Cancer and Metastasis Reviews

, Volume 26, Issue 1, pp 71–83 | Cite as

The roles of copper transporters in cisplatin resistance

  • Macus Tien Kuo
  • Helen H. W. Chen
  • Im-Sook Song
  • Niramol Savaraj
  • Toshihisa Ishikawa


Platinum-based antitumor agents have been effective in the treatments of many human malignancies but the ultimate success of these agents is often compromised by development of drug resistance. One mechanism associated with resistance to platinum drugs is reduced intracellular accumulation owing to impaired drug intake, enhanced outward transport, or both. Mechanisms for transporting platinum drugs were not known until recent demonstrations that import and export transporters involved in maintenance copper homeostasis are also involved in the transport of these drugs. Ctr1, the major copper influx transporter, has been convincingly demonstrated to transport cisplatin and its analogues, carboplatin, and oxaliplatin. Evidence also suggests that the two copper efflux transporters ATP7A and ATP7B regulate the efflux of cisplatin. These observations are intriguing, because conventional thinking of the inorganic physiologic chemistry of cisplatin and copper is quite different. Hence, understanding the underlying mechanistic aspects of these transporters is critically important. While the mechanisms by which hCtr1, ATP7A and ATP7B transport copper ions have been studied extensively, very little is known about the mechanisms by which these transporters shuffle platinum-based antitumor agents. This review discusses the identification of copper transporters as platinum drug transporters, the structural-functional and mechanistic aspects of these transporters, the mechanisms that regulate their expression, and future research directions that may eventually lead to improved efficacy of platinum-based-based drugs in cancer chemotherapy through modulation of their transporters’ activities.


hCtr1 Copper transporters ATP7A ATP7B Zinc finger GS-X pump/MRP 2 Metallochaperones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kollmannsberger, C., Nichols, C., & Bokemeyer, C. (2006). Recent advances in management of patients with platinum-refractory testicular germ cell tumors. Cancer, 106, 1217–1226.PubMedGoogle Scholar
  2. 2.
    Boulikas, T., & Vougiouka, M. (2003). Cisplatin and platinum drug at the molecular level. Oncology Reports, 10, 1663–1682.PubMedGoogle Scholar
  3. 3.
    Giaccone, G. (2000). Clinical perspectives on platinum resistance. Drugs, 59, 9–17.PubMedGoogle Scholar
  4. 4.
    Daugaad, G., & Abildgaard, U. (1989). Cisplatin nephrotoxicity. A Review. Cancer Chemotherapy and Pharmacology, 25, 1–9.Google Scholar
  5. 5.
    Lokich, J., & Anderson, N. (1998). Carboplatin versus cisplatin in solid tumors: An analysis of the literature. Annals of Oncology, 9, 12–21.Google Scholar
  6. 6.
    Raymond, E., Faivre, S., Chaney, S., Woynarowski, J., & Cvitkovic, E. (2002). Cellular and molecular pharmacology of oxaliplatin. Molecular Cancer Therapeutics, 1, 227–235.PubMedGoogle Scholar
  7. 7.
    Siddik, Z. H. (2003). Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7165–7179.Google Scholar
  8. 8.
    Wang, D., & Lippard, S. J. (2005). Cellular processing of platinum anticancer drugs. Nature Rev Drug Discov, 4, 307–320.Google Scholar
  9. 9.
    Johnson, S. W., Laub, P. B., Beesley, J. S., Ozols, R. F., & Hamilton, T. C. (1997). Increased platinum-DNA resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. Cancer Research, 57, 850–856.PubMedGoogle Scholar
  10. 10.
    Gately, D. P., & Howell, S. B. (1993). Cellular accumulation of the anticancer gent cisplatin: A review. British Journal of Cancer, 67, 1171–1176.PubMedGoogle Scholar
  11. 11.
