Cancer and Metastasis Reviews

, Volume 26, Issue 3–4, pp 401–420 | Cite as

Chemokines: novel targets for breast cancer metastasis



Recent studies have highlighted the possible involvement of chemokines and their receptors in breast cancer progression and metastasis. Chemokines and their receptors constitute a superfamily of signalling factors whose prognosis value in breast cancer progression remains unclear. We will examine here the expression pattern of chemokines and their receptors in mammary gland physiology and carcinogenesis. The nature of the cells producing chemokines or harboring chemokine receptors appears to be crucial in certain conditions for example, the infiltration of the primary tumor by leukocytes and angiogenesis. In addition, chemokines, their receptors and the interaction with glycosaminoglycan (GAGs) are key players in the homing of cancer cells to distant metastasis sites. Several lines of evidence, including in vitro and in vivo models, suggest that the mechanism of action of chemokines in cancer development involves the modulation of proliferation, apoptosis, invasion, leukocyte recruitment or angiogenesis. Furthermore, we will discuss the regulation of chemokine network in tumor neovascularity by decoy receptors. The reasons accounting for the deregulation of chemokines and chemokine receptors expression in breast cancer are certainly crucial for the comprehension of chemokine role in breast cancer and are in several cases linked to estrogen receptor status. The targeting of chemokines and chemokine receptors by antibodies, small molecule antagonists, viral chemokine binding proteins and heparins appears as promising tracks to develop therapeutic strategies. Thus there is significant interest in developing strategies to antagonize the chemokine function, and an opportunity to interfere with metastasis, the leading cause of death in most patients.


Chemokines Breast cancer Metastasis Glycosaminoglycan Tumor associated macrophages Estrogen receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dowsland, M. H., Harvey, J. R., Lennard, T. W., Kirby, J. A., & Ali, S. (2003). Chemokines and breast cancer: A gateway to revolutionary targeted cancer treatments? Current Medicinal Chemistry, 10, 579–92.PubMedGoogle Scholar
  2. 2.
    Thelen, M. (2001). Dancing to the tune of chemokines. Nature Immunology, 2, 129–34.PubMedGoogle Scholar
  3. 3.
    Belperio, J. A., Keane, M. P., Arenberg, D. A., Addison, C. L., Ehlert, J. E., Burdick, M. D., et al. (2000). CXC chemokines in angiogenesis. Journal of Leukocyte Biology, 68, 1–.PubMedGoogle Scholar
  4. 4.
    Baggiolini, M., & Loetscher, P. (2000). Chemokines in inflammation and immunity. Immunology Today, 21, 418–20.PubMedGoogle Scholar
  5. 5.
    Chen, G. S., Yu, H. S., Lan, C. C., Chow, K. C., Lin, T. Y., Kok, L. F., et al. (2006). CXC chemokine receptor CXCR4 expression enhances tumorigenesis and angiogenesis of basal cell carcinoma. British Journal of Dermatology, 154, 910–18.PubMedGoogle Scholar
  6. 6.
    Hwang, J., Son, K. N., Kim, C. W., Ko, J., Na, D. S., Kwon, B. S., et al. (2005). Human CC chemokine CCL23, a ligand for CCR1, induces endothelial cell migration and promotes angiogenesis. Cytokine, 30, 254–63.PubMedGoogle Scholar
  7. 7.
    Strieter, R. M., Burdick, M. D., Gomperts, B. N., Belperio, J. A., & Keane, M. P. (2005). CXC chemokines in angiogenesis. Cytokine and Growth Factor Reviews, 16, 593–09.PubMedGoogle Scholar
  8. 8.
    Baggiolini, M., Dewald, B., & Moser, B. (1997). Human chemokines: an update. Annual Review of Immunology, 15, 675–05.PubMedGoogle Scholar
  9. 9.
    Luster, A. D. (1998). Chemokines—chemotactic cytokines that mediate inflammation. New England Journal of Medicine, 338, 436–45.PubMedGoogle Scholar
  10. 10.
    Rollins, B. J. (1997). Chemokines. Blood, 90, 909–28.PubMedGoogle Scholar
  11. 11.
    Zlotnik, A., Yoshie, O., & Nomiyama, H. (2006). The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biology, 7, 243.PubMedGoogle Scholar
  12. 12.
    Rossi, D., & Zlotnik, A. (2000). The biology of chemokines and their receptors. Annual Review of Immunology, 18, 217–42.PubMedGoogle Scholar
  13. 13.
    Murphy, P. M., Baggiolini, M., Charo, I. F., Hebert, C. A., Horuk, R., Matsushima, K., et al. (2000). International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological Reviews, 52, 145–76.PubMedGoogle Scholar
  14. 14.
    Zlotnik, A., & Yoshie, O. (2000). Chemokines: A new classification system and their role in immunity. Immunity, 12, 121–27.PubMedGoogle Scholar
  15. 15.
    Bacon, K., Baggiolini, M., Broxmeyer, H., Horuk, R., Lindley, I., Mantovani, A., et al. (2002). Chemokine/chemokine receptor nomenclature. Journal of Interferon & Cytokine Research, 22, 1067–068.Google Scholar
  16. 16.
    Peiper, S. C., Wang, Z. X., Neote, K., Martin, A. W., Showell, H. J., Conklyn, M. J., et al. (1995). The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. Journal of Experimental Medicine, 181, 1311–317.PubMedGoogle Scholar
  17. 17.
    Nibbs, R. J., Wylie, S. M., Pragnell, I. B., & Graham, G. J. (1997). Cloning and characterization of a novel murine beta chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein-1alpha receptors, CCR-1, CCR-3, and CCR-5. Journal of Biological Chemistry, 272, 12495–2504.PubMedGoogle Scholar
  18. 18.
    Gosling, J., Dairaghi, D. J., Wang, Y., Hanley, M., Talbot, D., Miao, Z., et al. (2000). Cutting edge: Identification of a novel chemokine receptor that binds dendritic cell- and T cell-active chemokines including ELC, SLC, and TECK. Journal of Immunology, 164, 2851–856.Google Scholar
  19. 19.
    Kuang, Y., Wu, Y., Jiang, H., & Wu, D. (1996). Selective G protein coupling by C’C chemokine receptors. Journal of Biological Chemistry, 271, 3975–978.PubMedGoogle Scholar
  20. 20.
    Richmond, A. (2002). Nf-kappa B, chemokine gene transcription and tumour growth. Nature Reviews. Immunology, 2, 664–74.PubMedGoogle Scholar
  21. 21.
    Moser, B., Wolf, M., Walz, A., & Loetscher, P. (2004). Chemokines: Multiple levels of leukocyte migration control. Trends in Immunology, 25, 75–4.PubMedGoogle Scholar
  22. 22.
    Strieter, R. M., Polverini, P. J., Arenberg, D. A., & Kunkel, S. L. (1995). The role of CXC chemokines as regulators of angiogenesis. Shock, 4, 155–60.PubMedGoogle Scholar
  23. 23.
    Addison, C. L., Daniel, T. O., Burdick, M. D., Liu, H., Ehlert, J. E., Xue, Y. Y., et al. (2000). The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. Trends in Immunology, 165, 5269–277.Google Scholar
  24. 24.
    Balabanian, K., Lagane, B., Infantino, S., Chow, K. Y., Harriague, J., Moepps, B., et al. (2005). The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. Journal of Biological Chemistry, 280, 35760–5766.PubMedGoogle Scholar
  25. 25.
    Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., et al. (2006). A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. Journal of Experimental Medicine, 203, 2201–213.PubMedGoogle Scholar
  26. 26.
    Mirshahi, F., Pourtau, J., Li, H., Muraine, M., Trochon, V., Legrand, E., et al. (2000). SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thrombosis Research, 99, 587–94.PubMedGoogle Scholar
  27. 27.
    Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335–48.PubMedGoogle Scholar
  28. 28.
    Luker, K. E., & Luker, G. D. (2006). Functions of CXCL12 and CXCR4 in breast cancer. Cancer Letter, 238, 30–1.Google Scholar
  29. 29.
    Strieter, R. M., Burdick, M. D., Mestas, J., Gomperts, B., Keane, M. P., & Belperio, J. A. (2006). Cancer CXC chemokine networks and tumour angiogenesis. European Journal of Cancer, 42, 768–78.PubMedGoogle Scholar
  30. 30.
    Maurer, A. M., Han, Z. C., Dhermy, D., & Briere, J. (1996). Inhibitory effect of platelet factor 4 on human erythroleukemic cells is dependent on cell surface heparan sulfate. Journal of Laboratory and Clinical Medicine, 127, 382–90.PubMedGoogle Scholar
  31. 31.
    Maione, T. E., Gray, G. S., Petro, J., Hunt, A. J., Donner, A. L., Bauer, S. I., et al. (1990). Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science, 247, 77–9.PubMedGoogle Scholar
  32. 32.
    Struyf, S., Burdick, M. D., Proost, P., Van Damme, J., & Strieter, R. M. (2004). Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis. Circulation Research, 95, 855–57.PubMedGoogle Scholar
  33. 33.
    Zipin-Roitman, A., Meshel, T., Sagi-Assif, O., Shalmon, B., Avivi, C., Pfeffer, R. M., et al. (2007). CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Research, 67, 3396–405.PubMedGoogle Scholar
  34. 34.
    Pruenster, M., & Rot, A. (2006). Throwing light on DARC. Biochemical Society Transactions, 34, 1005–008.PubMedGoogle Scholar
  35. 35.
    Rot, A. (2005). Contribution of Duffy antigen to chemokine function. Cytokine & Growth Factor Reviews, 16, 687–94.Google Scholar
  36. 36.
    Rot, A. (2003). In situ binding assay for studying chemokine interactions with endothelial cells. Journal of Immunological Methods, 273, 63–1.PubMedGoogle Scholar
  37. 37.
    Lentsch, A. B. (2006). CXC chemokines and prostate cancer: growth regulators and potential biomarkers. Future Oncology, 2, 651–58.PubMedGoogle Scholar
  38. 38.
    Iiizumi, M., Bandyopadhyay, S., & Watabe, K. (2007). Interaction of Duffy antigen receptor for chemokines and KAI1: A critical step in metastasis suppression. Cancer Research, 67, 1411–414.PubMedGoogle Scholar
  39. 39.
    Locati, M., Torre, Y. M., Galliera, E., Bonecchi, R., Bodduluri, H., Vago, G., et al. (2005). Silent chemoattractant receptors: D6 as a decoy and scavenger receptor for inflammatory CC chemokines. Cytokine Growth Factor Reveiw, 16, 679–86.Google Scholar
  40. 40.
    Comerford, I., Litchfield, W., Harata-Lee, Y., Nibbs, R. J., & McColl, S. R. (2007). Regulation of chemotactic networks by ‘atypical–receptors. Bioessays, 29, 237–47.PubMedGoogle Scholar
  41. 41.
    Comerford, I., Milasta, S., Morrow, V., Milligan, G., & Nibbs, R. (2006). The chemokine receptor CCX-CKR mediates effective scavenging of CCL19 in vitro. European Journal of Immunology, 36, 1904–916.PubMedGoogle Scholar
  42. 42.
    Maheshwari, A., Christensen, R. D., & Calhoun, D. A. (2003). ELR+ CXC chemokines in human milk. Cytokine, 24, 91–02.PubMedGoogle Scholar
  43. 43.
    Basolo, F., Conaldi, P. G., Fiore, L., Calvo, S., & Toniolo, A. (1993). Normal breast epithelial cells produce interleukins 6 and 8 together with tumor-necrosis factor: Defective IL6 expression in mammary carcinoma. International Journal of Cancer, 55, 926–30.Google Scholar
  44. 44.
    Porter, D. A., Krop, I. E., Nasser, S., Sgroi, D., Kaelin, C. M., Marks, J. R., et al. (2001). A SAGE (Serial Analysis of Gene Expression) view of breast tumor progression. Cancer Research, 61, 5697–702.PubMedGoogle Scholar
  45. 45.
    Xie, K. (2001). Interleukin-8 and human cancer biology. Cytokine Growth Factor Review, 12, 375–91.Google Scholar
  46. 46.
    Greene, G. F., Kitadai, Y., Pettaway, C. A., von Eschenbach, A. C., Bucana, C. D., & Fidler, I. J. (1997). Correlation of metastasis-related gene expression with metastatic potential in human prostate carcinoma cells implanted in nude mice using an in situ messenger RNA hybridization technique. American Journal of Pathology, 150, 1571–582.PubMedGoogle Scholar
  47. 47.
    Chavey, C., Bibeau, F., Gourgou-Bourgade, S., Burlinchon, S., Boissiere, F., Laune, D., et al. (2007). Estrogen-receptor negative breast cancers exhibit a high cytokine content. Breast Cancer Research, 9, R15.PubMedGoogle Scholar
  48. 48.
    Bièche, I., Chavey, C., Andrieu, C., Burlinchon, S., Guinebretière, J. M., Busson, M., et al. (2007). CXC chemokines located in 4q21 region are differentially expressed in breast cancer. Endocrine Related Cancer, 14(3), (in press).Google Scholar
  49. 49.
