Advertisement

Cancer and Metastasis Reviews

, Volume 26, Issue 1, pp 153–181 | Cite as

Molecular basis of antifolate resistance

  • Yehuda G. AssarafEmail author
Article

Abstract

Folates play a key role in one-carbon metabolism essential for the biosynthesis of purines, thymidylate and hence DNA replication. The antifolate methotrexate has been rationally-designed nearly 60 years ago to potently block the folate-dependent enzyme dihydrofolate reductase (DHFR) thereby achieving temporary remissions in childhood acute leukemia. Recently, the novel antifolates raltitrexed and pemetrexed that target thymidylate synthase (TS) and glycineamide ribonucleotide transformylase (GARTF) were introduced for the treatment of colorectal cancer and malignant pleural mesothelioma. (Anti)folates are divalent anions which predominantly use the reduced folate carrier (RFC) for their cellular uptake. (Anti)folates are retained intracellularly via polyglutamylation catalyzed by folylpoly-γ-glutamate synthetase (FPGS). As the intracellular concentration of antifolates is critical for their pharmacologic activity, polyglutamylation is a key determinant of antifolate cytotoxicity. However, anticancer drug resistance phenomena pose major obstacles towards curative cancer chemotherapy. Pre-clinical and clinical studies have identified a plethora of mechanisms of antifolate-resistance; these are frequently associated with qualitative and/or quantitative alterations in influx and/or efflux transporters of (anti)folates as well as in folate-dependent enzymes. These include inactivating mutations and/or down-regulation of the RFC and various alterations in the target enzymes DHFR, TS and FPGS. Furthermore, it has been recently shown that members of the ATP-binding cassette (ABC) superfamily including multidrug resistance proteins (MRP/ABCC) and breast cancer resistance protein (BCRP/ABCG2) are low affinity, high capacity ATP-driven (anti)folate efflux transporters. This transport activity is in addition to their established facility to extrude multiple cytotoxic agents. Hence, by actively extruding antifolates, overexpressed MRPs and/or BCRP confer antifolate resistance. Moreover, down-regulation of MRPs and/or BCRP results in decreased folate efflux thereby leading to expansion of the intracellular folate pool and antifolate resistance. This chapter reviews and discusses the panoply of molecular modalities of antifolate-resistance in pre-clinical tumor cell systems in vitro and in vivo as well as in cancer patients. Currently emerging novel strategies for the overcoming of antifolate-resistance are presented. Finally, experimental evidence is provided that the identification and characterization of the molecular mechanisms of antifolate-resistance may prove instrumental in the future development of rationally-based novel antifolates and strategies that could conceivably overcome drug-resistance phenomena.

Keywords

Folates Folate-dependent enzymes Antifolates Chemotherapy Drug resistance Influx and efflux transporters Folate pools 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stokstad, E. L. R. (1990). Folic acid metabolism in health and disease. In M. F. Picciano & E. L. R. Stokstad (Eds.). New York: Wiley-Liss, pp. 1–21.Google Scholar
  2. 2.
    Appling, D. R. (1991). Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB Journal, 5, 2645–2651.PubMedGoogle Scholar
  3. 3.
    Titus, S. A., & Moran, R. G. (2000). Retrovirally mediated complementation of the glyB phenotype. Cloning of a human gene encoding the carrier for entry of folates into mitochondria. Journal of Biological Chemistry, 275, 36811–36817.PubMedGoogle Scholar
  4. 4.
    Farber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F., & Wolff, V. A. (1948). Temporary remissions in acute leukemia produced by folic acid antagonist, 4-aminopteroylglutamic acid (aminopterin). New England Journal of Medicine, 238, 787–793.CrossRefPubMedGoogle Scholar
  5. 5.
    Jackman, A. L., Taylor, G. A., Gibson, W., Kimbell, R., Brown, M., Calvert, A. H., et al. (1991). ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is potent inhibitor of L1210 tumor cell growth in vitro and in vivo: A new agent for clinical study. Cancer Research, 51, 5579–5586.PubMedGoogle Scholar
  6. 6.
    Cocconi, G., Cunningham, D., Van Custem, E., Francois, E., Gustavsson, B., Van Hazel, G., et al. (1998). Open, randomized, multicenter trial of raltitrexed versus fluorouracil plus high-dose leucovorin in patients with advanced colorectal cancer. Tomudex Colorectal Study Group. Journal of Clinical Oncology, 16, 2943–2952.PubMedGoogle Scholar
  7. 7.
    Shih, J., Chen, V. J., Gossett, L. S., Gates, S. B., McKellar, W. C., Habeck, L. L., et al. (1997). LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Research, 57, 1116–1123.PubMedGoogle Scholar
  8. 8.
    Vogelzang, N. J., Rusthoven, J. J., Symanowski, J., Denham, C., Kaukel, E., Ruffie, P., et al. (2003). Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. Journal of Clinical Oncology, 21, 2630–2636.Google Scholar
  9. 9.
    Hanna, N., Shepherd, F. A., Fossella, F. V., Pereira, J. R., De Marinis, F., Von Pawel, J., et al. (2004). Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small cell lung cancer previously treated with chemotherapy. Journal of Clinical Oncology, 22, 1589–1597.PubMedGoogle Scholar
  10. 10.
    Walling, J. (2006). From methotrexate to pemetrexed and beyond. A review of the pharmacodynamic and clinical properties of antifolates. Investigational New Drugs, 24, 37–77.PubMedGoogle Scholar
  11. 11.
    Assaraf, Y. G. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resistance Updates, 9, 227–246.Google Scholar
  12. 12.
    Domin, B. A., Cheng, Y. C., & Hakala, M. T. (1982). properties of a dihydrofolate reductase from a methotrexate-resistant subline of human KB cells and comparison with enzyme from KB parent cells and mouse S180 AT/3000 cells. Molecular Pharmacology, 21, 231–238.PubMedGoogle Scholar
  13. 13.
    Appleman, J. R., Prendergast, N., Delcamp, T. J., Freisheim, J. H., & Blakely, R. L. (1988). Kinetics of the formation and isomerization of methotrexate complexes of recombinant human dihydrofolate reductase. Journal of Biological Chemistry, 263, 10304–10313.PubMedGoogle Scholar
  14. 14.
    Rosowsky, A., Wright, J. E., Vadiya, C. M., & Forsch, R. A. (2000). The effect of side-chain, para-aminobenzoyl region, and B-ring modifications on dihydrofolate reductase binding, influx via the reduced folate carrier, and cytotoxicity of the potent N(α)-(4-amino-4-deoxypteroyl)-N-(δ)-hemiphtaloyl-L-ornithine. Pharmacology & Therapeutics, 85, 191–205.Google Scholar
  15. 15.
    Goldman, I. D. (1974). The mechanism of action of methotrexate. I. Interaction with a low-affinity intracellular site required for maximum inhibition of deoxyribonucleic acid synthesis in L-cell mouse fibroblasts. Molecular Pharmacology, 10, 257–274.PubMedGoogle Scholar
  16. 16.
    Sirotnak, F. M., & Donsbach, R. C. (1974). The intracellular concentration dependence of antifolate inhibition of DNA synthesis in L1210 leukemia cells. Cancer Research, 34, 332–340.PubMedGoogle Scholar
  17. 17.
    White, J. C., Loftfield, S., & Goldman, I. D. (1975). The mechanism of action of methotrexate. III. Requirement of free intracellular methotrexate for maximal suppression of (14C) formate incorporation into nucleic acids and protein. Molecular Pharmacology, 11, 287–297.PubMedGoogle Scholar
  18. 18.
    Assaraf, Y. G., Ifergan, I., Kadry, W., & Pinter, R. Y. (2006). Computer modeling of antifolate inhibition of folate metabolism using hybrid functional petri nets. Journal of Theoretical Biology, 240, 637–647.PubMedGoogle Scholar
  19. 19.
    Jackson, R. C., & Harrap, K. R. (1973). Studies with a mathematical model of folate metabolism. Archives of Biochemistry and Biophysics, 158, 827–841.PubMedGoogle Scholar
  20. 20.
    Jackson, R. C., Niethammer, D., & Hart, L. I. (1977). Reactivation of dihydrofolate reductase inhibited by methotrexate or aminopterin. Archives of Biochemistry and Biophysics, 182, 646–656.PubMedGoogle Scholar
  21. 21.
    White, J. C. (1979). Reversal of methotrexate binding to dihydrofolate reductase by dihydrofolate. Studies with pure enzyme and computer modeling using network thermodynamics. Journal of Biological Chemistry, 254, 10889–10895.PubMedGoogle Scholar
  22. 22.
    White, J. C., & Goldman, I. D. (1981). Methotrexate resistance in a L1210 cell line resulting from increased dihydrofolate reductase, decreased thymidylate synthetase activity, and normal membrane transport. Computer simulations based on network thermodynamics. Journal of Biological Chemistry, 256, 5722–5727.PubMedGoogle Scholar
  23. 23.
    Moran, R. G., Werkheiser, W. C., & Zakrzewski, S. F. (1976). Folate metabolism in mammalian cells in culture. I. Partial characterization of the folate derivatives present in L1210 mouse leukemia cells. Journal of Biological Chemistry, 251, 3569–3575.PubMedGoogle Scholar
  24. 24.
    Sirotnak, F. M., DeGraw, J. I., Moccio, D. M., Samuels, L. L., & Goutas, L. J. (1984). New folate analogs of the 10-deaza-aminopterin series. Basis for structural design and biochemical and pharmacologic properties. Cancer Chemotherapy and Pharmacology, 12, 18–25.PubMedGoogle Scholar
  25. 25.
    Schornagel, J. H., Verweij, J., de Mulder, P. H., Cognetti, F., Vermorken, J. B., Cappelaere, P., et al. (1995). Randomized phase III trial of edatrexate versus methotrexate in patients with metastatic and/or recurrent squamous cell carcinoma of the head and neck: A European Organization for Research and Treatment of Cancer Head and Neck Cancer Cooperative Group study. Journal of Clinical Oncology, 13, 1649–1655.PubMedGoogle Scholar
  26. 26.
    Pivot, X., Walder, S., Kelly, C., Ruxer, R., Totochaux, J., Stern, J., et al. (2001). Result of two randomized trials comparing nolatrexed (Thymitaq) versus methotrexate in patients with recurrent head and neck cancer. Annals of Oncology, 12, 1595–1599.PubMedGoogle Scholar
  27. 27.
    Matin, K., Jacobs, S. A., Richards, T., Wong, M. K., Earle, M., Evans, T., et al. (2005). A phase I/II study of trimetrexate and capecitabine in patients with advanced refractory colorectal cancer. American Journal of Clinical Oncology, 28, 439–444.PubMedGoogle Scholar
  28. 28.
    Huie, M., Carducci, M., Liu, G., Wilding, G., Marnocha, R., Izquierda, M., et al. (2005). Phase I study of piritrexim and gemcitabine in patients with advanced solid tumors. American Journal of Clinical Oncology, 28, 613–617.PubMedGoogle Scholar
  29. 29.
    Duch, D. S., Banks, S., Dev, I. K., Dickerson, S. H., Ferone, R., Heath, L. S., et al. (1993). Biochemical and cellular pharmacology of 1843U89, a novel benzoquinazoline inhibitor of thymidylate synthase. Cancer Research, 53, 810–818.PubMedGoogle Scholar
  30. 30.
    Jackman, A. L., Kimbell, R., Aherne, G. W., Brunton, L., Jansen, G., Stephens, T. C., et al. (1997). Cellular pharmacology and in vivo activity of a new anticancer agent, ZD9331: A water-soluble, nonpolyglutamatable, quinazoline-based inhibitor of thymidylate synthase. Clinical Cancer Research, 3, 911–921.PubMedGoogle Scholar
  31. 31.
    Jansen, G., Mauritz, R., Drori, S., Sprecher, H., Kathmann, I., Bunni, M., et al. (1998). A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. Journal of Biological Chemistry, 273, 30189–30198.PubMedGoogle Scholar
  32. 32.
    Drori, S., Jansen, G., Mauritz, R., Peters, G. J., & Assaraf, Y. G. (2000). Clustering of mutations in the first transmembrane domain of the human reduced folate carrier in GW1843U89-resistant leukemia cells with impaired antifolate transport and augmented folate uptake. Journal of Biological Chemistry, 275, 30855–30863.PubMedGoogle Scholar
  33. 33.
    Rothem, L., Ifergan, I., Kaufman, Y., Priest, D. G., Jansen, G., & Assaraf, Y. G. (2002). Resistance to multiple novel antifolates is mediated via defective drug transport resulting from clustered mutations in the reduced folate carrier gene in human leukemia cells. Biochemical Journal, 367, 741–750.PubMedGoogle Scholar
  34. 34.
    Liani, L., Rothem, L., Bunni, M. A., Smith, C. A., Jansen, G., & Assaraf, Y. G. (2003). Loss of folylpoly-γ-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. International Journal of Cancer, 103, 587–599.Google Scholar
  35. 35.
    Gibbs, D. D., Theti, D. S., Wood, N., Green, M., Raynaud, F., Valenti, M., et al. (2005). BGC945, a novel tumor-selective thymidylate synthase inhibitor targeted to α-folate receptor-overexpressing tumors. Cancer Research, 65, 11721–11728.PubMedGoogle Scholar
  36. 36.
    Beardsley, G. P., Moroson, B. A., Taylor, E. C., & Moran, R. G. (1989). A new folate antimetabolite, 5,10-dideaza-5,6,7,8-tetrahydrofolate is a potent inhibitor of de novo purine synthesis. Journal of Biological Chemistry, 264, 21047–21051.Google Scholar
  37. 37.
    Zhang, Y., Desharnais, J., Marsilje, T. H., Li, C., Hedrick, M. P., Gooljarsingh, L. T., et al. (2003). Rational design, synthesis, evaluation, and crystal structure of a potent inhibitor of human GAR TFase: 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid. Biochemistry, 42, 6043–6056.PubMedGoogle Scholar
  38. 38.
    McGuire, J. J., Russell, C. A., & Balinska, M. (2000). Human cytosolic and mitochondrial folylpolyglutamate synthetase are electrophoretically distinct. Journal of Biological Chemistry, 275, 13012–13016.PubMedGoogle Scholar
  39. 39.
    Baugh, C. M., Krumdieck, C. L., & Nair, M. G. (1973). Poly-γ-glutamyl metabolites of methotrexate. Biochemical and Biophysical Research Communications, 52, 27–34.PubMedGoogle Scholar
  40. 40.
    McBurney, M. W., & Whitmore, G. F. (1974). Isolation and biochemical characterization of folate deficient mutants of Chinese hamster ovary cells. Cell, 2, 173–182.PubMedGoogle Scholar
  41. 41.
    Moran, R. G. (1999). Roles of folylpoly-gamma-glutamate synthetase in therapeutics with tetrahydrofolate antimetabolites: An overview. Seminars in Oncology, 26, 24–32.PubMedGoogle Scholar
  42. 42.
    Schirch, V., & Strong, W. B. (1989). Interaction of folylpolyglutamates with enzymes in one-carbon metabolism. Archives of Biochemistry and Biophysics, 269, 371–380.PubMedGoogle Scholar
  43. 43.
    Allegra, C. J., Chabner, B. A., Drake, J. C., Lutz, R., Rodbard, D., & Jolivet, J. (1985). Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates. Journal of Biological Chemistry, 260, 9720–9726.PubMedGoogle Scholar
  44. 44.
    Allegra, C. J., Hoang, K., Yeh, G. C., Drake, J. C., & Baram, J. (1987). Evidence for direct inhibition of de novo purine synthesis in human MCF-7 breast cells as a principal mode of metabolic inhibition by methotrexate. Journal of Biological Chemistry, 262, 13520–13526.PubMedGoogle Scholar
  45. 45.
    Baggott, J. E., Vaughn, W. H., & Hudson, B. B. (1986). Inhibition of 5-aminoimidazole-4-carboxamide-ribotide transformylase, adenosine deaminase and 5′-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide-riboside and ribotide. Biochemical Journal, 236, 193–200.PubMedGoogle Scholar
  46. 46.
    Matherly, L. H., & Goldman, I. D. (2003). Membrane transport of folates. Vitamins and Hormones, 66, 403–456.PubMedGoogle Scholar
  47. 47.
    Zeng, H., Chen, Z. S., Belinsky, M. G., Rea, P. A., & Kruh, G. D. (2001). Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: Effect of polyglutamylation on MTX transport. Cancer Research, 61, 7225–7232.PubMedGoogle Scholar
  48. 48.
    Wielinga, P., Hooijberg, J. H., Gunnarsdottir, S., Kathmann, I., Reid, G., Zelcer, N., et al. (2005). The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates. Cancer Research, 65, 4425–4430.PubMedGoogle Scholar
  49. 49.
    Volk, E. L., & Schneider, E. (2003). Wild type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Research, 63, 5538–5543.PubMedGoogle Scholar
  50. 50.
    Jackson, R. C., Fry, D. W., Boritzki, T. J., Besserer, J. A., Leopold, W. R., Sloan, B. J., et al. (1984). Biochemical pharmacology of the lipophilic antifolate, trimetrexate. Advances in Enzyme Regulation, 22, 187–206.PubMedGoogle Scholar
  51. 51.
    Webber, S., Bartlett, C. A., Boritzki, T. J., Hillard, J. A., Howland, E. F., Johnston, A. L., et al. (1996). AG337, a novel lipophilic thymidylate synthase inhibitor: In vivo preclinical studies. Cancer Chemotherapy and Pharmacology, 37, 509–517.PubMedGoogle Scholar
  52. 52.
    Lin, B. F., Huang, R. F., & Shane, B. (1993). Regulation of folate and one-carbon metabolism in mammalian cells. III. Role of mitochondrial folylpoly-γ-glutamate synthetase. Journal of Biological Chemistry, 268, 21674–21679.PubMedGoogle Scholar
  53. 53.
    Zhao, I. D., & Goldman, I. D. (2003). Resistance to antifolates. Oncogene, 22, 7431–7457.PubMedGoogle Scholar
  54. 54.
    Ferguson, P. L., & Flintoff, W. F. (1999). Topological and functional analysis of the human reduced folate carrier by hemagglutinin epitope insertion. Journal of Biological Chemistry, 274, 16269–16279.PubMedGoogle Scholar
  55. 55.
    Liu, X. Y., & Matherly, L. H. (2002). Analysis of membrane topology of the human reduced folate carrier protein by hemagglutinin epitope insertion and scanning glycosylation insertion mutagenesis. Biochimica et Biophysica Acta, 1564, 333–342.PubMedGoogle Scholar
  56. 56.
    Saier, M. H., Beatty, J. T., Goffeau, A., Harley, K. T., Heijne, W. H., Huang, S. C., et al. (1999). The major facilitator superfamily. Journal of Molecular Microbiology and Biotechnology, 1, 257–279.PubMedGoogle Scholar
  57. 57.
    Yang, C.-H., Sirotnak, F. M., & Dembo, M. (1984). Interactions between anions and the reduced folate/methotrexate transport system in L1210 cell plasma membrane vesicles: Directional symmetry and anion specificity for differential mobility of loaded and unloaded carrier. Journal of Membrane Biology, 79, 285–292.PubMedGoogle Scholar
  58. 58.
    Zhao, R., Gao, F., Wang, Y., Diaz, G. A., Gelb, B. D., & Goldman, I. D. (2001). Impact of the reduced folate carrier on the accumulation of active thiamine metabolites in murine leukemia cells. Journal of Biological Chemistry, 276, 1114–1118.PubMedGoogle Scholar
  59. 59.
    Zhao, R., Gao, F., & Goldman, I. D. (2002). Reduced folate carrier transports thiamine monophosphate: An alternative route for thiamine delivery into mammalian cells. American Journal of Physiology. Cell Physiology, 282, C1512–C1517.PubMedGoogle Scholar
  60. 60.
    Goldman, I. D. (1971). The characteristics of the membrane transport of amethopterin and the naturally occurring folates. Annals of the New York Academy of Sciences, 186, 400–422.PubMedGoogle Scholar
  61. 61.
    Sierra, E. E., Brigle, K. E., Spinella, M. J., & Goldman, I. D. (1997). pH dependence of methotrexate transport by the reduced folate carrier and the folate receptor in L1210 leukemia cells. Further evidence for a third route mediated at low pH. Biochemical Pharmacology, 53, 223–231.PubMedGoogle Scholar
  62. 62.
    Sierra, E. E., & Goldman, I. D. (1998). Characterization of folate transport mediated by a low pH route in mouse L1210 leukemia cells with defective reduced folate carrier function. Biochemical Pharmacology, 55, 1505–1512.PubMedGoogle Scholar
  63. 63.
    Assaraf, Y. G., Babani, S., & Goldman, I. D. (1998). Increased activity of a novel low pH folate transporter associated with lipophilic antifolate resistance in Chinese hamster ovary cells. Journal of Biological Chemistry, 273, 8106–8111.PubMedGoogle Scholar
  64. 64.
    Elnakat, H., & Ratnam, M. (2004). Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Advanced Drug Delivery Reviews, 56, 1067–1084.PubMedGoogle Scholar
  65. 65.
    Elnakat, H., & Ratnam, M. (2006). Role of folate receptor genes in reproduction and related cancers. Frontiers in Bioscience, 11, 506–519.PubMedGoogle Scholar
  66. 66.
    Shen, F., Wu, M., Ross, J. F., Miller, D., & Ratnam, M. (1995). Folate receptor type gamma is primarily a secretory protein due to lack of an efficient signal for glycosylphosphatidylinositol modification: Protein characterization and cell type specificity. Biochemistry, 34, 5660–5665.PubMedGoogle Scholar
  67. 67.
    Wang, X., Shen, F., Freisheim, J. H., Gentry, L. E., & Ratnam, M. (1992). Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochemical Pharmacology, 44, 1898–1901.PubMedGoogle Scholar
  68. 68.
    Ross, J. F., Wang, H., Behm, F. G., Mathew, P., Wu, M., Booth, R., et al. (1999). Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer, 85, 348–357.PubMedGoogle Scholar
  69. 69.
    Shen, F., Ross, J. F., Wang, X., & Ratnam, M. (1994). Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA expression, immunoreactivity, and tissue specificity. Biochemistry, 33, 1209–1215.PubMedGoogle Scholar
  70. 70.
    Borst, P., & Oude Elferink, R. O. (2002). Mammalian ABC transporters in health and disease. Annual Review of Biochemistry, 71, 537–592.PubMedGoogle Scholar
  71. 71.
    Deeley, R. G., Westlake, C., & Cole, S. P. (2006). Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiological Reviews, 86, 849–899.PubMedGoogle Scholar
  72. 72.
    Loo, T. W., & Clarke, D. M. (1994). Mutations to amino acids located in predicted transmembrane segment 6 (TM6) modulate the activity and substrate specificity of human P-glycoprotein. Biochemistry, 33, 14049–14057.PubMedGoogle Scholar
  73. 73.
    Hafkemeyer, P., Dey, S., Ambudkar, S. V., Hrycyna, C. A., Pastan, I., & Gottesman, M. M. (1998). Contribution to substrate specificity and transport of nonconserved residues in transmembrane domain 12 of human P-glycoprotein. Biochemistry, 37, 16400–16409.PubMedGoogle Scholar
  74. 74.
    Cole, S. P., Bhardwaj, G., Gerlach, J., Mackie, J. E., Grant, C., Almquist, K. C., et al. (1992). Overexpression of a transporter gene in a multidrug resistant human lung cancer cell line. Science, 258, 1650–1654.PubMedGoogle Scholar
  75. 75.
    Cools, J., Maertens, C., & Marynen, P. (2005). Resistance to tyrosine kinase inhibitors: Calling on extra forces. Drug Resistance Updates, 8, 119–129.PubMedGoogle Scholar
  76. 76.
    Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., & Gottesman, M. M. (2006). Targeting multidrug resistance in cancer. Nature Reviews Drug Discovery, 5, 219–234.PubMedGoogle Scholar
  77. 77.
    Hakala, M. T. (1965). On the nature of permeability of sarcoma-180 cells to amethopterin in vitro. Biochimica et Biophysica Acta, 102, 210–225.PubMedGoogle Scholar
  78. 78.
    Goldman, I. D. (1969). Transport energetics of the folic acid analogue, methotrexate, in L1210 leukemia cells. Enhanced accumulation by metabolic inhibitors. Journal of Biological Chemistry, 244, 3779–3785.PubMedGoogle Scholar
  79. 79.
    Dembo, M., Sirotnak, F. M., & Moccio, D. M. (1984). Effects of metabolic deprivation on methotrexate transport in L1210 leukemia cells: Further evidence for separate influx and efflux systems with different energetic requirements. Journal of Membrane Biology, 78, 9–17.PubMedGoogle Scholar
  80. 80.
    Henderson, G. B., & Zevely, E. M. (1984). Transport routes utilized by L1210 cells for the influx and efflux of methotrexate. Journal of Biological Chemistry, 259, 1526–1531.PubMedGoogle Scholar
  81. 81.
    Henderson, G. B., Tsuji, J. M., & Kumar, H. P. (1986). Characterization of the individual transport routes that mediate the influx and efflux of methotrexate in CCRF-CEM human lymphoblastic cells. Cancer Research, 46, 1633–1638.PubMedGoogle Scholar
  82. 82.
    Saxena, M., & Henderson, G. B. (1996). MOAT4, a novel multispecific organic-anion transporter for glucuronides and mercapturates in mouse L1210 cells and human erythrocytes. Biochemical Journal, 320, 273–281.PubMedGoogle Scholar
  83. 83.
    Saxena, M., & Henderson, G. B. (1996). Identification of efflux systems for large anions and anionic conjugates as the mediators of methotrexate efflux in L1210 cells. Biochemical Pharmacology, 51, 974–982.PubMedGoogle Scholar
  84. 84.
    Sirotnak, F. M., & O’Leary, D. (1991). The issues of transport multiplicity and energetics pertaining to methotrexate efflux in L1210 cells addressed by an analysis of cis- and trans-effects of inhibitors. Cancer Research, 51, 1412–1417.PubMedGoogle Scholar
  85. 85.
    Masuda, H., I’izuka, M., Yamazaki, Y., Nishigaki, M., Kato, R., Ni’inuma, Y., et al. (1997). Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Research, 57, 3506–3510.PubMedGoogle Scholar
  86. 86.
    Heijn, M., Hooijberg, J. H., Scheffer, G. L., Szabo, G., Westerhoff, H. V., & Lankelma, J. (1997). Anthracyclines modulate multidrug resistance protein (MRP) mediated organic anion transport. Biochimica et Biophysica Acta, 1326, 12–22.PubMedGoogle Scholar
  87. 87.
    Hooijberg, J. H., Broxterman, H. J., Kool, M., Assaraf, Y. G., Peters, G. J., Noordhuis, P., et al. (1999). Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Research, 59, 2532–2535.PubMedGoogle Scholar
  88. 88.
    Kool, M., van der Linden, M., De Haas, M., Scheffer, G. L., De Vree, J. M. L., Smith, A. J., et al. (1999). MRP3, an organic anion transporter able to transport anti-cancer drugs. In Proceedings of the National Academy of Sciences of the United States of America, 96, 6914–6919.PubMedGoogle Scholar
  89. 89.
    Ito, K., Oleschuk, C. J., Westlake, C., Vasa, M. Z., Deeley, R. G., Cole, S. P. (2001). Mutation of Trp1254 in the multispecific organic anion transporter, multidrug resistance protein 2 (MRP2) (ABCC2), alters substrate specificity and results in loss of membrane transport activity. Journal of Biological Chemistry, 276, 38108–38114.PubMedGoogle Scholar
  90. 90.
    Ito, K., Olsen, S. L., Qiu, W., Deeley, R. G., & Cole, S. P. (2001). Mutation of a single conserved tryptophan in multidrug resistance protein 1 (MRP1/ABCC1) results in loss of drug resistance and selective loss of organic anion transport. Journal of Biological Chemistry, 276, 15616–15624.PubMedGoogle Scholar
  91. 91.
    Sczesny, F., Hempel, G., Boos, G., & Blaschke, G. (1998). Capillary electrophoretic drug monitoring of methotrexate and leucovorin and their metabolites. Journal of Chromatography. B, Biomedical Sciences and Applications, 718, 177–185.PubMedGoogle Scholar
  92. 92.
    Assaraf, Y. G., & Goldman, I. D. (1997). Loss of folic acid exporter function with markedly augmented folate accumulation in lipophilic antifolate-resistant mammalian cells. Journal of Biological Chemistry, 272, 17460–17466.PubMedGoogle Scholar
  93. 93.
    Kusuhara, H., Han, Y.-H., Shimoda, M., Kokue, E., Suzuki, H., & Sugiyama, Y. (1998). Reduced folate derivatives are endogenous substrates for cMOAT in rats. American Journal of Physiology, 275, G789–G796.PubMedGoogle Scholar
  94. 94.
    Sirotnak, F. M., Kurita, S., & Hutchison, D. J. (1968). On the nature of a transport alteration determining resistance to amethopterin in the L1210 leukemia. Cancer Research, 28, 75–80.PubMedGoogle Scholar
  95. 95.
    Niethammer, D., & Jackson, R. C. (1975). Changes of molecular properties associated with the development of resistance against methotrexate in human lymphoblastoid cells. European Journal of Cancer, 11, 845–854.PubMedGoogle Scholar
  96. 96.
    Hill, B. T., Bailey, B. D., White, J. C., & Goldman, I. D. (1979). Characteristics of transport of 4-amino antifolates and folate compounds by two cell lines of L5178Y lymphoblasts, one with impaired transport of methotrexate. Cancer Research, 39, 2440–2446.PubMedGoogle Scholar
  97. 97.
    Sirotnak, F. M., Moccio, D. M., Kelleher, L. E., & Goutas, L. J. (1981). Relative frequency and kinetic properties of transport-defective phenotypes among methotrexate-resistant L1210 clonal cell lines derived in vivo. Cancer Research, 41, 4447–4452.PubMedGoogle Scholar
  98. 98.
    Assaraf, Y. G., & Schimke, R. T. (1987). Identification of methotrexate transport deficiency in mammalian cells using fluoresceinated methotrexate and flow cytometry. In Proceedings of the National Academy of Sciences of the United States of America, 84, 7154–7158.PubMedGoogle Scholar
  99. 99.
    Moscow, J. A., Gong, M. K., He, R., Sgagias, M. K., Dixon, K. H., Anzick, A. L., et al. (1995). Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Research, 55, 3790–3794.PubMedGoogle Scholar
  100. 100.
    Moscow, J. A., Connoly, T., Myers, T. G., Cheng, C. C., Paull, K., & Cowan, K. H. (1997). Reduced folate carrier gene (RFC1) expression and antifolate-resistance in transfected and non-selected cell lines. International Journal of Cancer, 72, 184–190.Google Scholar
  101. 101.
    Kobayashi, H., Takemura, Y., & Ohnuma, T. (1998). Variable expression of RFC1 in human leukemia cell lines resistant to antifolates. Cancer Letters, 124, 135–142.PubMedGoogle Scholar
  102. 102.
    Ma, D., Huang, H., & Moscow, J. A. (2000). Down-regulation of the reduced folate carrier gene (RFC1) expression after exposure to methotrexate in ZR-75-1 breast cancer cells. Biochemical and Biophysical Research Communications, 279, 891–897.PubMedGoogle Scholar
  103. 103.
    Worm, J., Kirkin, A. F., Dzhandzhugazyan, K. N., & Guldberg, P. (2001). Methylation-dependent silencing of the folate carrier gene in inherently methotrexate-resistant human breast cancer cells. Journal of Biological Chemistry, 276, 39990–40000.PubMedGoogle Scholar
  104. 104.
    Ding, B. C., Whetstine, J. R., Witt, T. L., Schuetz, J. D., & Matherly, L. H. (2001). Repression of the human reduced folate carrier gene expression by wild type p53. Journal of Biological Chemistry, 276, 8713–8719.PubMedGoogle Scholar
  105. 105.
    Rothem, L., Aronheim, A., & Assaraf, Y. G. (2003). Alterations in the expression of transcription factors and the reduced folate carrier as a novel mechanism of antifolate resistance in human leukemia cells. Journal of Biological Chemistry, 278, 8935–8941.PubMedGoogle Scholar
  106. 106.
    Rothem, L., Stark, M., Kaufman, Y., Mayo, L., & Assaraf, Y. G. (2004). Reduced folate carrier gene silencing in multiple antifolate-resistant tumor cell lines is due to a simultaneous loss of function of multiple transcription factors but not promoter methylation. Journal of Biological Chemistry, 279, 374–384.PubMedGoogle Scholar
  107. 107.
    Rothem, L., Stark, M., & Assaraf, Y. G. (2004). Impaired CREB-1 phosphorylation in antifolate-resistant cell lines with down-regulation of the reduced folate carrier gene. Molecular Pharmacology, 66, 1536–1543.PubMedGoogle Scholar
  108. 108.
    Wettergren, Y., Odin, E., Nilsson, S., Willen, R., Carlsson, G., & Gustavson, B. (2005). Low expression of reduced folate carrier-1 and folylpolyglutamate synthetase correlates with lack of a deleted in colorectal carcinoma mRNA splice variant in normal-appearing mucosa of colorectal carcinoma patients. Cancer Detection and Prevention, 29, 348–355.PubMedGoogle Scholar
  109. 109.
    Stark, M., & Assaraf, Y. G. (2006). Loss of Sp1 function via inhibitory phosphorylation in antifolate-resistant human leukemia cells with down-regulation of the reduced folate carrier. Blood, 107, 708–715.PubMedGoogle Scholar
  110. 110.
    Kaufman, Y., Ifergan, I., Rothem, L., Jansen, G., & Assaraf, Y. G. (2006). Coexistence of multiple mechanisms of PT523-resistance in human leukemia cells harboring three reduced folate carrier alleles: Transcriptional silencing, inactivating mutations and allele loss. Blood, 107, 3288–3294.PubMedGoogle Scholar
  111. 111.
    Gorlick, R., Goker, E., Trippett, T., Steinherz, P., Elisseyef, Y., Mazumdar, M., et al. (1997). Defective transport is a common mechanism of acquired methotrexate resistance in acute lymphocytic leukemia and is associated with decreased reduced folate carrier expression. Blood, 89, 1013–1018.PubMedGoogle Scholar
  112. 112.
    Zhang, L., Taub, J. W., Williamson, M., Wong, S. C., Hukku, B., Pullen, J., et al. (1998). Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: Relationship to immunophenotype and ploidy. Clinical Cancer Research, 4, 2169–2177.PubMedGoogle Scholar
  113. 113.
    Guo, W., Healey, J. H., Meyers, P. A., Ladanyi, M., Huvos, A. G., Bertino, J. R., et al. (1999). Mechanism of methotrexate resistance in osteosarcoma. Clinical Cancer Research, 5, 621–627.PubMedGoogle Scholar
  114. 114.
    Belkov, V. M., Krynetski, E. Y., Schuetz, J. D., Yanishevski, Y., Masson, E., Mathew, S., et al. (1999). Reduced folate carrier expression in acute lymphoblastic leukemia: A mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood, 93, 1643–1650.PubMedGoogle Scholar
  115. 115.
    Rots, M. G., Willey, J. C., Jansen, G., Van Zantwijk, C. H., Noordhuis, P., DeMuth, J. P., et al. (2000). mRNA expression levels of methotrexate resistance-related proteins in childhood leukemia as determined by a standardized competitive template-based RT-PCR method. Leukemia, 14, 2166–2175.PubMedGoogle Scholar
  116. 116.
    Ifergan, I., Meller, I., Issakov, J., & Assaraf, Y. G. (2003). Reduced folate carrier protein expression in osteosarcoma: Implications for the prediction of tumor chemosensitivity. Cancer, 98, 1958–1966.PubMedGoogle Scholar
  117. 117.
    Levy, A. S., Sather, H. N., Steinherz, P. G., Sowers, R., La, M., Moscow, J. A., et al. (2003). Reduced folate carrier and dihydrofolate reductase expression in acute lymphocytic leukemia may predict outcome: A Children’s Cancer Group Study. Journal of Pediatric Hematology/Oncology, 25, 688–695.PubMedGoogle Scholar
  118. 118.
    Ferreri, A. J., Dell’Oro, S., Capello, D., Ponzoni, M., Luzzolino, P., Rossi, D., et al. (2004). Aberrant methylation in the promoter region of the reduced folate carrier gene is a potential mechanism of resistance to methotrexate in primary central nervous system lymphomas. British Journal of Haematology, 126, 657–664.PubMedGoogle Scholar
  119. 119.
    Wong, S. C., Proefke, S. A., Bhushan, A., & Matherly, L. H. (1995). Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. Journal of Biological Chemistry, 270, 17468–17475.PubMedGoogle Scholar
  120. 120.
    Prasad, P. D., Ramamoorthy, S., Leibach, F. H., & Ganapathy, V. (1995). Molecular cloning of the human placental folate transporter. Biochemical and Biophysical Research Communications, 206, 681–687.PubMedGoogle Scholar
  121. 121.
    Dixon, K. H., Lanpher, B. C., Chiu, J., Kelley, K., & Cowan, K. H. (1995). A novel cDNA restores reduced folate carrier activity and methotrexate sensitivity to transport deficient cells. Journal of Biological Chemistry, 269, 17–20.Google Scholar
  122. 122.
    Williams, F. M. R., Murray, R. C., Underhill, T. M., & Flintoff, W. F. (1994). Isolation of a hamster cDNA clone coding for a function involved in methotrexate uptake. Journal of Biological Chemistry, 269, 5810–5816.PubMedGoogle Scholar
  123. 123.
    Brigle, K. E., Spinella, M. J., Sierra, E. E., & Goldman, I. D. (1995). Characterization of a mutation in the reduced folate carrier in a transport defective L1210 murine leukemia cell line. Journal of Biological Chemistry, 270, 22974–22979.PubMedGoogle Scholar
  124. 124.
    Zhao, R., Sharina, I. G., & Goldman, I. D. (1999). Pattern of mutations that results in loss of reduced folate carrier function under antifolate selective pressure augmented by chemical mutagenesis. Molecular Pharmacology, 56, 68–76.PubMedGoogle Scholar
  125. 125.
    Roy, K., Tolner, B., Chiao, J. H., & Sirotnak, F. M. (1998). A single amino acid difference within the folate transporter encoded by the murine RFC-1 gene selectively alters its interaction with folate analogues. Implications for intrinsic antifolate resistance and directional orientation of the transporter within the plasma membrane of tumor cells. Journal of Biological Chemistry, 273, 2526–2531.PubMedGoogle Scholar
  126. 126.
    Mauritz, R., Peters, G. J., Priest, D. G., Assaraf, Y. G., Drori, S., Kathmann, I., et al. (2002). Multiple mechanisms of resistance to methotrexate and novel antifolates in human CCRF-CEM leukemia cells and their implications for folate homeostasis. Biochemical Pharmacology, 63, 105–115.PubMedGoogle Scholar
  127. 127.
    Zhao, R., Assaraf, Y. G., & Goldman, I. D. (1998). A mutated murine reduced folate carrier (RFC1) with increased affinity for folic acid, decreased affinity for methotrexate and an obligatory anion requirement for transport function. Journal of Biological Chemistry, 273, 19065–19071.PubMedGoogle Scholar
  128. 128.
    Zhao, R., Assaraf, Y. G., & Goldman, I. (1998). A reduced folate carrier mutation produces substrate-dependent alterations in carrier mobility in murine leukemia cells and methotrexate resistance with conservation of growth in 5-formyltetrahydrofolate. Journal of Biological Chemistry, 273, 7873–7879.PubMedGoogle Scholar
  129. 129.
    Zhao, R., Hanscom, M., Chattopadhyay, S., & Goldman, I. D. (2004). Selective preservation of pemetrexed pharmacological activity in HeLa cells lacking the reduced folate carrier: Association with the presence of a secondary transport pathway. Cancer Research, 64, 3313–3319.PubMedGoogle Scholar
  130. 130.
    Whetstine, J. R., Gifford, A. J., Witt, T., Liu, X. Y., Flately, R. M., Norris, M., et al. (2001). Single nucleotide polymorphisms in the human reduced folate carrier: Characterization of a high-frequency G/A variant at position 80 and transport properties of the His(27) and Arg(27) carriers. Clinical Cancer Research, 7, 3416–3422.PubMedGoogle Scholar
  131. 131.
    Gifford, A. J., Haber, M., Witt, T. L., Whetstine, J. R., Taub, J. W., Matherly, L. H., et al. (2002). Role of the E45K reduced folate carrier mutation in methotrexate resistance in human leukemia cells. Leukemia, 16, 2379–2387.PubMedGoogle Scholar
  132. 132.
    Kaufman, Y., Drori, S., Cole, P. D., Kamen, B. A., Sirota, J., Ifergan, I., et al. (2004). Reduced folate carrier mutations are not the mechanism underlying methotrexate resistance in childhood acute lymphoblastic leukemia. Cancer, 100, 773–782.PubMedGoogle Scholar
  133. 133.
    Yang, R., Sowers, R., Mazza, B., Healey, J. H., Huvos, A., Grier, H., et al. (2003). Sequence alterations in the reduced folate carrier are observed in osteosarcoma tumor samples. Clinical Cancer Research, 9, 837–844.PubMedGoogle Scholar
  134. 134.
    Flintoff, W. F., Sadlish, H., Gorlick, R., Yang, R., & Williams, F. M. (2004). Functional analysis of altered reduced folate carrier sequence changes identified in osteosarcoma. Biochimica et Biophysica Acta, 1690, 110–117.PubMedGoogle Scholar
  135. 135.
    Whetstine, J. R., & Matherly, L. H. (2001). The basal promoters for the human reduced folate carrier gene are regulated by a GC-box and a cAMP-response element/AP-1-like element. Basis for tissue-specific gene expression. Journal of Biological Chemistry, 276, 6350–6358.PubMedGoogle Scholar
  136. 136.
    Whetstine, J. R., Witt, T. L., & Matherly, L. H. (2002). The human reduced folate carrier gene is regulated by the AP2 and Sp1 transcription factor families and a functional 61-base pair polymorphism. Journal of Biological Chemistry, 277, 43873–43880.PubMedGoogle Scholar
  137. 137.
    Liu, M., Whetsine, J. R., Payton, S. G., Ge, Y., Flatley, R. M., & Matherly, L. H. (2004). Roles of USF, Ikaros and Sp1 proteins in the transcriptional regulation of the human reduced folate carrier B promoter. Biochemical Journal, 383, 249–257.PubMedGoogle Scholar
  138. 138.
    Payton, S. G., Whetstine, J. R., Ge, Y., & Matherly, L. H. (2005). Transcriptional regulation of the human reduced folate carrier promoter C: Synergistic transactivation by Sp1 and C/EBP beta and identification of a downstream repressor. Biochimica et Biophysica Acta, 1727, 45–57.PubMedGoogle Scholar
  139. 139.
    Payton, S. G., Liu, M., Ge, Y., & Matherly, L. H. (2005). Transcriptional regulation of the human reduced folate carrier A1/A2 promoter: Identification of critical roles for the USF and GATA families of transcription factors. Biochimica et Biophysica Acta, 1731, 115–124.PubMedGoogle Scholar
  140. 140.
    Liu, M., Ge, Y., Payton, S. G., Aboukameel, A., Buck, S., Flately, R. M., et al. (2006). Transcriptional regulation of the human reduced folate carrier in childhood acute lymphoblastic leukemia cells. Clinical Cancer Research, 12, 608–616.PubMedGoogle Scholar
  141. 141.
    Ding, B. C., Witt, T. L., Hukku, B., Heng, H., Zhang, L., & Matherly, L. H. (2001). Association of deletions and translocations of the reduced folate carrier gene with profound loss of gene expression in methotrexate-resistant K562 human erythroleukemia cells. Biochemical Pharmacology, 61, 665–675.PubMedGoogle Scholar
  142. 142.
    Yang-Feng, T. L., Ma, Y. Y., Liang, R., Prasad, P. D., Leibach, F. H., & Ganapathy, V. (1995). Assignment of the human folate transporter gene to chromosome 21q22.3 by somatic cell hybrid analysis and in situ hybridization. Biochemical and Biophysical Research Communications, 210, 874–879.PubMedGoogle Scholar
  143. 143.
    Whitehead, V. M., Vuhich, M. J., Lauer, S. J., Mahoney, D., Carroll, A. J., Shuster, J. J., et al. (1992). Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (greater than 50 chromosomes) B-lineage acute lymphoblastic leukemia: A pediatric oncology group study. Blood, 80, 1316–1323.PubMedGoogle Scholar
  144. 144.
    Wong, S. C., Zhang, L., Proefke, S. A., Hukku, B., & Matherly, L. H. (1998). Gene amplification and increased expression of the reduced folate carrier in transport elevated K562 cells. Biochemical Pharmacology, 55, 1135–1138.PubMedGoogle Scholar
  145. 145.
    Drori, S., Sprecher, H., Shemer, G., Jansen, G., Goldman, I. D., & Assaraf, Y. G. (2000). Characterization of a human alternatively spliced truncated reduced folate carrier (RFC) increasing folate accumulation in parental leukemia cells. European Journal of Biochemistry, 267, 690–702.PubMedGoogle Scholar
  146. 146.
    Alt, F. W., Kellems, R. E., & Schimke, R. T. (1978). Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. Journal of Biological Chemistry, 253, 1357–1370.PubMedGoogle Scholar
  147. 147.
    Nunberg, J. H., Kaufman, R. J., Schimke, R. T., Urlaub, G., & Chasin, L. A. (1978). Amplified dihydrofolate reductase genes are localized to a homogenously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. In Proceedings of the National Academy of Sciences of the United States of America, 75, 5553–5556.PubMedGoogle Scholar
  148. 148.
    Dolnick, B. J., Berenson, R. J., Bertino, J. R., Kaufman, R. J., Nunberg, J. H., & Schimke, R. T. (1979). Correlation of dihydrofolate reductase elevation with gene amplification in a homogenously staining chromosomal region in L5178Y cells. Journal of Cell Biology, 83, 394–402.PubMedGoogle Scholar
  149. 149.
    Mini, E., Srimatkandada, S., Medina, W. D., Moroson, B. A., Carman, M. D., & Bertino, J. R. (1985). Molecular and karyological analysis of methotrexate-resistant and -sensitive human leukemia CCRF-CEM cells. Cancer Research, 45, 317–324.PubMedGoogle Scholar
  150. 150.
    Kaufman, R. J., Brown, P. C., & Schimke, R. T. (1979). Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. In Proceedings of the National Academy of Sciences of the United States of America, 76, 5669–5673.PubMedGoogle Scholar
  151. 151.
    Hamkalo, B. A., Farnham, P. J., Johnston, R., & Schimke, R. T. (1985). Ultrastructural features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line. In Proceedings of the National Academy of Sciences of the United States of America, 82, 1126–1130.PubMedGoogle Scholar
  152. 152.
    Horns, R. C., Dower, W. J., & Schimke, R. T. (1984). Gene amplification in a leukemic patient treated with methotrexate. Journal of Clinical Oncology, 2, 2–7.PubMedGoogle Scholar
  153. 153.
    Trent, J. M., Buick, R. N., Olson, S., Horns, R. C. Jr, & Schimke, R. T. (1984). Cytologic evidence for gene amplification in methotrexate-resistant cells obtained from a patient with ovarian adenocarcinoma. Journal of Clinical Oncology, 2, 8–15.PubMedGoogle Scholar
  154. 154.
    Knuutila, S., Bjorkvist, A. M., Autio, K., Tarkannen, M., Wolf, M., Monni, O., et al. (1998). DNA copy number amplifications in human neoplasms: Review of comparative genomic hybridization studies. American Journal of Pathology, 152, 1107–1123.PubMedGoogle Scholar
  155. 155.
    Chu, E., Takimoto, C. H., Voeller, D., Grem, J. L., & Allegra, C. J. (1993). Specific binding of human dihydrofolate reductase protein to dihydrofolate reductase messenger RNA in vitro. Biochemistry, 32, 4756–4760.PubMedGoogle Scholar
  156. 156.
    Tai, N., Schmitz, J. C., Chen, T. M., & Chu, E. (2004). Characterization of cis-acting regulatory element in the protein-coding region of human dihydrofolate reductase mRNA. Biochemical Journal, 378, 999–1006.PubMedGoogle Scholar
  157. 157.
    Bystroff, C., & Kraut, J. (1991). Crystal structure of the unliganded Escherichia coli dihydrofolate reductase. Ligand-induced conformational changes and cooperativity in binding. Biochemistry, 30, 2227–2239.PubMedGoogle Scholar
  158. 158.
    Skacel, N., Menon, L. G., Mishra, P. J., Peters, R., Banerjee, D., Bertino, J. R., et al. (2005). Identification of amino acids required for the functional up-regulation of human dihydrofolate reductase protein in response to antifolate treatment. Journal of Biological Chemistry, 280, 22721–22731.PubMedGoogle Scholar
  159. 159.
    Albrecht, A. M., Biedler, J. L., & Hutchinson, D. J. (1972). Two different species of dihydrofolate reductase in mammalian cells differentially resistant to amethopterin and methasquin. Cancer Research, 32, 1539–1546.PubMedGoogle Scholar
  160. 160.
    Jackson, R. C., Hart, L. I., & Harrap, K. R. (1976). Intrinsic resistance to methotrexate of cultured mammalian cells in relation to the inhibition kinetics of their dihydrofolate reductases. Cancer Research, 36, 1991–1997.PubMedGoogle Scholar
  161. 161.
    Flintoff, W. F., & Essani, K. (1976). Methotrexate-resistant Chinese hamster ovary cells contain a dihydrofolate reductase with an altered affinity for methotrexate. Biochemistry, 19, 4321–4327.Google Scholar
  162. 162.
    Goldie, J. H., Krystal, G., Guauskas, G., & Dedhar, S. (1980). A methotrexate insensitive variant of folate reductase present in two lines of methotrexate-resistant L5178Y cells. European Journal of Cancer, 16, 1539–1546.PubMedGoogle Scholar
  163. 163.
    Haber, D. A., Beveeley, S. M., Kiely, M. L., & Schimke, R. T. (1981). Properties of an altered dihydrofolate reductase encoded by amplified genes in cultured mouse fibroblasts. Journal of Biological Chemistry, 256, 9501–9510.PubMedGoogle Scholar
  164. 164.
    Simonsen, C. C., & Levinson, A. D. (1983). Isolation and expression of an altered mouse dihydrofolate reductase cDNA. In Proceedings of the National Academy of Sciences of the United States of America, 80, 2495–2499.PubMedGoogle Scholar
  165. 165.
    Melera, P. W., Davide, J. P., Hession, C. A., & Scotto, K. W. (1984). Phenotypic expression in Escherichia coli and nucleotide sequence of two Chinese hamster lung cell cDNAs encoding different dihydrofolate reductases. Molecular and Cellular Biology, 4, 38–48.PubMedGoogle Scholar
  166. 166.
    Melera, P. W., Davide, J. P., & Oen, H. (1988). Antifolate-resistant Chinese hamster cells. Molecular basis for the biochemical and structural heterogeneity among dihydrofolate reductases produced by drug-sensitive and drug-resistant cell lines. Journal of Biological Chemistry, 263, 1978–1988.PubMedGoogle Scholar
  167. 167.
    Miyachi, H., Takemura, Y., Kobayashi, H., & Ando, Y. (1995). Expression of variant dihydrofolate reductase with decreased binding affinity to antifolates in MOLT-3 human leukemia cell lines resistant to trimetrexate. Cancer Letters, 88, 93–99.PubMedGoogle Scholar
  168. 168.
    Srimatkandada, S., Scheitzer, B. I., Moroson, B. A., Dube, S., & Bertino, J. R. (1989). Amplification of a polymorphic dihydrofolate reductase gene expressing an enzyme with decreased binding to methotrexate in a human colon carcinoma cell line, HCT-8R4, resistant to this drug. Journal of Biological Chemistry, 264, 3524–3528.PubMedGoogle Scholar
  169. 169.
    McIvor, R. S., & Simonsen, C. C. (1990). Isolation and characterization of a variant dihydrofolate reductase cDNA from methotrexate-resistant murine L5178Y cells. Nucleic Acids Research, 18, 7025–7032.PubMedGoogle Scholar
  170. 170.
    Dicker, A. P., Volkenandt, M., Schweiter, B. I., Banerjee, D., & Bertino, J. R. (1990). Identification and characterization of a mutation in the dihydrofolate reductase gene from the methotrexate-resistant Chinese hamster ovary cell line Pro-3 MtxRIII. Journal of Biological Chemistry, 265, 8317–8321.PubMedGoogle Scholar
  171. 171.
    Spencer, H. T., Sorrentino, B. P., Pui, C. H., Chunduru, S. K., Sleep, S. E., & Blakely, R. L. (1996). Mutations in the gene for human dihydrofolate reductase: An unlikely cause of clinical relapse in pediatric leukemia after therapy with methotrexate. Leukemia, 10, 439–446.PubMedGoogle Scholar
  172. 172.
    Heidelberger, C., Chaudhuri, N. K., Dannenberg, P., Mooren, D., Griesbach, L., Duschinsky, R., et al. (1957). Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature, 179, 663–666.PubMedGoogle Scholar
  173. 173.
    O’Connor, B. M., Jackman, A. L., Crossley, P. H., Freemantle, S. E., Lunec, J., & Calvert, A. H. (1992). Human lymphoblastoid cells with acquired resistance to C2-desamino-C2-methyl-N10-propargyl-5,8-dideazafolic acid: A novel folate-based thymidylate synthase inhibitor. Cancer Research, 52, 1137–1143.PubMedGoogle Scholar
  174. 174.
    Freemantle, S. E., Jackman, A. L., Kelland, L. R., Calvert, A. H., & Lunec, J. (1995). Molecular characterization of two cell lines selected for resistance to the folate-based thymidylate synthase inhibitor, ZD1694. British Journal of Cancer, 71, 925–930.PubMedGoogle Scholar
  175. 175.
    Jackman, A. L., Ferrugia, D. C., Gibson, W., Kimbell, R., Harrap, K. R., Stephens, T. C., et al. (1995). ZD1694 (Tomudex): A new thymidylate synthase inhibitor with activity in colorectal cancer. European Journal of Cancer, 31A, 1277–1282.PubMedGoogle Scholar
  176. 176.
    Drake, J. C., Allegra, C. J., Moran, R. G., & Johnston, P. G. (1996). Resistance to tomudex (ZD1694): Multifactorial in human breast and colon carcinoma cell lines. Biochemical Pharmacology, 51, 1349–1355PubMedGoogle Scholar
  177. 177.
    Tong, Y., Liu-Chen, X., Ercikan-Abali, E. A., Zhao, S. C., Banerjee, D., Maley, F., et al. (1998). Probing the folate-binding site of human thymidylate synthase by site-directed mutagenesis. Generation of mutants that confer resistance to raltitrexed, thymitaq, and BW1843U89. Journal of Biological Chemistry, 273, 31209–31214.PubMedGoogle Scholar
  178. 178.
    Kitchens, M. E., Firsthoefel, A. M., Barbour, K. W., Spencer, H. T., & Berger, F. G. (1999). Mechanisms of acquired resistance to thymidylate synthase inhibitors: The role of enzyme stability. Molecular Pharmacology, 56, 1063–1070.PubMedGoogle Scholar
  179. 179.
    Wang, W., Marsh, S., Cassidy, J., & McLeod, H. L. (2001). Pharmacogenomic dissection of resistance to thymidylate synthase inhibitors. Cancer Research, 61, 5505–5510.PubMedGoogle Scholar
  180. 180.
    Sigmond, J., Backus, H. H., Wouters, D., Temmink, O. H., Jansen, G., & Peters, G. J. (2003). Induction of resistance to the multitargeted antifolate Pemetrexed (ALIMTA) in WiDR human colon cancer cells is associated with thymidylate synthase overexpression. Biochemical Pharmacology, 66, 431–438.PubMedGoogle Scholar
  181. 181.
    Chu, E., Koeller, D. M., Casey, J. L., Drake, J. C., Chabner, B. A., Elwood, P. C., et al. (1991). Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. In Proceedings of the National Academy of Sciences of the United States of America, 88, 8977–8981.PubMedGoogle Scholar
  182. 182.
    Chu, E., Voeller, D. M., Jones, K. L., Takechi, T., Maley, G. F., Maley, F., et al. (1994). Identification of a thymidylate synthase ribonucleoprotein complex in human colon cancer cells. Molecular and Cellular Biology, 14, 207–213.PubMedGoogle Scholar
  183. 183.
    Chu, E., & Allegra, C. J. (1996). The role of thymidylate synthase messenger RNA as an RNA binding protein. Bioessays, 18, 191–198.PubMedGoogle Scholar
  184. 184.
    Wang, T. L., Diaz, L. A., Romans, K., Bardelli, A., Saha, S., Galizia, G., et al. (2004). Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluouracil in metastatic colorectal cancer patients. In Proceedings of the National Academy of Sciences of the United States of America, 101, 3089–3094.PubMedGoogle Scholar
  185. 185.
    Tong, Y., Liu-Chen, X., Ercickan-Abali, E. A., Capiaux, G. M., Zhao, S. C., Banerjee, D., et al. (1998). Isolation and characterization of thymitaq (AG337) and 5-fluoro-2-deoxyuridylate-resistant mutants of human thymidylate synthase from ethanemethylsulfonate-exposed human sarcoma HT1080 cells. Journal of Biological Chemistry, 273, 1161–11618.Google Scholar
  186. 186.
    Davis, S. T., & Berger, S. H. (1993). Variation in human thymidylate synthase is associated with resistance to 5-fluoro-2′-deoxyuridine. Molecular Pharmacology, 43, 702–708.PubMedGoogle Scholar
  187. 187.
    Barbour, K. W., Berger, S. H., & Berger, F. G. (1990). Single amino acid substitution defines a naturally occurring genetic variant of human thymidylate synthase. Molecular Pharmacology, 37, 515–518.PubMedGoogle Scholar
  188. 188.
    Cowan, K. H., & Jolivet, J. (1984). A methotrexate-resistant human breast cancer cell line with multiple defects, including diminished formation of methotrexate polyglutamates. Journal of Biological Chemistry, 259, 10793–10800.PubMedGoogle Scholar
  189. 189.
    Sharif, K. A., Moscow, J. A., & Goldman, I. D. (1998). Concentrating capacity of the human reduced folate carrier (hRFC1) in human ZR-75 breast cancer cell lines. Biochemical Pharmacology, 55, 1683–1689.PubMedGoogle Scholar
  190. 190.
    Pizzorno, G., Mini, E., Coronnello, M., McGuire, J. J., Moroson, B. A., Cashmore, A. R., et al. (1988). Impaired polyglutamylation of methotrexate as a cause of resistance in CCRF-CEM cells after short-term, high-dose treatment with this drug. Cancer Research, 48, 2149–2155.PubMedGoogle Scholar
  191. 191.
    Pizzorno, G., Chang, Y. M., McGuire, J. J., & Bertino, J. R. (1989). Inherent resistance of human squamaous carcinoma cell lines to methotrexate as a result of decreased polyglutamylation of this drug. Cancer Research, 49, 5275–5280.PubMedGoogle Scholar
  192. 192.
    McCloskey, D. E., McGuire, J. J., Russell, C. A., Rowan, B. G., Bertino, J. R., Pizzorno, G., et al. (1991). Decreased folylpolyglutamate synthetase activity as a mechanism of resistance in CCRF-CEM human leukemia sublines. Journal of Biological Chemistry, 266, 6181–6187.PubMedGoogle Scholar
  193. 193.
    Li, W. W., Lin, J. T., Schweitzer, B. I., Tong, W. P., Niedzwiecki, D., & Bertino, J. R. (1992). Intrinsic resistance to methotrexate in human soft tissue sarcoma cell lines. Cancer Research, 52, 3908–3913.PubMedGoogle Scholar
  194. 194.
    Pizzorno, G., Moroson, B. A., Cashmore, A. R., Russello, O., Mayer, J. R., Galivan, J., et al. (1995). Multifactorial resistance to 5,10-dideazatetrahydrofolic acid in cell lines derived from human lymphoblastic leukemia CCRF-CEM. Cancer Research, 55, 566–573.PubMedGoogle Scholar
  195. 195.
    Lu, K., Yin, M. B., McGuire, J. J., Bonmassar, E., & Rustum, Y. M. (1995). Mechanisms of resistance to N-[5-[N-(3,4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-thenoyl]-L-glutamic acid (ZD1694), a folate based thymidylate synthase inhibitor, in the HCT-8 human ileocecal adenocarcinoma cell line. Biochemical Pharmacology, 50, 391–398.PubMedGoogle Scholar
  196. 196.
    McGuire, J. J., Haile, W. H., Russell, C. A., Galvin, J. M., & Shane, B. (1995). Evolution of drug resistance in CCRF-CEM human leukemia cells selected by intermittent methotrexate exposure. Oncology Research, 7, 535–543.PubMedGoogle Scholar
  197. 197.
    McGuire, J. J., & Russel, C. A. (1998). Folylpolyglutamate synthetase expression in antifolate-sensitive and -resistant human cell lines. Oncology Research, 10, 193–200.PubMedGoogle Scholar
  198. 198.
    Roy, K., Egan, M. G., Sirlin, S., & Sirotnak, F. M. (1997). Posttranscriptional mediated decreases in folylpolyglutamate synthetase gene expression in some folate analogue-resistant variants of L1210 cell. Evidence for an altered cognate mRNA in the variants affecting the rate of de novo synthesis of the enzyme. Journal of Biological Chemistry, 272, 6903–6908.PubMedGoogle Scholar
  199. 199.
    Zhao, R., Titus, S., Gao, F., Moran, R. G., & Goldman, I. D. (2000). Molecular analysis of murine cell lines resistant to 5,10-dideazatetrahydrofolate identifies several amino acids critical to the function of folylpolyglutamate synthetase. Journal of Biological Chemistry, 275, 26599–26606.PubMedGoogle Scholar
  200. 200.
    Sanghani, S. P., Sanghani, P. C., & Moran, R. G. (1999). Identification of three key active site residues in the C-terminal domain of human recombinant folylpoly-gamma-glutamate synthetase by site-directed mutagenesis. Journal of Biological Chemistry, 274, 27018–27027.PubMedGoogle Scholar
  201. 201.
    Sun, X., Bognar, A. L., Baker, E. N., & Smith, C. A. (1998). Structural homologies with ATP- and folate-binding enzymes in the crystal structure of folylpolyglutamate synthetase. In Proceedings of the National Academy of Sciences of the United States of America, 95, 6647–6652.PubMedGoogle Scholar
  202. 202.
    Galivan, J. (2000). Glutamyl hydrolase. Pharmacological role in enzymatic characterization. Pharmacology & Therapeutics, 85, 207–215.Google Scholar
  203. 203.
    Schneider, E., & Ryan, T. J. (2006). Gamma-glutamyl hydrolase and drug resistance. Clinica Chimica Acta, 374, 25–32.Google Scholar
  204. 204.
    Li, W. W., Waltham, M., Tong, W., Schweitzer, B. I., & Bertino, J. R. (1993). Increased activity of gamma-glutamyl hydrolase in human sarcoma cell lines: A novel mechanism of intrinsic resistance to methotrexate (MTX). Advances in Experimental Medicine and Biology, 338, 635–638.PubMedGoogle Scholar
  205. 205.
    Rhee, M. S., Wang, Y., Nair, M. G., & Galivan, J. (1993). Acquisition of resistance to antifolates caused by enhanced gamma glutamyl hydrolase activity. Cancer Research, 53, 2227–2230.PubMedGoogle Scholar
  206. 206.
    Yao, R., Rhee, M. S., & Galivan, J. (1995). Effects of gamma-glutamyl hydrolase on folyl- and antifolylpolyglutamates in cultured H35 hepatoma cells. Molecular Pharmacology, 48, 505–511.PubMedGoogle Scholar
  207. 207.
    Cole, P. D., Kamen, B. A., Gorlick, R., Banerjee, D., Smith, A. K., Magill, E., et al. (2001). Effects of overexpression of gamma-glutamyl hydrolase on methotrexate metabolism and resistance. Cancer Research, 61, 4599–4604.PubMedGoogle Scholar
  208. 208.
    Baggott, J. E., Heimburger, D. C., Krumdieck, C. L., & Butterworth, C. E. (1987). Folate conjugase activity in the plasma and tumors of breast cancer patients. American Journal of Clinical Nutrition, 46, 295–301.PubMedGoogle Scholar
  209. 209.
    Longo, G. S. A., Gorlick, R., Tong, W. P., Lin, S., Steinherz, P., Bertino, J. R. (1997). γ-glutamyl hydrolase and folylpolyglutamate synthetase activities predict polyglutamylation of methotrexate in acute leukemia. Oncology Research, 9, 259–263.PubMedGoogle Scholar
  210. 210.
    Rots, M. G., Pieters, R., Peters, G. J., Noordhuis, P., van Zantwijk, C. H., Kaspers, G. J. L., et al. (1999). Role of folylypolyglutamate synthetase and folylypolyglutamate hydrolase in methotrexate accumulation and polyglutamylation in childhood leukemia. Blood, 93, 1677–1683.PubMedGoogle Scholar
  211. 211.
    Cheng, Q., Cheng, C., Crews, K. R., Riberio, R. C., Pui, C. H., Relling, M. V., et al. (2006). Epigenetic regulation of human gamma-glutamyl hydrolase activity in acute lymphoblastic leukemia cells. American Journal of Human Genetics, 79, 264–274.PubMedGoogle Scholar
  212. 212.
    Chave, K. J., Ryan, T. J., Chmura, S. E., & Galivan, J. (2003). Identification of nucleotide polymorphisms in the human gamma-glutamyl hydrolase gene and characterization of promoter polymorphisms. Gene, 319, 167–175.PubMedGoogle Scholar
  213. 213.
    Cheng, Q., Wu, B., Kager, L., Panetta, J. C., Zheng, J., Pui, C. H., et al. (2004). A substrate specific functional polymorphism of human gamma-glutamyl hydrolase alters catalytic activity and methotrexate polyglutamate accumulation in acute lymphoblastic leukaemia cells. Pharmacogenetics, 14, 557–567.PubMedGoogle Scholar
  214. 214.
    Nimec, Z., & Galivan, J. (1983). Regulatory aspects of the glutamylation of methotrexate in cultured hepatoma cells. Archives of Biochemistry and Biophysics, 226, 671–680.PubMedGoogle Scholar
  215. 215.
    Johnson, T. B., Nair, M. G., & Galivan, J. (1988). Role of folylpolyglutamate synthetase in the regulation of methotrexate polyglutamate formation in H35 hepatoma cells. Cancer Research, 48, 2426–2431.PubMedGoogle Scholar
  216. 216.
    Jansen, G., Barr, H. M., Kathmann, I., Bunni, M. A., Priest, D. G., Noordhuis, P., et al. (1999). Multiple mechanisms of resistance to polyglutamatable and lipophilic antifolates in mammalian cells: Role of increased folylpolyglutamylation, expanded folate pools and intralysosomal drug sequestration. Molecular Pharmacology, 5, 761–769.Google Scholar
  217. 217.
    Van der Wilt, C. L., Backus, H. H., Smid, K., Comijn, L., Veerman, G., Wouters, D., et al. (2001). Modulation of both endogenous folates and thymidine enhance the therapeutic efficacy of thymidylate synthase inhibitors. Cancer Research, 61, 3675–3681.PubMedGoogle Scholar
  218. 218.
    Tse, A., & Moran, R. G. (1998). Cellular folates prevent polyglutamylation of 5,10-dideazatetrahydrofolate. A novel mechanism of resistance to antimetabolites. Journal of Biological Chemistry, 273, 25953–25960.PubMedGoogle Scholar
  219. 219.
    Jansen, G., Westerhof, G. R., Jarmuszewski, M. J., Kathmann, I., Rijksen, G., & Schornagel, J. H. (1990). Methotrexate transport in variant human CCRF-CEM leukemia cells with elevated levels of the reduced folate carrier. Selective effect on carrier-mediated transport of physiological concentrations of reduced folates. Journal of Biological Chemistry, 265, 18272–18277.PubMedGoogle Scholar
  220. 220.
    Assaraf, Y. G., Rothem, L., Hooijberg, J. H., Stark, M., Ifergan, I., Kathmann, I., et al. (2003). Loss of multidrug resistance protein 1 expression and folate efflux activity results in a highly concentrative folate transport in human leukemia cells. Journal of Biological Chemistry, 278, 6680–6686.PubMedGoogle Scholar
  221. 221.
    Assaraf, Y. G., & Slotky, J. I. (1993). Characterization of a lipophilic antifolate resistance provoked by treatment of mammalian cells with the antiparasitic agent pyrimethamine. Journal of Biological Chemistry, 268, 4556–4566.PubMedGoogle Scholar
  222. 222.
    Zhao, R., Gao, F., & Goldman, I. D. (2001). Marked suppression of the activity of some, but not all, antifolate compounds by augmentation of folate cofactor pools within tumor cells. Biochemical Pharmacology, 61, 857–865.PubMedGoogle Scholar
  223. 223.
    Sarkadi, B., Homolya, L., Szakacs, G., & Varadi, A. (2006). Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system. Physiological Reviews, 84, 1179–1236.Google Scholar
  224. 224.
    Stark, M., Rothem, L., Jansen, G., Scheffer, G. L., Goldman, I. D., & Assaraf, Y. G. (2003). Antifolate resistance associated with loss of MRP1 expression and function in Chinese hamster ovary cells with markedly impaired export of folate and cholate. Molecular Pharmacology, 64, 220–227.PubMedGoogle Scholar
  225. 225.
    Jacobs, S. A., Stoller, R. G., Chabner, B. A., & Johns, D. G. (1976). 7-hydroxymethotrexate as a urinary metabolite in human subjects and rhesus monkeys receiving high dose methotrexate. Journal of Clinical Investigation, 57, 534–538.PubMedGoogle Scholar
  226. 226.
    Breithhaupt, H., & Kuenzlen, E. (1982). Pharmacokinetics of methotrexate and 7-hydroxymethotrexate following infusions of high-dose methotrexate. Cancer Treatment Reports, 66, 1733–1741.Google Scholar
  227. 227.
    Rask, C., Albertioni, F., Bentzen, S. M., Schroeder, H., & Peterson, H. (1998). Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukemia. Acta Oncológica, 37, 277–284.PubMedGoogle Scholar
  228. 228.
    Fabre, G., Matherly, L. H., Favre, R., Catalin, J., & Cano, J. P. (1983). In vitro formation of polyglutamyl derivatives of methotrexate and 7-hydroxymethotrexate in human lymphoblastic leukemia cells. Cancer Research, 43, 4648–4652.PubMedGoogle Scholar
  229. 229.
    Fabre, G., Fabre, I., Matherly, L. H., Cano, J. P., & Goldman, I. D. (1984). Synthesis and properties of 7-hydroxymethotrexate polyglutamyl derivatives in Ehrlich ascites tumor cells in vitro. Journal of Biological Chemistry, 259, 5066–5072.PubMedGoogle Scholar
  230. 230.
    McGuire, J. J., Hsieh, P., & Bertino, J. R. (1984). Enzymatic synthesis of polyglutamate derivatives of 7-hydroxymethotrexate. Biochemical Pharmacology, 33, 1355–1361.PubMedGoogle Scholar
  231. 231.
    Fotoohi, K., Jansen, G., Assaraf, Y. G., Rothem, L., Stark, M., Kathmann, I., et al. (2004). Disparate mechanisms of antifolate resistance provoked by methotrexate and its metabolite 7-hydroxymethotrexate in leukemia cells: Implications for efficacy of methotrexate therapy. Blood, 104, 4194–4201.PubMedGoogle Scholar
  232. 232.
    Breedveld, P., Pluim, D., Cipriani, G., Dahlhaus, F., van Eijndhoven, M. A., de Wolf, C. J., et al. (2007). The effect of low pH on BCRP (ABCG2)-mediated transport of methotrexate, 7-hydroxymethotrexate, methotrexate diglutamate, folic acid, mitoxantrone, topotecan and resveratrol in in vitro drug transport models. Molecular Pharmacology, 71, 240–249.Google Scholar
  233. 233.
    Winter-Vann, A. M., Kamen, B. A., Bergo, M. O., Young, S. G., Melnyk, S., James, S. J., et al. (2003). Targeting Ras signaling through inhibition of carboxyl methylation: An unexpected property of methotrexate. In Proceedings of the National Academy of Sciences of the United States of America, 100, 6529–6534.PubMedGoogle Scholar
  234. 234.
    Refsum, H., Helland, S., & Ueland, P. M. (1989). Fasting plasma homocysteine as a sensitive parameter of antifolate effect: A study of psoriasis patients receiving low-dose methotrexate treatment. Clinical Pharmacology and Therapeutics, 45, 510–520.Google Scholar
  235. 235.
    Molloy, A. M., & Scott, J. M. (2001). Folates and prevention of disease. Public Health Nutrition, 4, 601–609.PubMedCrossRefGoogle Scholar
  236. 236.
    Rosenquist, T. H., Rataska, S. A., & Selhub, J. (1996). Homocysteine induces congenital defects of the heart and neural tube: Effect of folic acid. In Proceedings of the National Academy of Sciences of the United States of America, 93, 15227–15232.PubMedGoogle Scholar
  237. 237.
    Yi, P., Melnyk, S., Pogribna, M., Pogribny, I. P., Hine, R. J., & James, S. J. (2000). Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocsyteine and lymphocyte DNA hypomethylation. Journal of Biological Chemistry, 275, 29318–29323.PubMedGoogle Scholar
  238. 238.
    Bergo, M. O., Leung, G. K., Ambroziak, P., Otto, J. C., Casey, P. J., & Young, S. G. (2000). Targeted inactivation of the isoprenylcysteine carboxyl methyltrasferase gene causes mislocalization of K-Ras in mammalian cells. Journal of Biological Chemistry, 275, 17605–17610.PubMedGoogle Scholar
  239. 239.
    Tran, T., Shatnawi, A., Zheng, X., Kelley, K. M., & Ratnam, M. (2005). Enhancement of folate receptor alpha expression in tumor cells through the glucocorticoid receptor: A promising means to improved tumor detection and targeting. Cancer Research, 65, 4431–4441.PubMedGoogle Scholar
  240. 240.
    Qi, H., & Ratnam, M. (2006). Synergistic induction of folate receptor beta by all-trans retinoic acid and histone deacetylase inhibitors in acute myelogenous leukemia cells: Mechanism and utility in enhancing selective growth inhibition by antifolates. Cancer Research, 66, 5875–5882.PubMedGoogle Scholar
  241. 241.
    Sirotnak, F. M., DeGraw, J. I., Chello, P. L., Moccio, D. M., & Dorick, D. M. (1982). Biochemical and pharmacological properties of a new folate analog, 10-deaza-aminopterin, in mice. Cancer Treatment Reports, 66, 351–358.PubMedGoogle Scholar
  242. 242.
    Wang, E. S., O’Connor, O., She, Y., Zelenetz, A. D., Sirotnak, F. M., & Moore, M. A. (2003). Activity of a novel anti-folate (PDX, 10-propargyl 10-deaza-aminopterin) against human lymphoma is superior to methotrexate and correlates with tumor RFC-1 gene expression. Leukemia & Lymphoma, 44, 1027–1035.Google Scholar
  243. 243.
    Toner, L. E., Vrhohac, R., Smith, E. A., Gardner, J., Heaney, M., Gonen, M., et al. (2006). The schedule-dependent effects of the novel antifolate pralatrexate and gemcitabine are superior to methotrexate and cytarabine in models of human non-hodgkin’s lymphoma. Clinical Cancer Research, 12, 9240932.Google Scholar
  244. 244.
    O’Connor, O. A. (2006). Pralatrexate: An emerging new agent with activity in T-cell lymphomas. Current Opinion in Oncology, 18, 591–597.PubMedGoogle Scholar
  245. 245.
    O’Connor, O. A., & Hamlin, P. (2006). New drugs for the treatment of advanced-stage diffuse large cell lymphomas. Seminars in Hematology, 43, 251–256.PubMedGoogle Scholar
  246. 246.
    Sweet, D. L., Golomb, H. M., Ultmann, J. E., Miller, J. B., Stain, R. S., Lester, E. P., et al. (1980). Cyclophosphamide, vincristine, methotrexate with leucovorin rescue, and cytarabine (COMLA) combination sequential chemotherapy for advanced diffuse histiocytic lymphoma. Annals of Internal Medicine, 92, 785–790.PubMedGoogle Scholar
  247. 247.
    Qiu, A., Jansen, M., Sakaris, A., Min, S. H., Chattopadhyay, S., Tsai, E., et al. (2006). Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell, 127, 917–928.PubMedGoogle Scholar
  248. 248.
    Geller, J., Kronn, D., Jayabose, S., & Sandoval, C. (2002). Hereditary folate malabsorption: Family report and review of the literature. Medicine (Baltimore), 81, 51–68.Google Scholar
  249. 249.
    Wike-Hooley, J. L., Haveman, J., & Reinhold, H. S. (1984). The relevance of tumour pH to the treatment of malignant disease. Radiotherapy and Oncology, 2, 343–366.PubMedGoogle Scholar
  250. 250.
    Helmlinger, G., Yuan, F., Dellian, M., & Jain, R. K. (1997). Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nature Medicine, 3, 117–182.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.The Fred Wyszkowski Cancer Research Laboratory, Department of BiologyTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations