to resolving an atypical diagnosis on prostate needle biopsy beyond that provided by basal cell markers? American Journal of Surgical Pathology, 28, 239–43.PubMedCrossRefGoogle Scholar
  230. 230.
    Ferdinandusse, S., Denis, S., Clayton, P. T., Graham, A., Rees, J. E., Allen, J. T., et al. (2000). Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nature Genetics, 24, 188–91.PubMedCrossRefGoogle Scholar
  231. 231.
    Mobley, J. A., Leav, I., Zielie, P., Wotkowitz, C., Evans, J., Lam, Y. W., et al. (2003). Branched fatty acids in dairy and beef products markedly enhance alpha-methylacyl-CoA racemase expression in prostate cancer cells in vitro. Cancer Epidemiology, Biomarkers & Prevention, 12, 775–83.Google Scholar
  232. 232.
    Goddard, K. A. B., Witte, J. S., Suarez, B. K., Catalona, W. J., & Olson, J. M. (2001). Model-free linkage analysis with covariates confirms linkage of prostate cancer to chromosomes 1 and 4. American Journal of Human Genetics, 68, 1197–206.PubMedCrossRefGoogle Scholar
  233. 233.
    Hsieh, C. L., Oakley-Girvan, I., Balise, R. R., Halpern, J., Gallagher, R. P., Wu, A. H., et al. (2001). A genome screen of families with multiple cases of prostate cancer: Evidence of genetic heterogeneity. American Journal of Human Genetics, 69, 148–58.PubMedCrossRefGoogle Scholar
  234. 234.
    Smith, J. R., Freije, D., Carpten, J. D., Gronberg, H., Xu, J. F., Isaacs, S. D., et al. (1996). Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science, 274, 1371–374.PubMedCrossRefGoogle Scholar
  235. 235.
    Zheng, S. Q. L., Chang, B. L., Faith, D. A., Johnson, J. R., Isaacs, S. D., Hawkins, G. A., et al. (2002). Sequence variants of alpha-methylacyl-CoA racemase are associated with prostate cancer risk. Cancer Research, 62, 6485–488.PubMedGoogle Scholar
  236. 236.
    Berquin, I. M., Min, Y., Wu, R., Wu, J., Perry, D., Cline, J. M., et al. (2007). Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. Journal of Clinical Investigation, 117, 1866–875.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yong Q. Chen
    • 1
    Email author
  • Iris J. Edwards
    • 2
  • Steven J. Kridel
    • 1
  • Todd Thornburg
    • 3
  • Isabelle M. Berquin
    • 1
    • 2
  1. 1.Cancer BiologyWake Forest University School of MedicineWinston-SalemUSA
  2. 2.Department of PathologyWake Forest University School of MedicineWinston-SalemUSA
  3. 3.Comprehensive Cancer CenterWake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations