Cancer and Metastasis Reviews

, Volume 26, Issue 2, pp 311–317 | Cite as

Hypoxia and adaptive landscapes in the evolution of carcinogenesis

Article

Abstract

Conceptual models of epithelial carcinogenesis typically depict a sequence of heritable changes that give rise to a population of cells possessing the hallmarks of invasive cancer. We propose the evolutionary dynamics that give rise to the phenotypic properties of malignant cells must be understood within the context of specific selection forces generated by the microenvironment. This can be accomplished by using an “inverse problem” approach in which we use observed typical phenotypic traits of primary and metastatic cancers to infer the evolutionary dynamics. This has led to the hypothesis that heritable changes in genes controlling cellular proliferation, apoptosis, and senescence, while necessary, are not usually sufficient to produce an invasive cancer. In addition to these evolutionary steps, we propose that the common observation of aerobic glycolysis in human cancers indicates, via the inverse problem analysis, that adaptation to hypoxia and acidosis must be a major component of the carcinogenic sequence. The details of the hypothesis are based on recognition that premalignant populations evolve within ducts and remain separated from their blood supply by a basement membrane. As tumor cells proliferate into the lumen, diffusion-reaction kinetics enforced by this separation result in hypoxia and acidosis in regions of the tumor the most distant from the basement membrane. This produces new evolutionary selection forces that promote constitutive upregulation of glycolysis and resistance to acid-induced toxicity. We hypothesize that these phenotypic adaptations are critical late steps in carcinogenesis conferring proliferative advantages even in normoxic conditions by allowing the population to produce an acidic environment (through aerobic glycolysis) which is toxic to other local cell populations and promotes extracellular matrix degradation, increasing invasiveness.

Keywords

Hypoxia Angiogenesis Carcinogenesis Acid-base balance Glycolysis 

References

  1. 1.
    Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61, 759–767.PubMedCrossRefGoogle Scholar
  2. 2.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson, A. R., Weaver, A. M., Cummings, P. T., & Quaranta, V. (2006). Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127, 905–915.PubMedCrossRefGoogle Scholar
  4. 4.
    Gatenby, R. A., & Vincent, T. L. (2003). An evolutionary model of carcinogenesis. Cancer Research, 63, 6212–6220.PubMedGoogle Scholar
  5. 5.
    Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews. Cancer, 4, 891–899.PubMedCrossRefGoogle Scholar
  6. 6.
    Gatenby, R. A., & Gawlinski, E. T. (2003). The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Research, 63, 3847–3854.PubMedGoogle Scholar
  7. 7.
    Gatenby, R. A., & Frieden, B. R. (2004). Information dynamics in carcinogenesis and tumor growth. Mutation Research, 568, 259–273.PubMedGoogle Scholar
  8. 8.
    Bhujwalla, Z. M., Artemov, D., Ballesteros, P., Cerdan, S., Gillies, R. J. (2002). Solaiyappan M: Combined vascular and extracellular pH imaging of solid tumors. NMR in Biomedecine, 15, 114–119.CrossRefGoogle Scholar
  9. 9.
    Bhujwalla, Z. M., Artemov, D., Aboagye, E., Ackerstaff, E., Gillies, R. J., Natarajan, K., et al. (2001). The physiological environment in cancer vascularization, invasion and metastasis. Novartis Foundation Symposium, 240, 23–38.PubMedGoogle Scholar
  10. 10.
    Gillies, R. J., Raghunand, N., Karczmar, G. S., & Bhujwalla, Z. M. (2002). MRI of the tumor microenvironment. Journal of Magnetic Resonance Imaging, 16, 430–450.PubMedCrossRefGoogle Scholar
  11. 11.
    Raghunand, N., Gatenby, R. A., & Gillies, R. J. (2003). Microenvironmental and cellular consequences of altered blood flow in tumours. British Journal of Radiology, 76(1), S11–S22.PubMedCrossRefGoogle Scholar
  12. 12.
    Tatum, J. L., Kelloff, G. J., Gillies, R. J., Arbeit, J. M., Brown, J. M., Chao, K. S., et al. (2006). Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International Journal of Radiation Biology, 82, 699–757.PubMedCrossRefGoogle Scholar
  13. 13.
    Smallbone, K., Gatenby, R. A., Gillies, R. J., Maini, P. K., & Gavaghan, D. J. (2007). Metabolic changes during carcinogenesis: Potential impact on invasiveness. Journal of Theoretical Biology, 244, 703–713.PubMedCrossRefGoogle Scholar
  14. 14.
    Ishikawa, F. (1997). Telomere crisis, the driving force in cancer cell evolution. Biochemical and Biophysical Research Communications, 230, 1–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Chin, K., de Solorzano, C. O., Knowles, D., Jones, A., Chou, W., Rodriguez, E. G., et al. (2004). In situ analyses of genome instability in breast cancer. Nature Genetics, 36, 984–988.PubMedCrossRefGoogle Scholar
  16. 16.
    Warburg, O. (1930). Über den Stoffwechsel der Tumoren.Google Scholar
  17. 17.
    Kelloff, G. J., Hoffman, J. M., Johnson, B., Scher, H. I., Siegel, B. A., Cheng, E. Y., et al. (2005). Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clinical Cancer Research, 11, 2785–2808.PubMedCrossRefGoogle Scholar
  18. 18.
    Braun, R. D., Lanzen, J. L., & Dewhirst, M. W. (1999). Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats. American Journal of Physiology, 277, t-68.Google Scholar
  19. 19.
    Baudelet, C., Cron, G. O., Ansiaux, R., Crokart, N., DeWever, J., Feron, O., et al. (2006). The role of vessel maturation and vessel functionality in spontaneous fluctuations of T2*-weighted GRE signal within tumors. NMR in Biomedicine, 19, 69–76.PubMedCrossRefGoogle Scholar
  20. 20.
    Martinive, P., Defresne, F., Bouzin, C., Saliez, J., Lair, F., Gregoire, V., et al. (2006). Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Research, 66, 11736–11744.PubMedCrossRefGoogle Scholar
  21. 21.
    Martinive, P., De, W. J., Bouzin, C., Baudelet, C., Sonveaux, P., Gregoire, V., et al. (2006). Reversal of temporal and spatial heterogeneities in tumor perfusion identifies the tumor vascular tone as a tunable variable to improve drug delivery. Mol Cancer Ther, 5, 1620–1627.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhou, J., Schmid, T., Schnitzer, S., Brune, B. (2006). Tumor hypoxia and cancer progression. Cancer Letter, 237, 10–21.CrossRefGoogle Scholar
  23. 23.
    Robey, I. F., Lien, A. D., Welsh, S. J., Baggett, B. K., & Gillies, R. J. (2005). Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia, 7, 324–330.PubMedCrossRefGoogle Scholar
  24. 24.
    Schornack, P. A., & Gillies, R. J. (2003). Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia (New York), 5, 135–145.Google Scholar
  25. 25.
    Gillies, R. J., Raghunand, N., Garcia-Martin, M. L., & Gatenby, R. A. (2004). pH imaging. A review of pH measurement methods and applications in cancers. IEEE Engineering in Medicine and Biology Magazine, 23, 57–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Williams, A. C., Collard, T. J., & Paraskeva, C. (1999). An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: Implications for clonal selection during colorectal carcinogenesis. Oncogene, 18, 3199–3204.PubMedCrossRefGoogle Scholar
  27. 27.
    McLean, L. A., Roscoe, J., Jorgensen, N. K., Gorin, F. A., Cala, P. M. (2000). Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. American Journal of Physiology, 278, C676–C688.PubMedGoogle Scholar
  28. 28.
    Rozhin, J., Sameni, M., Ziegler, G., Sloane, B. F. (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Research, 54, 6517–6525.PubMedGoogle Scholar
  29. 29.
    Martinez-Zaguilan, R., Seftor, E. A., Seftor, R. E., Chu, Y. W., Gillies, R. J., & Hendrix, M. J. (1996). Acidic pH enhances the invasive behavior of human melanoma cells. Clinical & Experimental Metastasis, 14, 176–186.CrossRefGoogle Scholar
  30. 30.
    Schlappack, O. K., Zimmermann, A., & Hill, R. P. (1991). Glucose starvation and acidosis: Effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. British Journal of Cancer, 64, 663–670.PubMedGoogle Scholar
  31. 31.
    Rofstad, E. K., Mathiesen, B., Kindem, K., & Galappathi, K. (2006). Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Research, 66, 6699–6707.PubMedCrossRefGoogle Scholar
  32. 32.
    Gilmore, A. P. (2005). Anoikis. Cell Death and Differentiation, 12(Suppl 2), 1473–1477.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang, P., Valentijn, A. J., Gilmore, A. P., & Streuli, C. H. (2003). Early events in the anoikis program occur in the absence of caspase activation. Journal of Biological Chemistry, 278, 19917–19925.PubMedCrossRefGoogle Scholar
  34. 34.
    Bonnet, S., Archer, S. L., lalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 11, 37–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Jordan, B. F., Beghein, N., Crokart, N., Baudelet, C., Gregoire, V., Gallez, B. (2006). Preclinical safety and antitumor efficacy of insulin combined with irradiation. Radiotherapy and Oncology, 81, 112–117.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of RadiologyArizona Health Sciences CenterTucsonUSA

Personalised recommendations