    Twentyman, P. R., Wright, K. A., Mistry, P., Kelland, L. R., & Murrer, B. A. (1992). Sensitivity to novel platinum compounds of panels of human lung cancer cell lines with acquired and inherent resistance to cisplatin. Cancer Research, 52, 5674–5680.PubMedGoogle Scholar
  12. 12.
    Waud, W. R. (1987). Differential uptake of cis-diamminedichloroplatinum (II) in sensitive and resistant murine L1210 leukemia cell lines. Cancer Research, 46, 6549–6555.Google Scholar
  13. 13.
    Teicher, B. A., Holden, S. A., Herman, T. S., Sotomayor, E. A., Khandekar, V., Rosbe, K. W., et al. (1991). Characteristics of five human tumor cell lines and sublines resistant to cisdiamminedichloroplatinum (II). International Journal of Cancer, 47, 252–260.Google Scholar
  14. 14.
    Oldenburg, J., Begg, A. C., van Vugt, M. J., Ruevekamp, M., Schornagel, J. H., Pinedo, H. M., et al. (1994). Characterization of resistance mechanisms to cis-diamminedichloroplatinum (II) in three sublines of the CC531 colon adenocarcinoma cell line in vitro. Cancer Research, 54, 487–493.PubMedGoogle Scholar
  15. 15.
    Kellend, L. R., Mistry, P., & Abel, G. (1992). Establishment and characterization of an in vitro model of acquired resistance to cisplatin in a human testicular nonseminomatousgerm cell line. Cancer Research, 52, 1710–1716.Google Scholar
  16. 16.
    Metcalfe, S. A., Cain, K., & Hill, B. T. (1986). Possible mechanisms for differences in sensitivity to cisplatinum in human prostate tumor cell lines. Cancer Letters, 31, 163–169.PubMedGoogle Scholar
  17. 17.
    Song, I.-M., Savaraj, N., Siddik, Z., Liu, P., Wei, Y., Wu, C. J., et al. (2004). Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Molecular Cancer Therapeutics, 3, 1543–1549.PubMedGoogle Scholar
  18. 18.
    Komatsu, M., Sumizawa, T., Mutoh, M., Chen, Z. S., Terada, K., Furukawa, T., et al. (2000). Copper transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Research, 60, 1312–1316.PubMedGoogle Scholar
  19. 19.
    Miyamashita, H., Nitta, Y., Mori, S., Kanzaki, A., Nakayama, K., Terada, K., et al. (2003) Expression of copper transporting P-type adenotriphosphatase (ATP7B) as a chemoresistance marker in human oral squamous cell carcinoma treated with cisplatin. Oral Oncology, 39, 157–162.Google Scholar
  20. 20.
    Dancis, A., Haile, D., Yuan, D. S., & Klausner, R. D. (1994). The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. Journal of Biological Chemistry, 269, 25660–25667.PubMedGoogle Scholar
  21. 21.
    Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., et al. (1994). Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport. Cell, 76, 398–402.Google Scholar
  22. 22.
    Knight, S. A., Labbe, S., Kwon, L. F., Kosman, D. J., & Thiele, D. J. (1996). A widespread transposable element masks expression of a yeast copper transport gene. Genes & Development, 10, 1917–1929.Google Scholar
  23. 23.
    Kampfenkel, K., Kushnir, S., Babiychuk, E., Inze, D., & Van Montagu, M. (1995). Molecular characterization of a putative, Arabidopsis thaliana copper transporter and its yeast homologue. Journal of Biological Chemistry, 270, 286479–286486.Google Scholar
  24. 24.
    Zhou, B., & Gitschier, J. (1997). hCtr1: A human gene for copper uptake identified by complementation in yeast. Proceedings of the National Academy of Sciences of the United States of America, 94, 7481–7486.PubMedGoogle Scholar
  25. 25.
    Lee, J., Prohaska, J. R., Dagenais, S. L., Glover, T. W., & Thiele, D. J. (2000). Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene, 254, 87–96.PubMedGoogle Scholar
  26. 26.
    Moller, L. B., Petersen, C., Lund, C., & Horn, N. (2000). Characterization of the hCtr1 gene: Genomic organization, functional expression, and identification of a highly homologous processed gene. Gene, 257, 13–22.PubMedGoogle Scholar
  27. 27.
    Lee, J., Pena, M. M., Nose, Y., & Thiele, D. J. (2002). Biochemical characterization of the human copper transporter Ctr1. Journal of Biological Chemistry, 277, 4380–4387.PubMedGoogle Scholar
  28. 28.
    Ishida, S., Lee, J., Thiele, D. J., & Herskowitz, I. (2002). Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proceedings of the National Academy of Sciences of the United States of America, 99, 14298–14302.PubMedGoogle Scholar
  29. 29.
    Jungmann, J., Reins, H. A., Lee, J., Romeo, A., Hassett, R., Kosman, D., et al. (1993). Mac1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO Journal, 12, 5051–5056.PubMedGoogle Scholar
  30. 30.
    Lin, X., Okuda, T., Holzer, A., & Howell, S. B. (2002). The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisae. Molecular Pharmacology, 62, 1154–1159.PubMedGoogle Scholar
  31. 31.
    Safaei, R., & Howell, S. B. (2005). Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Critical Reviews in Oncology/Hematology, 53, 13–23.PubMedGoogle Scholar
  32. 32.
    Holzer, A. K., Samimi, G., Katano, K., Naerdemann, W., Lin, X., Safaei, R., et al. (2004). The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Molecular Pharmacology, 66, 817–823.PubMedGoogle Scholar
  33. 33.
    Beretta, G. L., Gatti, L., Tinelli, S., Corna, E., Colangelo, D., Zunino, F., et al. (2004). Cellular pharmacology of cisplatin in relation to the expression of human copper transporter Ctr1 in different pairs of cisplatin-sensitive and -resistant cells. Biochemical Pharmacology, 68, 283–291.PubMedGoogle Scholar
  34. 34.
    Puig, S., & Thiele, D. J. (2002). Molecular mechanisms of copper uptake and distribution. Current Opinion in Chemical Biology, 6, 171–180.PubMedGoogle Scholar
  35. 35.
    Klomp, A. E., Juijin, J. A., van der Gun, L. T., van den Berg, I. E., Berger, R., & Klomp, L. W. (2003). The N-terminus of the human copper transporter1 (hCtr1) is localized extracellularly and interacts with itself. Biochemical Journal, 370, 881–889.PubMedGoogle Scholar
  36. 36.
    Aller, S. G., Eng, E. T., De Feo, C. J., & Unger, U. M. (2004). Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. Journal of Biological Chemistry, 279, 53435–53441.PubMedGoogle Scholar
  37. 37.
    Aller, S. G., & Unger, V. M. (2006). Projection structure of the human copper transporter Ctr1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proceedings of the National Academy of Sciences of the United States of America, 103, 3627–3632.PubMedGoogle Scholar
  38. 38.
    Eisses, J. F., & Kaplan, J. H. (2002). Molecular characterization of hCtr1, the human copper uptake protein. Journal of Biological Chemistry, 277, 29162–29171.PubMedGoogle Scholar
  39. 39.
    Puig, S., Lee, J., Lau, M., & Thiele, D. J. (2002). Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. Journal of Biological Chemistry, 277, 26021–26030.PubMedGoogle Scholar
  40. 40.
    Guo, Y., Smith, K., & Patris, M. J. (2004). Cisplatin stabilizes a multimeric complex of the human Ctr1 copper transporter requirement for the extracellular methionine-rich clusters. Journal of Biological Chemistry, 279, 46393–46399.PubMedGoogle Scholar
  41. 41.
    Eisses, J. F., & Kaplan, J. H. (2005). The mechanism of copper uptake mediated by human Ctr1. A mutational analysis. Journal of Biological Chemistry, 280, 37159–37168.PubMedGoogle Scholar
  42. 42.
    Arnesano, F., Banci, L., Bertini, I., Cantini, F., Ciofi-Baffoni, S., Huffman, D. L., et al. (2001). Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. Journal of Biological Chemistry, 276, 41365–41376.PubMedGoogle Scholar
  43. 43.
    Vulpe, C., Levinson, B., Whitney, S., Packman, S., & Gitschier, J. (1993). Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genetics, 3, 7–13.PubMedGoogle Scholar
  44. 44.
    Bull, P. C., Thomas, G. R., Rommens, J. M., Forbes, J. M., Forbes, J. R., & Cox, D. W. (1993). The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genetics, 5, 327–337.PubMedGoogle Scholar
  45. 45.
    Camakaris, J., Voskoboinik, I., & Mercer, J. F. (1999). Molecular mechanisms of copper homeostasis. Biochemical and Biophysical Research Communications, 261, 225–232.PubMedGoogle Scholar
  46. 46.
    DiDonato, M., & Sarkar, B. (1997). Copper transport and its alterations in Menkes and Wilson diseases. Biochimica et Biophysica Acta, 1360, 3–16.PubMedGoogle Scholar
  47. 47.
    Prohaska, J. R., & Gybina, A. A. (2004). Intracellular copper transport in mammals. Journal of Nutrition, 134, 1003–1006.PubMedGoogle Scholar
  48. 48.
    Hellman, N. E., & Gitlin, J. D. (2002). Ceruloplasmin metabolism and function. Annual Review of Nutrition, 22, 439–458.PubMedGoogle Scholar
  49. 49.
    Komatsu, M., Sumizawa, T., Mutoh, M., Chen, Z. S., Tarada, K., Furukawa, T., et al. (2000). Copper transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Research, 60, 1313–1316.Google Scholar
  50. 50.
    Nakayama, K., Kanzaki, A., Terada, K., Mutoh, M., Ogawa, K., Sugiyama, T., et al. (2004). Prognostic value of the cu-transporting ATPase in ovarian carcinoma patients receiving cisplatin-based chemotherapy. Clinical Cancer Research, 10, 2804–2811.PubMedGoogle Scholar
  51. 51.
    Ohbu, M., Ogawa, K., Konno, S., Kanzaki, A., Terada, K., Sugiyama, T., et al. (2003). Copper-transporting P-type adenosine triphosphatase (ATP7B) is expressed in human gastric carcinoma. Cancer Letters, 189, 33–38.PubMedGoogle Scholar
  52. 52.
    Samimi, S., Safaei, R., Katano, K., Holzer, A. K., Rochdi, M., Tomioka, M., et al. (2004). Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clinical Cancer Research, 10, 4661–4669.PubMedGoogle Scholar
  53. 53.
    Samimi, G., Varki, N. M., Wilczynski, S., Safaei, R., Alberts, D. S., & Howell, S. B. (2003). Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clinical Cancer Research, 9, 5853–5859.PubMedGoogle Scholar
  54. 54.
    Strausak, D., La Fontaine, S., Hill, J., Firth, S. D., Lockhart, P. J., & Mercer, J. F. R. (1999). The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein. Journal of Biological Chemistry, 274, 11170–11177.PubMedGoogle Scholar
  55. 55.
    Achila, D., Banci, L., Bertini, I., Bunce, J., Ciofi-Baffoni, S., & Huffman, D. L. (2006). Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake. Proceedings of the National Academy of Sciences of the United States of America, 103, 5729–5734.Google Scholar
  56. 56.
    Banci, L., Bertini, I., Cantini, F., Chasapis, C. T., Hadjiliadis, N., & Rosato, A. (2005). A NMR study of the interaction of a three domain construct of ATP7A with copper (I) and copper (I)-HAH1. Journal of Biological Chemistry, 280, 38259–38263.PubMedGoogle Scholar
  57. 57.
    Francis, M. J., Jones, E. E., Levy, E. R., Ponnambalam, S., Chelly, J., & Monaco, A. (1998). A Golgi localization signal identified in the Menkes recombinant protein. Human Molecular Genetics, 7, 1245–1252.PubMedGoogle Scholar
  58. 58.
    Petris, M. J., & Mercer, J. F. (1999). The menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Human Molecular Genetics, 8, 2107–2115.PubMedGoogle Scholar
  59. 59.
    Wernimont, A. K., Huffman, D. L., Lamb, A. L., O’Halloran, T. V., & Rosenzweig, A. C. (2000). Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nature Structural Biology, 7, 766–771.PubMedGoogle Scholar
  60. 60.
    Rutherford, J. C., & Bird, A. J. (2004). Metal-responsive transcriptions that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryotic Cell 3, 1–13.PubMedGoogle Scholar
  61. 61.
    Graden, J. A., & Winge, D. R. (1997). Copper mediated repression of the activation domain in the yeast Mac1p transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 94, 5550–5555.PubMedGoogle Scholar
  62. 62.
    Serpe, M., Joshi, A., & Kosman, D. J. (1999). Structure-function analysis of the protein-binding domains of Mac1p, a copper-dependent transcriptional activator of copper uptake in Saccharomyces cerevisiae. Journal of Biological Chemistry, 274, 29211–29219.PubMedGoogle Scholar
  63. 63.
    Jensen, L. T., & Winge, D. R. (1998). Identification of a copper-induced intramolecular inteaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO Journal, 17, 5400–5408.PubMedGoogle Scholar
  64. 64.
    Dameron, C. T., Winge, D. R., George, G. N., Sansone, M., Hu, S., & Hamer, D. (1991). A copper-thiolate polynuclear cluster in the ACE1 transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 88, 6127–6131.PubMedGoogle Scholar
  65. 65.
    Butt, T. R., Sternberg, E. J., Gorman, J. A., Clark, P., Hamer, D., Rosenberg, M., et al. (1984). Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proceedings of the National Academy of Sciences of the United States of America, 81, 3332–3336.PubMedGoogle Scholar
  66. 66.
    Ooi, C. E., Rabinovich, E., Dancis, A., Bonifacino, J. S., & Klausner, R. D. (1996). Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO Journal 15, 3515–3523.PubMedGoogle Scholar
  67. 67.
    Yonkovich, J., McKenndry, R., Shi, X., & Zhu, Z. (2002). Copper ion-sensing transcription factor Mac1p post-translationally controls the degradation of its target gene product Ctr1p. Journal of Biological Chemistry, 277, 23981–23984.PubMedGoogle Scholar
  68. 68.
    Zhou, H., Cadigan, K. M., & Thiele, D. J. (2003). A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. Journal of Biological Chemistry, 278, 48210–48218.PubMedGoogle Scholar
  69. 69.
    Selvaraj, A., Balamurugan, K., Yepiskoposyan, H., Zhou, H., Egli, D., Georgiev, O., et al. (2005). Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes & Development, 19, 891–896.Google Scholar
  70. 70.
    Balamurugan, K., & Schaffner, W. (2006) Copper homeostasis in eukaryotes:Teetering on a tightrope. Biochimica et Biophysica Acta, 1763, 737–746.Google Scholar
  71. 71.
    Giedroc, D. P., Chen, X., & Apuy, J. L. (2001). Metal response element (MRE)-binding transcription factor-1(MTF-1): Structure, function, and regulation. Antioxidants and Redox Signalling, 3, 577–596.Google Scholar
  72. 72.
    Li, Y., Kimura, T., Laity, J. H., & Andrews, G. K. (2006). The zinc-sensing mechanism of mouse MTF-1 involves linker peptides between the zinc fingers. Molecular and Cellular Biology, 26, 5580–5587.PubMedGoogle Scholar
  73. 73.
    Petris, M. J., Smith, K., Lee, J., & Thieles, D. J. (2003). Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. Journal of Biological Chemistry, 278, 9639–9646.PubMedGoogle Scholar
  74. 74.
    Guo, Y., Smith, K., