Advertisement

Cancer and Metastasis Reviews

, Volume 26, Issue 2, pp 299–310 | Cite as

Regulation of tumor pH and the role of carbonic anhydrase 9

  • Pawel Swietach
  • Richard D. Vaughan-Jones
  • Adrian L. HarrisEmail author
Article

Abstract

The high metabolic rate required for tumor growth often leads to hypoxia in poorly-perfused regions. Hypoxia activates a complex gene expression program, mediated by hypoxia inducible factor 1 (HIF1α). One of the consequences of HIF1α activation is up-regulation of glycolysis and hence the production of lactic acid. In addition to the lactic acid-output, intracellular titration of acid with bicarbonate and the engagement of the pentose phosphate shunt release CO2 from cells. Expression of the enzyme carbonic anhydrase 9 on the tumor cell surface catalyses the extracellular trapping of acid by hydrating cell-generated CO2 into \({\text{HCO}}^{ - }_{3} \) and H+. These mechanisms contribute towards an acidic extracellular milieu favoring tumor growth, invasion and development. The lactic acid released by tumor cells is further metabolized by the tumor stroma. Low extracellular pH may adversely affect the intracellular milieu, possibly triggering apoptosis. Therefore, primary and secondary active transporters operate in the tumor cell membrane to protect the cytosol from acidosis. We review mechanisms regulating tumor intracellular and extracellular pH, with a focus on carbonic anhydrase 9. We also review recent evidence that may suggest a role for CA9 in coordinating pHi among cells of large, unvascularized cell-clusters.

Keywords

Fluorescence Hypoxia Imaging Intracellular and extracellular pH Nuclear magnetic resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roos, A., & Boron, W. F. (1981). Intracellular pH. Physiological Reviews, 61, 296–434.PubMedGoogle Scholar
  2. 2.
    De Brabander, M., Geuens, G., Nuydens, R., Willebrords, R., & De Mey, J. (1982). Microtubule stability and assembly in living cells: The influence of metabolic inhibitors, taxol and pH. Cold Spring Harbor Symposia on Quantitative Biology, 1, 227–240, 46 Pt.Google Scholar
  3. 3.
    Isfort, R. J., Cody, D. B., Asquith, T. N., Ridder, G. M., Stuard, S. B., & LeBoeuf, R. A. (1993). Induction of protein phosphorylation, protein synthesis, immediate-early-gene expression and cellular proliferation by intracellular pH modulation. Implications for the role of hydrogen ions in signal transduction. European Journal of Biochemistry, 213, 349–357.PubMedGoogle Scholar
  4. 4.
    Morita, T., Nagaki, T., Fukuda, I., & Okumura, K. (1992). Clastogenicity of low pH to various cultured mammalian cells. Mutation Research, 268, 297–305.PubMedGoogle Scholar
  5. 5.
    McConkey, D. J., & Orrenius, S. (1996). Signal transduction pathways in apoptosis. Stem Cells, 14, 619–631.PubMedCrossRefGoogle Scholar
  6. 6.
    Warburg, O. (1930). The metabolism of tumours. London: Arnold Constable.Google Scholar
  7. 7.
    Kallinowski, F., Schlenger, K. H., Runkel, S., Kloes, M., Stohrer, M., Okunieff, P., et al. (1989). Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Research, 49, 3759–3764.PubMedGoogle Scholar
  8. 8.
    Wike-Hooley, J. L., Haveman, J., & Reinhold, H. S. (1984). The relevance of tumour pH to the treatment of malignant disease. Radiotherapy and Oncology, 2, 343–366.PubMedGoogle Scholar
  9. 9.
    Griffiths, J. R., Stevens, A. N., Iles, R. A., Gordon, R. E., & Shaw, D. (1981). 31P-NMR investigation of solid tumours in the living rat. Bioscience Reports, 11, 319–325.Google Scholar
  10. 10.
    Gillies, R. J., Liu, Z., & Bhujwalla, Z. (1994). 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. American Journal of Physiology, 267, C195–C203.PubMedGoogle Scholar
  11. 11.
    Gil, S., Zaderenzo, P., Cruz, F., Cerdan, S., & Ballesteros, P. (1994). Imidazol-1-ylalkanoic acids as extrinsic 1H NMR probes for the determination of intracellular pH, extracellular pH and cell volume. Bioorganic & Medicinal Chemistry, 2, 305–314.Google Scholar
  12. 12.
    Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B, Gillies, R. J. (2006). Acid-mediated tumor invasion: a multidisciplinary study. Cancer Research, 66, 5216–5223.PubMedGoogle Scholar
  13. 13.
    Swietach, P., Wigfield, S., Harris, A., & Vaughan-Jones, R. (2007). Extracellular-facing carbonic anhydrase IX helps to dissipate pH non-uniformity and coordinates pH regulation across large clusters of cells. In Experimental Biology Annual Meeting, Washington D.C.Google Scholar
  14. 14.
    Vaupel, P., Kallinowski, F., & Okunieff, P. (1990). Blood flow, oxygen consumption and tissue oxygenation of human tumors. Advances in Experimental Medicine and Biology, 277, 895–905.PubMedGoogle Scholar
  15. 15.
    Gillies, R. J., Raghunand, N., Karczmar, G. S., & Bhujwalla, Z. M. (2002). MRI of the tumor microenvironment. Journal of Magnetic Resonance Imaging, 16, 430–450.PubMedGoogle Scholar
  16. 16.
    Koukourakis, M. I., Pitiakoudis, M., Giatromanolaki, A., Tsarouha, A., Polychronidis, A., Sivridis, E., et al. (2006). Oxygen and glucose consumption in gastrointestinal adenocarcinomas: Correlation with markers of hypoxia, acidity and anaerobic glycolysis. Cancer Science, 97, 1056–1060.PubMedGoogle Scholar
  17. 17.
    Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer, 4, 891–899.PubMedGoogle Scholar
  18. 18.
    Martinez-Zaguilan, R., Seftor, E. A., Seftor, R. E., Chu, Y. W., Gillies, R. J., & Hendrix, M. J. (1996). Acidic pH enhances the invasive behavior of human melanoma cells. Clinical & Experimental Metastasis, 14, 176–186.Google Scholar
  19. 19.
    Schlappack, O. K., Zimmermann, A., & Hill, R. P. (1991). Glucose starvation and acidosis: Effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. British Journal of Cancer, 64, 663–670.PubMedGoogle Scholar
  20. 20.
    Kato, Y., Nakayama, Y., Umeda, M., & Miyazaki, K. (1992). Induction of 103-kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines. Journal of Biological Chemistry, 267, 11424–11430.PubMedGoogle Scholar
  21. 21.
    Gatenby, R. A., & Gawlinski, E. T. (1996). A reaction-diffusion model of cancer invasion. Cancer Research, 56, 5745–5753.PubMedGoogle Scholar
  22. 22.
    Park, H. J., Lyons, J. C., Ohtsubo, T., & Song, C. W. (1999). Acidic environment causes apoptosis by increasing caspase activity. British Journal of Cancer, 80, 1892–1897.PubMedGoogle Scholar
  23. 23.
    Moolenaar, W. H. (1986). Effects of growth factors on intracellular pH regulation. Annual Review of Physiology, 48, 363–376.PubMedGoogle Scholar
  24. 24.
    Williams, A. C., Collard, T. J., & Paraskeva, C. (1999). An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene, 18, 3199–3204.PubMedGoogle Scholar
  25. 25.
    McLean, L. A., Roscoe, J., Jorgensen, N. K., Gorin, F. A., & Cala, P. M. (2000). Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. American Journal of Physiology. Cell Physiology, 278, C676–C688.PubMedGoogle Scholar
  26. 26.
    Lee, A. H., & Tannock, I. F. (1998). Heterogeneity of intracellular pH and of mechanisms that regulate intracellular pH in populations of cultured cells. Cancer Research, 58, 1901–1908.PubMedGoogle Scholar
  27. 27.
    Martinez-Zaguilan, R., Lynch, R. M., Martinez, G. M., & Gillies, R. J. (1993). Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. American Journal of Physiology, 265, C1015–C1029.PubMedGoogle Scholar
  28. 28.
    Gillies, R. J., Martinez-Zaguilan, R., Martinez, G. M., Serrano, R., & Perona, R. (1990). Tumorigenic 3T3 cells maintain an alkaline intracellular pH under physiological conditions. Proceedings of the National Academy of Sciences of the United States of America, 87, 7414–7418.PubMedGoogle Scholar
  29. 29.
    Reshkin, S. J., Bellizzi, A., Caldeira, S., Albarani, V., Malanchi, I., Poignee, M., et al. (2000). Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB Journal, 14, 2185–2197.PubMedGoogle Scholar
  30. 30.
    Weber, W. A. (2006). Positron emission tomography as an imaging biomarker. Journal of Clinical Oncology, 24, 3282–3292.PubMedGoogle Scholar
  31. 31.
    Gambhir, S. S. (2002). Molecular imaging of cancer with positron emission tomography. Nature Reviews. Cancer, 2, 683–693.PubMedGoogle Scholar
  32. 32.
    Dewhirst, M. W., Secomb, T. W., Ong, E. T., Hsu, R., & Gross, J. F. (1994). Determination of local oxygen consumption rates in tumors. Cancer Research, 54, 3333–3336.PubMedGoogle Scholar
  33. 33.
    Krogh, A. (1919). The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. Journal of Physiology, 52, 409–415.PubMedGoogle Scholar
  34. 34.
    Li, X., Vigneron, D. B., Cha, S., Graves, E. E., Crawford, F., Chang, S. M., et al. (2005). Relationship of MR-derived lactate, mobile lipids, and relative blood volume for gliomas in vivo. AJNR. American Journal of Neuroradiology, 26, 760–769.PubMedGoogle Scholar
  35. 35.
    Hockel, M., & Vaupel, P. (2001). Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. Journal of the National Cancer Institute, 93, 266–276.PubMedGoogle Scholar
  36. 36.
    Semenza, G. L., & Wang, G. L. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molecular and Cellular Biology, 12, 5447–5454.PubMedGoogle Scholar
  37. 37.
    Gleadle, J. M., & Ratcliffe, P. J. (1998). Hypoxia and the regulation of gene expression. Molecular Medicine Today, 4, 122–129.PubMedGoogle Scholar
  38. 38.
    Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3, 721–732.PubMedGoogle Scholar
  39. 39.
    Minchenko, A., Leshchinsky, I., Opentanova, I., Sang, N., Srinivas, V., Armstead, V., et al. (2002). Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. Journal of Biological Chemistry, 277, 6183–6187.PubMedGoogle Scholar
  40. 40.
    Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry, 269, 23757–23763.PubMedGoogle Scholar
  41. 41.
    Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry, 271, 32529–32537.PubMedGoogle Scholar
  42. 42.
    Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3, 177–185.PubMedGoogle Scholar
  43. 43.
    Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism, 3, 187–197.PubMedGoogle Scholar
  44. 44.
    Baudelet, C., Ansiaux, R., Jordan, B. F., Havaux, X., Macq, B., & Gallez, B. (2004). Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: A marker of tumour acute hypoxia? Physics in Medicine & Biology, 49, 3389–3411.Google Scholar
  45. 45.
    Plas, D. R., & Thompson, C. B. (2005). Akt-dependent transformation: There is more to growth than just surviving. Oncogene, 24, 7435–7442.PubMedGoogle Scholar
  46. 46.
    Kallinowski, F., Tyler, G., Mueller-Klieser, W., & Vaupel, P. (1989). Growth-related changes of oxygen consumption rates of tumor cells grown in vitro and in vivo. Journal of Cellular Physiology, 138, 183–191.PubMedGoogle Scholar
  47. 47.
    Hochachka, P. W., &. Mommsen, T. P. (1983). Protons and anaerobiosis. Science, 219, 1391–1397.PubMedGoogle Scholar
  48. 48.
    Vaupel, P., Kallinowski, F., & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Research, 49, 6449–6465.PubMedGoogle Scholar
  49. 49.
    Dickson, J. A., & Calderwood, S. K. (1979). Effects of hyperglycemia and hyperthermia on the pH, glycolysis, and respiration of the Yoshida sarcoma in vivo. Journal of the National Cancer Institute, 63, 1371–1381.PubMedGoogle Scholar
  50. 50.
    Kalmus, J., Okunieff, P., & Vaupel, P. (1989). Effect of intraperitoneal versus intravenous glucose administration on laser Doppler flow in murine FSaII tumors and normal skin. Cancer Research, 49, 6313–6317.PubMedGoogle Scholar
  51. 51.
    Halestrap, A. P., & Meredith, D. (2004). The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Archiv: European Journal of Physiology, 447, 619–628.PubMedGoogle Scholar
  52. 52.
    Halestrap, A. P., & Price, N. T. (1999). The proton-linked monocarboxylate transporter (MCT) family: Structure, function and regulation. Biochemical Journal, 343(Pt 2), 281–299.PubMedGoogle Scholar
  53. 53.
    Ord, J. J., Streeter, E. H., Roberts, I. S., Cranston, D., & Harris, A. L. (2005). Comparison of hypoxia transcriptome in vitro with in vivo gene expression in human bladder cancer. British Journal of Cancer, 93, 346–354.PubMedGoogle Scholar
  54. 54.
    Ullah, M. S., Davies, A. J., & Halestrap, A. P. (2006). The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. Journal of Biological Chemistry, 281, 9030–9037.PubMedGoogle Scholar
  55. 55.
    Newell, K., Franchi, A., Pouyssegur, J., & Tannock, I. (1993). Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity. Proceedings of the National Academy of Sciences of the United States of America, 90, 1127–1131.PubMedGoogle Scholar
  56. 56.
    Yamagata, M., Hasuda, K., Stamato, T., & Tannock, I. F. (1998). The contribution of lactic acid to acidification of tumours: Studies of variant cells lacking lactate dehydrogenase. British Journal of Cancer, 77, 1726–1731.PubMedGoogle Scholar
  57. 57.
    Gullino, P. M., Grantham, F. H., Smith, S. H., & Haggerty, A. C. (1965). Modifications of the acid–base status of the internal milieu of tumors. Journal of the National Cancer Institute, 34, 857–869.PubMedGoogle Scholar
  58. 58.
    Helmlinger, G., Sckell, A., Dellian, M., Forbes, N. S., & Jain, R. K. (2002). Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clinical Cancer Research, 8, 1284–1291.PubMedGoogle Scholar
  59. 59.
    Meyerson, L. R., & Nesta, D. (1991). [3H]acetazolamide binding to carbonic anhydrase in normal and transformed cells. Biochemical Pharmacology, 41, 995–1000.PubMedGoogle Scholar
  60. 60.
    Scozzafava, A., Mastrolorenzo, A., & Supuran, C. (2006). Carbonic anhydrase inhibitors and activators and their use in therapy. Expert Opinion on Therapeutic Patents, 16, 1627–1666.Google Scholar
  61. 61.
    Esbaugh, A. J., & Tufts, B. L. (2006). The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respiration Physiology. Neurobiology, 154, 185–198.Google Scholar
  62. 62.
    Sterling, D., Reithmeier, R. A., & Casey, J. R. (2001). A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. Journal of Biological Chemistry, 276, 47886–47894.PubMedGoogle Scholar
  63. 63.
    Wingo, T., Tu, C., Laipis, P. J., & Silverman, D. N. (2001). The catalytic properties of human carbonic anhydrase IX. Biochemical and Biophysical Research Communications, 288, 666–669.PubMedGoogle Scholar
  64. 64.
    Pastorekova, S., Zavadova, Z., Kostal, M., Babusikova, O., & Zavada, J. (1992). A novel quasi-viral agent, MaTu, is a two-component system. Virology, 187, 620–626.PubMedGoogle Scholar
  65. 65.
    Opavsky, R., Pastorekova, S., Zelnik, V., Gibadulinova, A., Stanbridge, E. J., Zavada, J., et al. (1996). Human MN/CA9 gene, a novel member of the carbonic anhydrase family: Structure and exon to protein domain relationships. Genomics, 33, 480–487.PubMedGoogle Scholar
  66. 66.
    Pastorek, J., Pastorekova, S., Callebaut, I., Mornon, J. P., Zelnik, V., Opavsky, R., et al. (1994). Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix- loop-helix DNA binding segment. Oncogene, 9, 2877–2888.PubMedGoogle Scholar
  67. 67.
    Dorai, T., Sawczuk, I. S., Pastorek, J., Wiernik, P. H., & Dutcher, J. P. (2005). The role of carbonic anhydrase IX overexpression in kidney cancer. European Journal of Cancer, 41, 2935–2947.PubMedGoogle Scholar
  68. 68.
    Svastova, E., Zilka, N., Zat’ovicova, M., Gibadulinova, A., Ciampor, F., Pastorek, J., & Pastorekova, S. (2003). Carbonic anhydrase IX reduces E-cadherin-mediated adhesion of MDCK cells via interaction with beta-catenin. Experimental Cell Research, 290, 332–345.PubMedGoogle Scholar
  69. 69.
    Zatovicova, M., Sedlakova, O., Svastova, E., Ohradanova, A., Ciampor, F., Arribas, J., et al. (2005). Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17. British Journal of Cancer, 93, 1267–1276.PubMedGoogle Scholar
  70. 70.
    Pastorekova, S., Parkkila, S., Parkkila, A. K., Opavsky, R., Zelnik, V., Saarnio, J., et al. (1997). Carbonic anhydrase IX, MN/CA IX: Analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology, 112, 398–408.PubMedGoogle Scholar
  71. 71.
    Wykoff, C. C., Beasley, N. J., Watson, P. H., Turner, K. J., Pastorek, J., Sibtain, A., et al. (2000). Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Research, 60, 7075–7083.PubMedGoogle Scholar
  72. 72.
    Haapasalo, J. A., Nordfors, K. M., Hilvo, M., Rantala, I. J., Soini, Y., Parkkila, A. K., et al. (2006). Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clinical Cancer Research, 12, 473–477.PubMedGoogle Scholar
  73. 73.
    Driessen, A., Landuyt, W., Pastorekova, S., Moons, J., Goethals, L., Haustermans, K., et al. (2006). Expression of carbonic anhydrase IX (CA IX), a hypoxia-related protein, rather than vascular-endothelial growth factor (VEGF), a pro-angiogenic factor, correlates with an extremely poor prognosis in esophageal and gastric adenocarcinomas. Annals of Surgery, 243, 334–340.PubMedGoogle Scholar
  74. 74.
    Chia, S. K., Wykoff, C. C., Watson, P. H., Han, C., Leek, R. D., Pastorek, J., et al. (2001). Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase ix, in invasive breast carcinoma. Journal of Clinical Oncology, 19, 3660–3668.PubMedGoogle Scholar
  75. 75.
    Beasley, N. J., Wykoff, C. C., Watson, P. H., Leek, R., Turley, H., Gatter, K., et al. (2001). Carbonic anhydrase IX, an endogenous hypoxia marker, expression in head and neck squamous cell carcinoma and its relationship to hypoxia, necrosis, and microvessel density. Cancer Research, 61, 5262–5267.PubMedGoogle Scholar
  76. 76.
    Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., Simopoulos, K., Pastorek, J., Wykoff, C. C., et al. (2001). Hypoxia-regulated carbonic anhydrase-9 (CA9) relates to poor vascularization and resistance of squamous cell head and neck cancer to chemoradiotherapy. Clinical Cancer Research, 7, 3399–3403.PubMedGoogle Scholar
  77. 77.
    Ivanov, S., Liao, S. Y., Ivanova, A., Danilkovitch-Miagkova, A., Tarasova, N., Weirich, G., et al. (2001). Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. American Journal of Pathology, 158, 905–919.PubMedGoogle Scholar
  78. 78.
    Pastorekova, S., Pastorek, J. (2004). Cancer-related carbonic anhydrase isozymes and their inhibition. In C. Supuran, A. Scozzafava, & J. Conway (Eds.) Carbonic anhydrase: Its inhibitors and activators. Boca Raton, FL: CRC.Google Scholar
  79. 79.
    Generali, D., Fox, S. B., Berruti, A., Brizzi, M. P., Campo, L., Bonardi, S., et al. (2006). Role of carbonic anhydrase IX expression in prediction of the efficacy and outcome of primary epirubicin/tamoxifen therapy for breast cancer. Endocrine-related Cancer, 13, 921–930.PubMedGoogle Scholar
  80. 80.
    Loncaster, J. A., Harris, A. L., Davidson, S. E., Logue, J. P., Hunter, R. D., Wycoff, C. C., et al. (2001). Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: Correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Research, 61, 6394–6399.PubMedGoogle Scholar
  81. 81.
    Airley, R. E., Loncaster, J., Raleigh, J. A., Harris, A. L., Davidson, S. E., Hunter, R. D., et al. (2003). GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: Relationship to pimonidazole binding. International Journal of Cancer, 104, 85–91.Google Scholar
  82. 82.
    Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Research, 66, 632–637.PubMedGoogle Scholar
  83. 83.
    Robertson, N., Potter, C., & Harris, A. L. (2004). Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Research, 64, 6160–6165.PubMedGoogle Scholar
  84. 84.
    Bartosova, M., Parkkila, S., Pohlodek, K., Karttunen, T. J., Galbavy, S., Mucha, V., et al. (2002). Expression of carbonic anhydrase IX in breast is associated with malignant tissues and is related to overexpression of c-erbB2. Journal of Pathology, 197, 314–321.PubMedGoogle Scholar
  85. 85.
    Giatromanolaki, A., Koukourakis, M. I., Sivridis, E., Pastorek, J., Wykoff, C. C., Gatter, K. C., et al. (2001). Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer. Cancer Research, 61, 7992–7998.PubMedGoogle Scholar
  86. 86.
    Svastova, E., Hulikova, A., Rafajova, M., Zat’ovicova, M., Gibadulinova, A., Casini, A., et al. (2004). Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Letters, 577, 439–445.PubMedGoogle Scholar
  87. 87.
    Henry, R. P., & Swenson, E. R. (2000). The distribution and physiological significance of carbonic anhydrase in vertebrate gas exchange organs. Respiration Physiology, 121, 1–12.PubMedGoogle Scholar
  88. 88.
    Leem, C. H., Vaughan-Jones, R. D. (1998). Out-of-equilibrium pH transients in the guinea-pig ventricular myocyte. Journal of Physiology, 509(Pt 2), 471–485.PubMedGoogle Scholar
  89. 89.
    Swietach, P., Browning, J. A., Wilkins, R. J. (2002). Functional and molecular determination of carbonic anhydrase levels in bovine and cultured human chondrocytes. Comparative Biochemistry and Physiology. B. Biochemistry and Molecular Biology, 133, 427–435.Google Scholar
  90. 90.
    Stewart, A. K., Boyd, C. A., & Vaughan-Jones, R. D. (1999). A novel role for carbonic anhydrase: Cytoplasmic pH gradient dissipation in mouse small intestinal enterocytes. Journal of Physiology, 516(Pt 1), 209–217.PubMedGoogle Scholar
  91. 91.
    Spitzer, K. W., Skolnick, R. L., Peercy, B. E., Keener, J. P., Vaughan-Jones, R. D. (2002). Facilitation of intracellular H(+) ion mobility by CO(2)/HCO(3)(−) in rabbit ventricular myocytes is regulated by carbonic anhydrase. Journal of Physiology, 541, 159–167.PubMedGoogle Scholar
  92. 92.
    Irving, M., Maylie, J., Sizto, N. L., & Chandler, W. K. (1990). Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle. Biophysical Journal, 57, 717–721.PubMedCrossRefGoogle Scholar
  93. 93.
    Geers, C., & Gros, G. (2000). Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiological Reviews, 80, 681–715.PubMedGoogle Scholar
  94. 94.
    Heming, T. A., Stabenau, E. K., Vanoye, C. G., Moghadasi, H., & Bidani, A. (1994). Roles of intra- and extracellular carbonic anhydrase in alveolar-capillary CO2 equilibration. Journal of Applied Physiology, 77, 697–705.PubMedGoogle Scholar
  95. 95.
    Sterling, D., & Casey, J. R. (2002). Bicarbonate transport proteins. Biochemistry and Cell Biology, 80, 483–497.PubMedGoogle Scholar
  96. 96.
    Lu, J., Daly, C. M., Parker, M. D., Gill, H. S., Piermarini, P. M., Pelletier, M. F., et al. (2006). Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes. Journal of Biological Chemistry, 281, 19241–19250.PubMedGoogle Scholar
  97. 97.
    Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., Gatter, K. C., Harris, A. L. (2005). Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia, 7, 1–6.PubMedGoogle Scholar
  98. 98.
    Lu, H., Dalgard, C. L., Mohyeldin, A., McFate, T., Tait, A. S., & Verma, A. (2005). Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. Journal of Biological Chemistry, 280, 41928–41939.PubMedGoogle Scholar
  99. 99.
    Teicher, B. A., Liu, S. D., Liu, J. T., Holden, S. A., & Herman, T. S. (1993). A carbonic anhydrase inhibitor as a potential modulator of cancer therapies. Anticancer Research, 13, 1549–1556.PubMedGoogle Scholar
  100. 100.
    Raghunand, N., & Gillies, R. J. (2001). pH and chemotherapy. Novartis Foundation Symposium, 240, 199–211; discussion: 265–198.PubMedGoogle Scholar
  101. 101.
    Ivanov, S. V., Kuzmin, I., Wei, M. H., Pack, S., Geil, L., Johnson, B. E., et al. (1998). Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. In Proceedings of the National Academy of Sciences of the United States of America, 95, 12596–12601.PubMedGoogle Scholar
  102. 102.
    Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425–434.PubMedGoogle Scholar
  103. 103.
    Thiry, A., Dogne, J. M., Masereel, B., & Supuran, C. T. (2006). Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends in Pharmacological Sciences, 27, 566–573.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Pawel Swietach
    • 1
  • Richard D. Vaughan-Jones
    • 1
  • Adrian L. Harris
    • 2
    Email author
  1. 1.Department of Physiology, Anatomy and GeneticsBurdon Sanderson Cardiac Science CentreOxfordUK
  2. 2.Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalOxfordUK

Personalised recommendations