    Kozlowski, L., Zakrzewska, I., Tokajuk, P., & Wojtukiewicz, M. Z. (2003). Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Roczniki Akademii Medycznej w Biaøymstoku, 48, 82–4.Google Scholar
  50. 50.
    Benoy, I. H., Salgado, R., Van Dam, P., Geboers, K., Van Marck, E., Scharpe, S., et al. (2004). Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clinical Cancer Research, 10, 7157–162.PubMedGoogle Scholar
  51. 51.
    Basolo, F., Calvo, S., Fiore, L., Conaldi, P. G., Falcone, V., & Toniolo, A. (1993). Growth-stimulating activity of interleukin 6 on human mammary epithelial cells transfected with the int-2 gene. Cancer Research, 53, 2957–960.PubMedGoogle Scholar
  52. 52.
    Luboshits, G., Shina, S., Kaplan, O., Engelberg, S., Nass, D., Lifshitz-Mercer, B., et al. (1999). Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Research, 59, 4681–687.PubMedGoogle Scholar
  53. 53.
    Yaal-Hahoshen, N., Shina, S., Leider-Trejo, L., Barnea, I., Shabtai, E. L., Azenshtein, E., et al. (2006). The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clinical Cancer Research, 12, 4474–480.PubMedGoogle Scholar
  54. 54.
    Niwa, Y., Akamatsu, H., Niwa, H., Sumi, H., Ozaki, Y., & Abe, A. (2001). Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clinical Cancer Research, 7, 285–89.PubMedGoogle Scholar
  55. 55.
    Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–6.PubMedGoogle Scholar
  56. 56.
    Scotton, C. J., Wilson, J. L., Milliken, D., Stamp, G., & Balkwill, F. R. (2001). Epithelial cancer cell migration: A role for chemokine receptors? Cancer Research, 61, 4961–965.PubMedGoogle Scholar
  57. 57.
    Zlotnik, A. (2006). Chemokines and cancer. International Journal of Cancer, 119, 2026–029.Google Scholar
  58. 58.
    Zlotnik, A. (2006). Involvement of chemokine receptors in organ-specific metastasis. Contributions to Microbiology, 13, 191–99.PubMedGoogle Scholar
  59. 59.
    Holland, J. D., Kochetkova, M., Akekawatchai, C., Dottore, M., Lopez, A., & McColl, S. R. (2006). Differential functional activation of chemokine receptor CXCR4 is mediated by G proteins in breast cancer cells. Cancer Research, 66, 4117–124.PubMedGoogle Scholar
  60. 60.
    Tait, C. R., Waterworth, A., Loncaster, J., Horgan, K., & Dodwell, D. (2005). The oligometastatic state in breast cancer: Hypothesis or reality. Breast, 14, 87–3.PubMedGoogle Scholar
  61. 61.
    Kakinuma, T., & Hwang, S. T. (2006). Chemokines, chemokine receptors, and cancer metastasis. Journal of Leukocyte Biology, 79, 639–51.PubMedGoogle Scholar
  62. 62.
    Snoussi, K., Mahfoudh, W., Bouaouina, N., Ahmed, S. B., Helal, A. N., & Chouchane, L. (2006). Genetic variation in IL-8 associated with increased risk and poor prognosis of breast carcinoma. Human Immunology, 67, 13–1.PubMedGoogle Scholar
  63. 63.
    Bendre, M. S., Montague, D. C., Peery, T., Akel, N. S., Gaddy, D., & Suva, L. J. (2003). Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone, 33, 28–7.PubMedGoogle Scholar
  64. 64.
    Kang, H., Watkins, G., Douglas-Jones, A., Mansel, R. E., & Jiang, W. G. (2005). The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer. Breast, 14, 360–67.PubMedGoogle Scholar
  65. 65.
    Kang, H., Watkins, G., Parr, C., Douglas-Jones, A., Mansel, R. E., & Jiang, W. G. (2005). Stromal cell derived factor-1: Its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Research, 7, R402–10.PubMedGoogle Scholar
  66. 66.
    Lebrecht, A., Grimm, C., Lantzsch, T., Ludwig, E., Hefler, L., Ulbrich, E., & Koelbl, H. (2004). Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biology, 25, 14–7.PubMedGoogle Scholar
  67. 67.
    Goede, V., Brogelli, L., Ziche, M., & Augustin, H. G. (1999). Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. International Journal of Cancer, 82, 765–70.Google Scholar
  68. 68.
    Ghilardi, G., Biondi, M. L., La Torre, A., Battaglioli, L., & Scorza, R. (2005). Breast cancer progression and host polymorphisms in the chemokine system: Role of the macrophage chemoattractant protein-1 (MCP-1) −518 G allele. Clinical Chemistry, 51, 452–55.PubMedGoogle Scholar
  69. 69.
    Azenshtein, E., Luboshits, G., Shina, S., Neumark, E., Shahbazian, D., Weil, M., et al. (2002). The CC chemokine RANTES in breast carcinoma progression: Regulation of expression and potential mechanisms of promalignant activity. Cancer Research, 62, 1093–102.PubMedGoogle Scholar
  70. 70.
    Cabioglu, N., Yazici, M. S., Arun, B., Broglio, K. R., Hortobagyi, G. N., Price, J. E., et al. (2005). CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clininical Cancer Research, 11, 5686–693.Google Scholar
  71. 71.
    Kato, M., Kitayama, J., Kazama, S., & Nagawa, H. (2003). Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Research, 5, R144’R150.PubMedGoogle Scholar
  72. 72.
    Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3, 537–49.PubMedGoogle Scholar
  73. 73.
    Li, Y. M., Pan, Y., Wei, Y., Cheng, X., Zhou, B. P., Tan, M., et al. (2004). Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell, 6, 459–69.PubMedGoogle Scholar
  74. 74.
    Salvucci, O., Bouchard, A., Baccarelli, A., Deschenes, J., Sauter, G., Simon, R., et al. (2006). The role of CXCR4 receptor expression in breast cancer: A large tissue microarray study. Breast Cancer Research and Treatment, 97, 275–83.PubMedGoogle Scholar
  75. 75.
    Helbig, G., Christopherson, K. W., 2nd, Bhat-Nakshatri, P., Kumar, S., Kishimoto, H., Miller, K. D., et al. (2003). NF-kB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. Journal of Biological Chemistry, 278, 21631–1638.PubMedGoogle Scholar
  76. 76.
    Andre, F., Cabioglu, N., Assi, H., Sabourin, J. C., Delaloge, S., Sahin, A., et al. (2006). Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Annals of Oncology, 17, 945–51.PubMedGoogle Scholar
  77. 77.
    Wiley, H. E., Gonzalez, E. B., Maki, W., Wu, M. T., & Hwang, S. T. (2001). Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. Journal of the National Cancer Institute, 93, 1638–643.PubMedCrossRefGoogle Scholar
  78. 78.
    Zlotnik, A. (2004). Chemokines in neoplastic progression. Seminars in Cancer Biology, 14, 181–85.PubMedGoogle Scholar
  79. 79.
    Ou, Z. L., Wang, J., Hou, Y. F., Luo, J. M., Shen, Z. Z., & Shao, Z. M. (2006). Downregulation of Duffy antigen receptor for chemokine (DARC) is associated with lymph node metastasis in human breast cancer. Zhonghua Zhong Liu Za Zhi, 28, 586–89.PubMedGoogle Scholar
  80. 80.
    Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology, 29, 15–8.PubMedGoogle Scholar
  81. 81.
    Folkman, J., Watson, K., Ingber, D., & Hanahan, D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature, 339, 58–1.PubMedGoogle Scholar
  82. 82.
    Kato, T., Kameoka, S., Kimura, T., Nishikawa, T., & Kobayashi, M. (2003). The combination of angiogenesis and blood vessel invasion as a prognostic indicator in primary breast cancer. British Journal of Cancer, 88, 1900–908.PubMedGoogle Scholar
  83. 83.
    Weidner, N., Carroll, P. R., Flax, J., Blumenfeld, W., & Folkman, J. (1993). Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. American Journal of Pathology, 143, 401–09.PubMedGoogle Scholar
  84. 84.
    Weidner, N., & Folkman, J. (1996). Tumoral vascularity as a prognostic factor in cancer. In V. T. Devita, S. Hellman, S. A. Rosenberg (Eds.), Important advances in oncology (pp. 167–90). Baltimore: Lippincott.Google Scholar
  85. 85.
    Lin, E. Y., & Pollard, J. W. (2004). Macrophages: Modulators of breast cancer progression. Novartis Foundation Symposium, 256, 158–68; discussion 168–72, 259–69.PubMedGoogle Scholar
  86. 86.
    Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., & Hill, A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. Journal of Immunology, 164, 6166–173.Google Scholar
  87. 87.
    Mantovani, A., Schioppa, T., Porta, C., Allavena, P., & Sica, A. (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Reviews, 25, 315–22.PubMedGoogle Scholar
  88. 88.
    Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56, 4625–629.PubMedGoogle Scholar
  89. 89.
    Leek, R. D., Landers, R. J., Harris, A. L., & Lewis, C. E. (1999). Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. British Journal of Cancer, 79, 991–95.PubMedGoogle Scholar
  90. 90.
    Lewis, J. S., Landers, R. J., Underwood, J. C., Harris, A. L., & Lewis, C. E. (2000). Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. Journal of Pathology, 192, 150–58.PubMedGoogle Scholar
  91. 91.
    Ardestani, S. K., Inserra, P., Solkoff, D., & Watson, R. R. (1999). The role of cytokines and chemokines on tumor progression: A review. Cancer Detection and Prevention, 23, 215–25.PubMedGoogle Scholar
  92. 92.
    Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 3, 991–98.PubMedGoogle Scholar
  93. 93.
    Dunn, G. P., Ikeda, H., Bruce, A. T., Koebel, C., Uppaluri, R., Bui, J., et al. (2005). Interferon-gamma and cancer immunoediting. Immunology Research, 32, 231–45.Google Scholar
  94. 94.
    Pettit, S. J., Seymour, K., O’Flaherty, E., & Kirby, J. A. (2000). Immune selection in neoplasia: Towards a microevolutionary model of cancer development. British Journal of Cancer, 82, 1900–906.PubMedGoogle Scholar
  95. 95.
    Meyer, T., & Hart, I. R. (1998). Mechanisms of tumour metastasis. European Journal of Cancer, 34, 214–21.PubMedGoogle Scholar
  96. 96.
    Curran, S., & Murray, G. I. (1999). Matrix metalloproteinases in tumour invasion and metastasis. Journal of Pathology, 189, 300–08.PubMedGoogle Scholar
  97. 97.
    Proost, P., Struyf, S., & Van Damme, J. (2006). Natural post-translational modifications of chemokines. Biochemical Society Transactions, 34, 997–001.PubMedGoogle Scholar
  98. 98.
    Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539–45.PubMedGoogle Scholar
  99. 99.
    Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–57.PubMedGoogle Scholar
  100. 100.
    Benelli, R., Lorusso, G., Albini, A., & Noonan, D. M. (2006). Cytokines and chemokines as regulators of angiogenesis in health and disease. Current Pharmaceutical Design, 12, 3101–115.PubMedGoogle Scholar
  101. 101.
    Romagnani, P., Lasagni, L., Annunziato, F., Serio, M., & Romagnani, S. (2004). CXC chemokines: The regulatory link between inflammation and angiogenesis. Trends Immunology, 25, 201–09.Google Scholar
  102. 102.
    Lin, E. Y., Li, J. F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D. A., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66, 11238–1246.PubMedGoogle Scholar
  103. 103.
    Tsutsui, S., Yasuda, K., Suzuki, K., Tahara, K., Higashi, H., & Era, S. (2005). Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncology Reports, 14, 425–31.PubMedGoogle Scholar
  104. 104.
    Freund, A., Chauveau, C., Brouillet, J. P., Lucas, A., Lacroix, M., Licznar, A., Vignon, F., et al. (2003). IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene, 22, 256–65.PubMedGoogle Scholar
  105. 105.
    Lin, Y., Huang, R., Chen, L., Li, S., Shi, Q., Jordan, C., & Huang, R. P. (2004). Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. International Journal of Cancer, 109, 507–15.Google Scholar
  106. 106.
    Lee, L. F., Louie, M. C., Desai, S. J., Yang, J., Chen, H. W., Evans, C. P., et al. (2004). Interleukin-8 confers androgen-independent growth and migration of LNCaP: Differential effects of tyrosine kinases Src and FAK. Oncogene, 23, 2197–205.PubMedGoogle Scholar
  107. 107.
    Xu, L., Xie, K., Mukaida, N., Matsushima, K., & Fidler, I. J. (1999). Hypoxia-induced elevation in interleukin-8 expression by human ovarian carcinoma cells. Cancer Research, 59, 5822–829.PubMedGoogle Scholar
  108. 108.
    Bottazzi, B., Polentarutti, N., Acero, R., Balsari, A., Boraschi, D., Ghezzi, P., et al. (1983). Regulation of the macrophage content of neoplasms by chemoattractants. Science, 220, 210–12.PubMedGoogle Scholar
  109. 109.
    Spring, H., Schuler, T., Arnold, B., Hammerling, G. J., & Ganss, R. (2005). Chemokines direct endothelial progenitors into tumor neovessels. Proceedings of the National Academy of Sciences of the United States of America, 102, 18111–8116.PubMedGoogle Scholar
  110. 110.
    Van Coillie, E., Van Damme, J., & Opdenakker, G. (1999). The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Review, 10, 61–6.Google Scholar
  111. 111.
    Orimo, A., & Weinberg, R. A. (2006). Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle, 5, 1597–601.PubMedGoogle Scholar
  112. 112.
    Bhowmick, N. A., Neilson, E. G., & Moses, H. L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432, 332–37.PubMedGoogle Scholar
  113. 113.
    Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6, 17–2.PubMedGoogle Scholar
  114. 114.
    Ramjeesingh, R., Leung, R., & Siu, C. H. (2003). Interleukin-8 secreted by endothelial cells induces chemotaxis of melanoma cells through the chemokine receptor CXCR1. FASEB Journal, 17, 1292–294.PubMedGoogle Scholar
  115. 115.
    Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research, 6, 3282–289.PubMedGoogle Scholar
  116. 116.
    Saji, H., Koike, M., Yamori, T., Saji, S., Seiki, M., Matsushima, K., & Toi, M. (2001). Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer, 92, 1085–091.PubMedGoogle Scholar
  117. 117.
    Balkwill, F. R., & Burke, F. (1989). The cytokine network. Immunology Today, 10, 299–04.PubMedGoogle Scholar
  118. 118.
    Valkovic, T., Fuckar, D., Stifter, S., Matusan, K., Hasan, M., Dobrila, F., et al. (2005). Macrophage level is not affected by monocyte chemotactic protein-1 in invasive ductal breast carcinoma. Journal of Cancer Research and Clinical Oncology, 131, 453–58.PubMedGoogle Scholar
  119. 119.
    Valkovic, T., Lucin, K., Krstulja, M., Dobi-Babic, R., & Jonjic, N. (1998). Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathology, Research and Practice, 194, 335–40.PubMedGoogle Scholar
  120. 120.
    Yoshimura, T., Robinson, E. A., Tanaka, S., Appella, E., & Leonard, E. J. (1989). Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. Journal of Immunology, 142, 1956–962.Google Scholar
  121. 121.
    Yoshimura, T., Yuhki, N., Moore, S. K., Appella, E., Lerman, M. I., & Leonard, E. J. (1989). Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Letters, 244, 487–93.PubMedGoogle Scholar
  122. 122.
    Esko, J. D., & Lindahl, U. (2001). Molecular diversity of heparan sulfate. Journal of Clinical Investigation, 108, 169–73.PubMedGoogle Scholar
  123. 123.
    Esko, J. D., & Selleck, S. B. (2002). Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annual Review of Biomedical, 71, 435–71.Google Scholar
  124. 124.
    Lin, X. (2004). Functions of heparan sulfate proteoglycans in cell signaling during development. Development, 131, 6009–021.PubMedGoogle Scholar
  125. 125.
    Lortat-Jacob, H., Grosdidier, A., & Imberty, A. (2002). Structural diversity of heparan sulfate binding domains in chemokines. Proceedings of the National Academy of Sciences of the United States of America, 99, 1229–234.PubMedGoogle Scholar
  126. 126.
    Wagner, L., Yang, O. O., Garcia-Zepeda, E. A., Ge, Y., Kalams, S. A., Walker, B. D., et al. (1998). Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature, 391, 908–11.PubMedGoogle Scholar
  127. 127.
    Kuschert, G. S., Coulin, F., Power, C. A., Proudfoot, A. E., Hubbard, R. E., Hoogewerf, A. J., et al. (1999). Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry, 38, 12959–2968.PubMedGoogle Scholar
  128. 128.
    Middleton, J., Neil, S., Wintle, J., Clark-Lewis, I., Moore, H., Lam, C., et al. (1997). Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell, 91, 385–95.PubMedGoogle Scholar
  129. 129.
    Ali, S., Robertson, H., Wain, J. H., Isaacs, J. D., Malik, G., & Kirby, J. A. (2005). A non-glycosaminoglycan-binding variant of CC chemokine ligand 7 (monocyte chemoattractant protein-3) antagonizes chemokine-mediated inflammation. Journal of Immunology, 175, 1257–266.Google Scholar
  130. 130.
    Johnson, Z., Kosco-Vilbois, M. H., Herren, S., Cirillo, R., Muzio, V., Zaratin, P., et al. (2004). Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system. Journal of Immunology, 173, 5776–785.Google Scholar
  131. 131.
    Proudfoot, A. E., Handel, T. M., Johnson, Z., Lau, E. K., LiWang, P., Clark-Lewis, I., et al. (2003). Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proceedings of the National Academy of Sciences of the United States of America, 100, 1885–890.PubMedGoogle Scholar
  132. 132.
    Johnson, W. E., Caterson, B., Eisenstein, S. M., & Roberts, S. (2005). Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro. Spine, 30, 1139–147.PubMedGoogle Scholar
  133. 133.
    Cinamon, G., Shinder, V., & Alon, R. (2001). Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nature Immunology, 2, 515–22.PubMedGoogle Scholar
  134. 134.
    Hoogewerf, A. J., Kuschert, G. S. V., Proudfoot, A. E. I., Borlat, F., ClarkLewis, I., Power, C. A., et al. (1997). Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry, 36, 13570–3578.PubMedGoogle Scholar
  135. 135.
    Lau, E. K., Paavola, C. D., Johnson, Z., Gaudry, J. P., Geretti, E., Borlat, F., et al. (2004). Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: Implications for structure and function in vivo. Journal of Biological Chemistry, 279, 22294–2305.PubMedGoogle Scholar
  136. 136.
    Netelenbos, T., Drager, A. M., van het Hof, B., Kessler, F. L., Delouis, C., Huijgens, P. C., et al. (2001). Differences in sulfation patterns of heparan sulfate derived from human bone marrow and umbilical vein endothelial cells. Experimental Hematology, 29, 884–93.PubMedGoogle Scholar
  137. 137.
    Netelenbos, T., Zuijderduijn, S., Van Den Born, J., Kessler, F. L., Zweegman, S., Huijgens, P. C., et al. (2002). Proteoglycans guide SDF-1-induced migration of hematopoietic progenitor cells. Journal of Leukocyte Biology, 72, 353–62.PubMedGoogle Scholar
  138. 138.
    Sadir, R., Imberty, A., Baleux, F., & Lortat-Jacob, H. (2004). Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. Journal of Biological Chemistry, 279, 43854–3860.PubMedGoogle Scholar
  139. 139.
    Webb, L. M. C., Ehrengruber, M. U., Clarklewis, I., Baggiolini, M., & Rot, A. (1993). Binding to heparan-sulfate or heparin enhances neutrophil responses to interleukin-8. Proceedings of the National Academy of Sciences of the United States of America, 90, 7158–162.PubMedGoogle Scholar
  140. 140.
    Baggiolini, M. (2001). Chemokines in pathology and medicine. Journal of Internal Medicine, 250, 91–04.PubMedGoogle Scholar
  141. 141.
    Laudanna, C., & Alon, R. (2006). Right on the spot. Chemokine triggering of integrin-mediated arrest of rolling leukocytes. Thrombosis and Haemostasis, 95, 5–1.PubMedGoogle Scholar
  142. 142.
    Campbell, J. J., Hedrick, J., Zlotnik, A., Siani, M. A., Thompson, D. A., & Butcher, E. C. (1998). Chemokines and the arrest of lymphocytes rolling under flow conditions. Science, 279, 381–84.PubMedGoogle Scholar
  143. 143.
    Ali, S., Palmer, A. C., Banerjee, B., Fritchley, S. J., & Kirby, J. A. (2000). Examination of the function of RANTES, MIP-1alpha, and MIP-1beta following interaction with heparin-like glycosaminoglycans. Journal of Biological Chemistry, 275, 11721–1727.PubMedGoogle Scholar
  144. 144.
    De Larco, J. E., Wuertz, B. R., Rosner, K. A., Erickson, S. A., Gamache, D. E., Manivel, J. C., et al. (2001). A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. American Journal of Pathology, 158, 639–46.PubMedGoogle Scholar
  145. 145.
    Ben-Baruch, A. (2003). Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: Reciprocal tumor-microenvironment interactions. Breast Cancer Research, 5, 31–6.PubMedGoogle Scholar
  146. 146.
    Kurt, R. A., Baher, A., Wisner, K. P., Tackitt, S., & Urba, W. J. (2001). Chemokine receptor desensitization in tumor-bearing mice. Cellular Immunology, 207, 81–8.PubMedGoogle Scholar
  147. 147.
    Youngs, S. J., Ali, S. A., Taub, D. D., & Rees, R. C. (1997). Chemokines induce migrational responses in human breast carcinoma cell lines. International Journal of Cancer, 71, 257–66.Google Scholar
  148. 148.
    Prest, S. J., Rees, R. C., Murdoch, C., Marshall, J. F., Cooper, P. A., Bibby, M., et al. (1999). Chemokines induce the cellular migration of MCF-7 human breast carcinoma cells: Subpopulations of tumour cells display positive and negative chemotaxis and differential in vivo growth potentials. Clinical & Experimental Metastasis, 17, 389–96.Google Scholar
  149. 149.
    Hall, J. M., & Korach, K. S. (2003). Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Molecular Endocrinology, 17, 792–03.PubMedGoogle Scholar
  150. 150.
    Lapteva, N., Yang, A. G., Sanders, D. E., Strube, R. W., & Chen, S. Y. (2005). CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Therapy, 12, 84–9.PubMedGoogle Scholar
  151. 151.
    Smith, M. C., Luker, K. E., Garbow, J. R., Prior, J. L., Jackson, E., Piwnica-Worms, D., et al. (2004). CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Research, 64, 8604–612.PubMedGoogle Scholar
  152. 152.
    Chen, Y., Stamatoyannopoulos, G., & Song, C. Z. (2003). Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Research, 63, 4801–804.PubMedGoogle Scholar
  153. 153.
    Salcedo, R., Ponce, M. L., Young, H. A., Wasserman, K., Ward, J. M., Kleinman, H. K., et al. (2000). Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. Blood, 96, 34–0.PubMedGoogle Scholar
  154. 154.
    Manes, S., Mira, E., Colomer, R., Montero, S., Real, L. M., Gomez-Mouton, C., et al. (2003). CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. Journal of Experimental Medicine, 198, 1381–389.PubMedGoogle Scholar
  155. 155.
    Wang, J., Ou, Z. L., Hou, Y. F., Luo, J. M., Shen, Z. Z., Ding, J., et al. (2006). Enhanced expression of Duffy antigen receptor for chemokines by breast cancer cells attenuates growth and metastasis potential. Oncogene, 25, 7201–211.PubMedGoogle Scholar
  156. 156.
    Zhou, S., Wang, G. P., Liu, C., & Zhou, M. (2006). Eukaryotic initiation factor 4E (eIF4E) and angiogenesis: Prognostic markers for breast cancer. BMC Cancer, 6, 231.PubMedGoogle Scholar
  157. 157.
    Freund, A., Jolivel, V., Durand, S., Kersual, N., Chalbos, D., Chavey, C., et al. (2004). Mechanisms underlying differential expression of interleukin-8 in breast cancer cells. Oncogene, 23, 6105–114.PubMedGoogle Scholar
  158. 158.
    Lee, S. A., Fitzgerald, S. M., Huang, S. K., Li, C., Chi, D. S., Milhorn, D. M., et al. (2004). Molecular regulation of interleukin-13 and monocyte chemoattractant protein-1 expression in human mast cells by interleukin-1beta. American Journal of Respiratory Cell and Molecular Biology, 31, 283–91.PubMedGoogle Scholar
  159. 159.
    Suswam, E. A., Nabors, L. B., Huang, Y., Yang, X., & King, P. H. (2005). IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3–untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR. International Journal of Cancer, 113, 911–19.Google Scholar
  160. 160.
    Kim, S. W., Hayashi, M., Lo, J. F., Fearns, C., Xiang, R., Lazennec, G., et al. (2005). Tid1 negatively regulates the migratory potential of cancer cells by inhibiting the production of interleukin-8. Cancer Research, 65, 8784–791.PubMedGoogle Scholar
  161. 161.
    Singh, B., Berry, J. A., Vincent, L. E., & Lucci, A. (2006). Involvement of IL-8 in COX-2-mediated bone metastases from breast cancer. Journal of Surgical Research, 134, 44–1.PubMedGoogle Scholar
  162. 162.
    Azenshtein, E., Meshel, T., Shina, S., Barak, N., Keydar, I., & Ben-Baruch, A. (2005). The angiogenic factors CXCL8 and VEGF in breast cancer: Regulation by an array of pro-malignancy factors. Cancer Letters, 217, 73–6.PubMedGoogle Scholar
  163. 163.
    Goldberg-Bittman, L., Neumark, E., Sagi-Assif, O., Azenshtein, E., Meshel, T., Witz, I. P., et al. (2004). The expression of the chemokine receptor CXCR3 and its ligand, CXCL10, in human breast adenocarcinoma cell lines. Immunology Letters, 92, 171–78.PubMedGoogle Scholar
  164. 164.
    Shim, H., Lau, S. K., Devi, S., Yoon, Y., Cho, H. T., & Liang, Z. (2006). Lower expression of CXCR4 in lymph node metastases than in primary breast cancers: Potential regulation by ligand-dependent degradation and HIF-1alpha. Biochemical and Biophysical Research Communications, 346, 252–58.PubMedGoogle Scholar
  165. 165.
    Mehta, S. A., Christopherson, K. W., Bhat-Nakshatri, P., Goulet, R. J., Jr., Broxmeyer, H. E., Kopelovich, L., et al. (2007). Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: Implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene, 26, 3329–337.PubMedGoogle Scholar
  166. 166.
    Dickson, R. B., & Lippman, M. E. (1995). Growth factors in breast cancer. Endocrine Reviews, 16, 559–89.PubMedGoogle Scholar
  167. 167.
    Green, S., Walter, P., Kumar, V., Krust, A., Bornert, J. M., Argos, P., et al. (1986). Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature, 320, 134–39.PubMedGoogle Scholar
  168. 168.
    Lazennec, G., Bresson, D., Lucas, A., Chauveau, C., & Vignon, F. (2001). ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology, 142, 4120–130.PubMedGoogle Scholar
  169. 169.
    Ring, A., & Dowsett, M. (2004). Mechanisms of tamoxifen resistance. Endocrine-Related Cancer, 11, 643–58.PubMedGoogle Scholar
  170. 170.
    Fanti, P., Nazareth, M., Bucelli, R., Mineo, M., Gibbs, K., Kumin, M., et al. (2003). Estrogen decreases chemokine levels in murine mammary tissue: implications for the regulatory role of MIP-1 alpha and MCP-1/JE in mammary tumor formation. Endocrine, 22, 161–68.PubMedGoogle Scholar
  171. 171.
    Kanda, N., & Watanabe, S. (2003). 17Beta-estradiol inhibits MCP-1 production in human keratinocytes. Journal of Investigative Dermatology, 120, 1058–066.PubMedGoogle Scholar
  172. 172.
    Kelly, R. W., Carr, G. G., & Riley, S. C. (1997). The inhibition of synthesis of a beta-chemokine, monocyte chemotactic protein-1 (MCP-1) by progesterone. Biochemical and Biophysical Research Communications, 239, 557–61.PubMedGoogle Scholar
  173. 173.
    Kalkhoven, E., Wissink, S., Vandersaag, P. T., & Vanderburg, B. (1996). Negative interaction between the rela(p65) subunit of nf-kappa-b and the progesterone receptor. Journal of Biological Chemistry, 271, 6217–224.PubMedGoogle Scholar
  174. 174.
    Janis, K., Hoeltke, J., Nazareth, M., Fanti, P., Poppenberg, K., & Aronica, S. M. (2004). Estrogen decreases expression of chemokine receptors, and suppresses chemokine bioactivity in murine monocytes. American Journal of Reproductive Immunology, 51, 22–1.PubMedGoogle Scholar
  175. 175.
    Pantschenko, A. G., Pushkar, I., Anderson, K. H., Wang, Y., Miller, L. J., Kurtzman, S. H., et al. (2003). The interleukin-1 family of cytokines and receptors in human breast cancer: Implications for tumor progression. International Journal of Oncology, 23, 269–84.PubMedGoogle Scholar
  176. 176.
    Fuksiewicz, M., Kaminska, J., Kotowicz, B., Kowalska, M., Rubach, M., & Pienkowski, T. (2006). Serum cytokine levels and the expression of estrogen and progesterone receptors in breast cancer patients. Clinical Chemistry and Laboratory Medicine, 44, 1092–097.PubMedGoogle Scholar
  177. 177.
    Cheng, J., Lee, E. J., Madison, L. D., & Lazennec, G. (2004). Expression of estrogen receptor beta in prostate carcinoma cells inhibits invasion and proliferation and triggers apoptosis. FEBS Letters, 566, 169–72.PubMedGoogle Scholar
  178. 178.
    Lazennec, G. (2006). Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis. Cancer Letters, 231, 151–57.PubMedGoogle Scholar
  179. 179.
    Licznar, A., Caporali, S., Lucas, A., Weisz, A., Vignon, F., & Lazennec, G. (2003). Identification of genes involved in growth inhibition of breast cancer cells transduced with estrogen receptor. FEBS Letters, 553, 445–50.PubMedGoogle Scholar
  180. 180.
    Duong, V., Licznar, A., Margueron, R., Boulle, N., Busson, M., Lacroix, M., et al. (2006). ERalpha and ERbeta expression and transcriptional activity are differentially regulated by HDAC inhibitors. Oncogene, 25, 1799–806.PubMedGoogle Scholar
  181. 181.
    Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431–36.PubMedGoogle Scholar
  182. 182.
    Sovak, M. A., Bellas, R. E., Kim, D. W., Zanieski, G. J., Rogers, A. E., Traish, A. M., et al. (1997). Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. Journal of Clinical Investigation, 100, 2952–960.PubMedGoogle Scholar
  183. 183.
    Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet, R. J., Jr., & Sledge, G. W., Jr. (1997). Constitutive activation of NF-kB during progression of breast cancer to hormone-independent growth. Molecular and Cellular Biology, 17, 3629–639.PubMedGoogle Scholar
  184. 184.
    Newton, T. R., Patel, N. M., Bhat-Nakshatri, P., Stauss, C. R., Goulet, R. J., Jr., & Nakshatri, H. (1999). Negative regulation of transactivation function but not DNA binding of NF-kB and AP-1 by IkappaBbeta1 in breast cancer cells. Journal of Biological Chemistry, 274, 18827–8835.PubMedGoogle Scholar
  185. 185.
    Bharti, A. C., & Aggarwal, B. B. (2002). Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochemical Pharmacology, 64, 883–88.PubMedGoogle Scholar
  186. 186.
    Gilmore, T., Gapuzan, M. E., Kalaitzidis, D., & Starczynowski, D. (2002). Rel/NF-kappa B/I kappa B signal transduction in the generation and treatment of human cancer. Cancer Letters, 181, 1–.PubMedGoogle Scholar
  187. 187.
    Wang, X., Belguise, K., Kersual, N., Kirsch, K. H., Mineva, N. D., Galtier, F., et al. (2007). Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nature Cell Biology, 9, 470–78.PubMedGoogle Scholar
  188. 188.
    Wood, L. D., & Richmond, A. (1995). Constitutive and cytokine-induced expression of the melanoma growth stimulatory activity/GRO alpha gene requires both NF-kappa B and novel constitutive factors. Journal of Biological Chemistry, 270, 30619–0626.PubMedGoogle Scholar
  189. 189.
    Yang, J., & Richmond, A. (2001). Constitutive IkappaB kinase activity correlates with nuclear factor-kappaB activation in human melanoma cells. Cancer Research, 61, 4901–909.PubMedGoogle Scholar
  190. 190.
    Gupta, V., Yeo, G., Kawakubo, H., Rangnekar, V., Ramaswamy, P., Hayashida, T., et al. (2007). Mullerian-inhibiting substance induces Gro-{beta} expression in breast cancer cells through a nuclear factor-{kappa}B-dependent and Smad1-dependent mechanism. Cancer Research, 67, 2747–756.PubMedGoogle Scholar
  191. 191.
    Belguise, K., Kersual, N., Galtier, F., & Chalbos, D. (2005). FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells. Oncogene, 24, 1434–444.PubMedGoogle Scholar
  192. 192.
    Song, Y., Song, S., Zhang, D., Zhang, Y., Chen, L., Qian, L., et al. (2006). An association of a simultaneous nuclear and cytoplasmic localization of Fra-1 with breast malignancy. BMC Cancer, 6, 298.PubMedGoogle Scholar
  193. 193.
    Milde-Langosch, K. (2005). The Fos family of transcription factors and their role in tumourigenesis. European Journal of Cancer, 41, 2449–461.PubMedGoogle Scholar
  194. 194.
    Wen, X. F., Yang, G., Mao, W., Thornton, A., Liu, J., Bast, R. C., et al. (2006). HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: Implications for HER2-targeted antibody therapy. Oncogene, 25, 6986–996.PubMedGoogle Scholar
  195. 195.
    Vazquez-Martin, A., Colomer, R., & Menendez, J. A. (2007). Protein array technology to detect HER2 (erbB-2)-induced ‘cytokine signature–in breast cancer. European Journal of Cancer, 43, 1117–124.PubMedGoogle Scholar
  196. 196.
    Cabioglu, N., Summy, J., Miller, C., Parikh, N. U., Sahin, A. A., Tuzlali, S., et al. (2005). CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Research, 65, 6493–497.PubMedGoogle Scholar
  197. 197.
    Datta, D., Flaxenburg, J. A., Laxmanan, S., Geehan, C., Grimm, M., Waaga-Gasser, A. M., et al. (2006). Ras-induced modulation of CXCL10 and its receptor splice variant CXCR3-B in MDA-MB-435 and MCF-7 Cells: Relevance for the development of human breast cancer. Cancer Research, 66, 9509–518.PubMedGoogle Scholar
  198. 198.
    Li, J., & Sidell, N. (2005). Growth-related oncogene produced in human breast cancer cells and regulated by Syk protein-tyrosine kinase. International Journal of Cancer, 117, 14–0.Google Scholar
  199. 199.
    Flanagan, K., Glover, R. T., Horig, H., Yang, W., & Kaufman, H. L. (2004). Local delivery of recombinant vaccinia virus expressing secondary lymphoid chemokine (SLC) results in a CD4 T-cell dependent antitumor response. Vaccine, 22, 2894–903.PubMedGoogle Scholar
  200. 200.
    Braun, S. E., Chen, K., Foster, R. G., Kim, C. H., Hromas, R., Kaplan, M. H., et al. (2000). The CC chemokine CK beta-11/MIP-3 beta/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. Journal of Immunology, 164, 4025–031.Google Scholar
  201. 201.
    Okada, N., Gao, J. Q., Sasaki, A., Niwa, M., Okada, Y., Nakayama, T., et al. (2004). Anti-tumor activity of chemokine is affected by both kinds of tumors and the activation state of the host’s immune system: Implications for chemokine-based cancer immunotherapy. Biochemical and Biophysical Research Communications, 317, 68–6.PubMedGoogle Scholar
  202. 202.
    Borgstrom, P., Discipio, R., & Maione, T. E. (1998). Recombinant platelet factor 4, an angiogenic marker for human breast carcinoma. Anticancer Research, 18, 4035–041.PubMedGoogle Scholar
  203. 203.
    Mian, B. M., Dinney, C. P., Bermejo, C. E., Sweeney, P., Tellez, C., Yang, X. D., et al. (2003). Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clinical Cancer Research, 9, 3167–175.PubMedGoogle Scholar
  204. 204.
    Huang, S., Mills, L., Mian, B., Tellez, C., McCarty, M., Yang, X. D., et al. (2002). Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. American Journal of Pathology, 161, 125–34.PubMedGoogle Scholar
  205. 205.
    Robinson, S. C., Scott, K. A., Wilson, J. L., Thompson, R. G., Proudfoot, A. E., & Balkwill, F. R. (2003). A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Research, 63, 8360–365.PubMedGoogle Scholar
  206. 206.
    Liang, Z., Wu, T., Lou, H., Yu, X., Taichman, R. S., Lau, S. K., et al. (2004). Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Research, 64, 4302–308.PubMedGoogle Scholar
  207. 207.
    Hecht, I., Hershkoviz, R., Shivtiel, S., Lapidot, T., Cohen, I. R., Lider, O., et al. (2004). Heparin-disaccharide affects T cells: inhibition of NF-kB activation, cell migration, and modulation of intracellular signaling. Journal of Leukocyte Biology, 75, 1139–146.PubMedGoogle Scholar
  208. 208.
    Harvey, J. R., Mellor, P., Eldaly, H., Lennard, T. W., Kirby, J. A., & Ali, S. (2007). Inhibition of CXCR4-mediated breast cancer metastasis: A potential role for heparinoids? Clinical Cancer Research, 13, 1562–570.PubMedGoogle Scholar
  209. 209.
    Kakkar, A. K., Levine, M. N., Kadziola, Z., Lemoine, N. R., Low, V., Patel, H. K., et al. (2004). Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: The fragmin advanced malignancy outcome study (FAMOUS). Journal of Clinical Oncology, 22, 1944–948.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.INSERMMontpellierFrance
  2. 2.University of Montpellier IMontpellierFrance
  3. 3.School of Surgical and Reproductive Sciences, Medical SchoolUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations