Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of hypoxia on tumor metabolism

Abstract

Rapidly growing tumors invariably contain hypoxic regions. Adaptive response to hypoxia through angiogenesis, enhanced glucose metabolism and diminished but optimized mitochondrial respiration confers survival and growth advantage to hypoxic tumor cells. In this review, the roles of hypoxia, the hypoxia inducible factors, oncogenes and tumor suppressors in metabolic adaptation of tumors are discussed. These new insights into hypoxic metabolic alterations in tumors will hopefully lead us to target tumor bioenergetics for the treatment of cancers.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hochachka, P. W. (1998). Mechanism and evolution of hypoxia-tolerance in humans. Journal of Experimental Biology, 201, 1243–1254.

  2. 2.

    Semenza, G. L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annual Review of Cell and Developmental Biology, 15, 551–578.

  3. 3.

    Giatromanolaki, A., & Harris, A. L. (2001). Tumour hypoxia, hypoxia signaling pathways and hypoxia inducible factor expression in human cancer. Anticancer Research, 21, 4317–4324.

  4. 4.

    Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology, 35, 71–103.

  5. 5.

    Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of biological chemistry, 269, 23757–23763.

  6. 6.

    Wang, G. L., & Semenza, G. L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 90, 4304–4308.

  7. 7.

    Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and cellular biology, 16, 4604–4613.

  8. 8.

    Gordan, J. D., & Simon, M. C. (2007). Hypoxia-inducible factors: Central regulators of the tumor phenotype. Current Opinion in Genetics & Development, 17, 71–77.

  9. 9.

    Semenza, G. L. (2001). HIF-1, O(2), and the 3 PHDs: How animal cells signal hypoxia to the nucleus. Cell, 107, 1–3.

  10. 10.

    Semenza, G. L. (2004). Hydroxylation of HIF-1: Oxygen sensing at the molecular level. Physiology (Bethesda), 19, 176–182.

  11. 11.

    Schofield, C. J., & Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. Nature Reviews. Molecular Cell Biology, 5, 343–354.

  12. 12.

    Krek, W. (2000). VHL takes HIF’s breath away. Nature Cell Biology, 2, E121–E123.

  13. 13.

    Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., et al. (2001). Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292, 468–472.

  14. 14.

    Ohh, M., Park, C. W., Ivan, M., Hoffman, M. A., Kim, T. Y., Huang, L. E., et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nature Cell Biology, 2, 423–427.

  15. 15.

    Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394, 485–490.

  16. 16.

    Liu, L., & Simon, M. C. (2004). Regulation of transcription and translation by hypoxia. Cancer Biology & Therapy, 3, 492–497.

  17. 17.

    Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3, 721–732.

  18. 18.

    Ryan, H. E., Lo, J., & Johnson, R. S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO Journal, 17, 3005–3015.

  19. 19.

    Fei, P., Wang, W., Kim, S. H., Wang, S., Burns, T. F., Sax, J. K., et al. (2004). Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell, 6, 597–609.

  20. 20.

    Hammond, E. M., & Giaccia, A. J. (2005). The role of p53 in hypoxia-induced apoptosis. Biochemical and Biophysical Research Communications, 331, 718–725.

  21. 21.

    Kim, J. W., & Dang, C. V. (2006). Cancer’s molecular sweet tooth and the Warburg effect. Cancer Research, 66, 8927–8930.

  22. 22.

    Bardos, J. I., & Ashcroft, M. (2004). Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays, 26, 262–269.

  23. 23.

    Semenza, G. L., Shimoda, L. A., & Prabhakar, N. R. (2006). Regulation of gene expression by HIF-1. Novartis Foundation symposium, 272, 2–8; discussion 8–14, 33–36.

  24. 24.

    Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry, 271, 32529–32537.

  25. 25.

    Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425–434.

  26. 26.

    Balaban, R. S., Nemoto, S., & Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell, 120, 483–495.

  27. 27.

    Kondoh, H., Lleonart, M. E., Gil, J., Wang, J., Degan, P., Peters, G., et al. (2005). Glycolytic enzymes can modulate cellular life span. Cancer Research, 65, 177–185.

  28. 28.

    Welford, S. M., Bedogni, B., Gradin, K., Poellinger, L., Broome Powell, M., & Giaccia, A. J. (2006). HIF1alpha delays premature senescence through the activation of MIF. Genes & Development, 20, 3366–3371.

  29. 29.

    Maity, A., & Koumenis, C. (2006). HIF and MIF-a nifty way to delay senescence? Genes & development, 20, 3337–3341.

  30. 30.

    Kaelin, W. G. (2005). ROS: Really involved in oxygen sensing. Cell Metabolism, 1, 357–358.

  31. 31.

    Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., et al. (2005). Mitochondrial complex III is required for hypoxia-induced ROS and cellular oxygen sensing. Cell Metabolism, 1, 401–408.

  32. 32.

    Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., et al. (2005). Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism, 1, 409–414.

  33. 33.

    Cairns, R., Papandreou, I., & Denko, N. (2006). Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Molecular Cancer Research, 4, 61–70.

  34. 34.

    Bacon, A. L., & Harris, A. L. (2004). Hypoxia-inducible factors and hypoxic cell death in tumour physiology. Annals of Medicine, 36, 530–539.

  35. 35.

    Wykoff, C. C., Beasley, N. J., Watson, P. H., Turner, K. J., Pastorek, J., Sibtain, A., et al. (2000). Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Research, 60, 7075–7083.

  36. 36.

    Svastova, E., Hulikova, A., Rafajova, M., Zat’ovicova, M., Gibadulinova, A., Casini, A., et al. (2004). Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS letters, 577, 439–445.

  37. 37.

    Robertson, N., Potter, C., & Harris, A. L. (2004). Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Research, 64, 6160–6165.

  38. 38.

    Potter, C., & Harris, A. L. (2004). Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle, 3, 164–167.

  39. 39.

    Supuran, C. T., Scozzafava, A., & Casini, A. (2003). Carbonic anhydrase inhibitors. Medicinal Research Reviews, 23, 146–189.

  40. 40.

    Potter, C. P., & Harris, A. L. (2003). Diagnostic, prognostic and therapeutic implications of carbonic anhydrases in cancer. British Journal of Cancer, 89, 2–7.

  41. 41.

    Holness, M. J., & Sugden, M. C. (2003). Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochemical Society Transactions, 31, 1143–1151.

  42. 42.

    Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3, 177–185.

  43. 43.

    Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism, 3, 187–197.

  44. 44.

    Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., Gatter, K. C., & Harris, A. L. (2005). Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia, 7, 1–6.

  45. 45.

    Fukuda, R., Zhang, H., Kim, J. W., Shimoda, L., Dang, C. V., & Semenza, G. L. (2007). HIF-1 regulates cytochrome oxidase subunit composition to optimize the efficiency of respiration in hypoxic cells. Cell, (in press).

  46. 46.

    Poyton, R. O. (1999). Models for oxygen sensing in yeast: Implications for oxygen-regulated gene expression in higher eucaryotes. Respiration Physiology, 115, 119–133.

  47. 47.

    Burke, P. V., & Poyton, R. O. (1998). Structure/function of oxygen-regulated isoforms in cytochrome c oxidase. Journal of Experimental Biology, 201, 1163–1175.

  48. 48.

    Kwast, K. E., Burke, P. V., & Poyton, R. O. (1998). Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. Journal of Experimental Biology, 201, 1177–1195.

  49. 49.

    Tian, H., McKnight, S. L., & Russell, D. W. (1997). Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes & Development, 11, 72–82.

  50. 50.

    Card, P. B., Erbel, P. J., & Gardner, K. H. (2005). Structural basis of ARNT PAS-B dimerization: Use of a common beta-sheet interface for hetero- and homodimerization. Journal of Molecular Biology, 353, 664–677.

  51. 51.

    Appelhoff, R. J., Tian, Y. M., Raval, R. R., Turley, H., Harris, A. L., Pugh, C. W., et al. (2004). Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. Journal of Biological Chemistry, 279, 38458–38465.

  52. 52.

    Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B., & Simon, M. C. (2003). Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Molecular and Cellular Biology, 23, 9361–9374.

  53. 53.

    Warnecke, C., Zaborowska, Z., Kurreck, J., Erdmann, V. A., Frei, U., Wiesener, M., et al. (2004). Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: Erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB Journal, 18, 1462–1464.

  54. 54.

    Covello, K. L., Kehler, J., Yu, H., Gordan, J. D., Arsham, A. M., Hu, C. J., et al. (2006). HIF-2alpha regulates Oct-4: Effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes & Development, 20, 557–570.

  55. 55.

    Aprelikova, O., Wood, M., Tackett, S., Chandramouli, G. V., & Barrett, J. C. (2006). Role of ETS transcription factors in the hypoxia-inducible factor-2 target gene selection. Cancer Research, 66, 5641–5647.

  56. 56.

    Maranchie, J. K., & Zhan, Y. (2005). Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel–Lindau-deficient renal cell carcinoma. Cancer Research, 65, 9190–9193.

  57. 57.

    Seagroves, T., & Johnson, R. S. (2002). Two HIFs may be better than one. Cancer Cell, 1, 211–213.

  58. 58.

    Acker, T., Diez-Juan, A., Aragones, J., Tjwa, M., Brusselmans, K., Moons, L., et al. (2005). Genetic evidence for a tumor suppressor role of HIF-2alpha. Cancer Cell, 8, 131–141.

  59. 59.

    Covello, K. L., Simon, M. C., & Keith, B. (2005). Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Research, 65, 2277–2286.

  60. 60.

    Kim, W. Y., Safran, M., Buckley, M. R., Ebert, B. L., Glickman, J., Bosenberg, M., et al. (2006). Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. EMBO Journal, 25, 4650–4662.

  61. 61.

    Sowter, H. M., Raval, R. R., Moore, J. W., Ratcliffe, P. J., & Harris, A. L. (2003). Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Research, 63, 6130–6134.

  62. 62.

    Kuhajda, F. P. (2006). Fatty acid synthase and cancer: New application of an old pathway. Cancer Research, 66, 5977–5980.

  63. 63.

    Menendez, J. A., Vellon, L., Oza, B. P., & Lupu, R. (2005). Does endogenous fatty acid metabolism allow cancer cells to sense hypoxia and mediate hypoxic vasodilatation? Characterization of a novel molecular connection between fatty acid synthase (FAS) and hypoxia-inducible factor-1alpha (HIF-1alpha)-related expression of vascular endothelial growth factor (VEGF) in cancer cells overexpressing her-2/neu oncogene. Journal of Cellular Biochemistry, 94, 857–863.

  64. 64.

    Menendez, J. A., Decker, J. P., & Lupu, R. (2005). In support of fatty acid synthase (FAS) as a metabolic oncogene: Extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells. Journal of Cellular Biochemistry, 94, 1–4.

  65. 65.

    Baron, A., Migita, T., Tang, D., & Loda, M. (2004). Fatty acid synthase: A metabolic oncogene in prostate cancer? Journal of Cellular Biochemistry, 91, 47–53.

  66. 66.

    Pizer, E. S., Wood, F. D., Heine, H. S., Romantsev, F. E., Pasternack, G. R., & Kuhajda, F. P. (1996). Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Research, 56, 1189–1193.

  67. 67.

    Pizer, E. S., Jackisch, C., Wood, F. D., Pasternack, G. R., Davidson, N. E., & Kuhajda, F. P. (1996). Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Research, 56, 2745–2747.

  68. 68.

    Alli, P. M., Pinn, M. L., Jaffee, E. M., McFadden, J. M., & Kuhajda, F. P. (2005). Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene, 24, 39–46.

  69. 69.

    Plas, D. R., & Thompson, C. B. (2005). Akt-dependent transformation: There is more to growth than just surviving. Oncogene, 24, 7435–7442.

  70. 70.

    Gottlieb, E., & Thompson, C. B. (2003). Targeting the mitochondria to enhance tumor suppression. Methods in Molecular Biology, 223, 543–554.

  71. 71.

    Bui, T., & Thompson, C. B. (2006). Cancer’s sweet tooth. Cancer Cell, 9, 419–420.

  72. 72.

    Elstrom, R. L., Bauer, D. E., Buzzai, M., Karnauskas, R., Harris, M. H., Plas, D. R., et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Research, 64, 3892–3899.

  73. 73.

    Li, F., Wang, Y., Zeller, K. I., Potter, J. J., Wonsey, D. R., O’Donnell, K. A., et al. (2005). Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Molecular and Cellular Biology, 25, 6225–6234.

  74. 74.

    Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8, 311–321.

  75. 75.

    Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C., & Thompson, C. B. (2005). ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 24, 6314–6322.

  76. 76.

    Pugh, C. W., & Ratcliffe, P. J. (2003). The von Hippel–Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1). degradation, and cancer pathogenesis. Seminars in Cancer Biology, 13, 83–89.

  77. 77.

    Kaelin, W. G., Jr. (2002). Molecular basis of the VHL hereditary cancer syndrome. Nature Reviews Cancer, 2, 673–682.

  78. 78.

    Clifford, S. C., & Maher, E. R. (2001). Von Hippel–Lindau disease: clinical and molecular perspectives. Advances in Cancer Research, 82, 85–105.

  79. 79.

    Zelzer, E., Levy, Y., Kahana, C., Shilo, B. Z., Rubinstein, M., & Cohen, B. (1998). Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO Journal, 17, 5085–5094.

  80. 80.

    Jiang, B. H., Agani, F., Passaniti, A., & Semenza, G. L. (1997). V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1). and transcription of genes encoding vascular endothelial growth factor and enolase 1: Involvement of HIF-1 in tumor progression. Cancer Research, 57, 5328–5335.

  81. 81.

    Karni, R., Dor, Y., Keshet, E., Meyuhas, O., & Levitzki, A. (2002). Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1alpha expression under normoxia. Journal of Biological Chemistry, 277, 42919–42925.

  82. 82.

    Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F., & Maity, A. (2001). Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. Journal of Biological Chemistry, 276, 9519–9525.

  83. 83.

    Jiang, B. H., Jiang, G., Zheng, J. Z., Lu, Z., Hunter, T., & Vogt, P. K. (2001). Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth & Differentiation, 12, 363–369.

  84. 84.

    Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C., & Semenza, G. L. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: Novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and Cellular Biology, 21, 3995–4004.

  85. 85.

    Brugarolas, J., & Kaelin, W. G., Jr. (2004). Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell, 6, 7–10.

  86. 86.

    Brugarolas, J., Lei, K., Hurley, R. L., Manning, B. D., Reiling, J. H., Hafen, E., et al. (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes & Development, 18, 2893–2904.

  87. 87.

    Brugarolas, J. B., Vazquez, F., Reddy, A., Sellers, W. R., & Kaelin, W. G., Jr. (2003). TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell, 4, 147–158.

  88. 88.

    Gottlieb, E., & Tomlinson, I. P. (2005). Mitochondrial tumour suppressors: A genetic and biochemical update. Nature Reviews. Cancer, 5, 857–866.

  89. 89.

    Astuti, D., Latif, F., Dallol, A., Dahia, P. L., Douglas, F., George, E., et al. (2001). Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. American Journal of Human Genetics, 69, 49–54.

  90. 90.

    Gimm, O., Armanios, M., Dziema, H., Neumann, H. P., & Eng, C. (2000). Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Research, 60, 6822–6825.

  91. 91.

    Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287, 848–851.

  92. 92.

    Eng, C., Kiuru, M., Fernandez, M. J., & Aaltonen, L. A. (2003). A role for mitochondrial enzymes in inherited neoplasia and beyond. Nature Reviews. Cancer, 3, 193–202.

  93. 93.

    Brandon, M., Baldi, P., & Wallace, D. C. (2006). Mitochondrial mutations in cancer. Oncogene, 25, 4647–4662.

  94. 94.

    Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7, 77–85.

  95. 95.

    Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews. Cancer, 4, 891–899.

  96. 96.

    Warburg, O. (1956). On respiratory impairment in cancer cells. Science, 124, 269–270.

  97. 97.

    Warburg, O. (1956). On the origin of cancer cells. Science, 123, 309–314.

  98. 98.

    Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., et al. (1997). c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America, 94, 6658–6663.

  99. 99.

    Osthus, R. C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., et al. (2000). Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. Journal of Biological Chemistry, 275, 21797–21800.

  100. 100.

    Kim, J. W., Zeller, K. I., Wang, Y., Jegga, A. G., Aronow, B. J., O’Donnell, K. A., et al. (2004). Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Molecular and Cellular Biology, 24, 5923–5936.

  101. 101.

    Rathmell, J. C., Fox, C. J., Plas, D. R., Hammerman, P. S., Cinalli, R. M., & Thompson, C. B. (2003). Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Molecular and Cellular Biology, 23, 7315–7328.

  102. 102.

    Gottlob, K., Majewski, N., Kennedy, S., Kandel, E., Robey, R. B., & Hay, N. (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes & Development, 15, 1406–1418.

  103. 103.

    Majewski, N., Nogueira, V., Robey, R. B., & Hay, N. (2004). Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Molecular and Cellular Biology, 24, 730–740.

  104. 104.

    Plas, D. R., Talapatra, S., Edinger, A. L., Rathmell, J. C., & Thompson, C. B. (2001). Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. Journal of Biological Chemistry, 276, 12041–12048.

  105. 105.

    Corcoran, C. A., Huang, Y., & Sheikh, M. S. (2006). The regulation of energy generating metabolic pathways by p53. Cancer Biology & Therapy, 5, 1610–1613.

  106. 106.

    Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126, 107–120.

  107. 107.

    Green, D. R., & Chipuk, J. E. (2006). p53 and metabolism: Inside the TIGAR. Cell, 126, 30–32.

  108. 108.

    Kruse, J. P., & Gu, W. (2006). p53 aerobics: The major tumor suppressor fuels your workout. Cell Metabolism, 4, 1–3.

  109. 109.

    Assaily, W., & Benchimol, S. (2006). Differential utilization of two ATP-generating pathways is regulated by p53. Cancer Cell, 10, 4–6.

  110. 110.

    Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P. J., Bunz, F., & Hwang, P. M. (2006). p53 regulates mitochondrial respiration. Science, 312, 1650–1653.

  111. 111.

    Rider, M. H., Bertrand, L., Vertommen, D., Michels, P. A., Rousseau, G. G., & Hue, L. (2004). 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: Head-to-head with a bifunctional enzyme that controls glycolysis. Biochemical Journal, 381, 561–579.

  112. 112.

    Perez, J. X., Roig, T., Manzano, A., Dalmau, M., Boada, J., Ventura, F., et al. (2000). Overexpression of fructose 2,6-bisphosphatase decreases glycolysis and delays cell cycle progression. American Journal of Physiology Cell Physiology, 279, C1359–C1365.

  113. 113.

    Gatenby, R. A., & Gawlinski, E. T. (2003). The glycolytic phenotype in carcinogenesis and tumor invasion: Insights through mathematical models. Cancer Research, 63, 3847–3854.

  114. 114.

    Mandelkern, M., & Raines, J. (2002). Positron emission tomography in cancer research and treatment. Technology in Cancer Research & Treatment, 1, 423–439.

Download references

Author information

Correspondence to Chi V. Dang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, J., Gao, P. & Dang, C.V. Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev 26, 291–298 (2007). https://doi.org/10.1007/s10555-007-9060-4

Download citation

Keywords

  • Tumor
  • Hypoxia
  • Hypoxia-inducible factor
  • Metabolism
  • Tumor bioenergetic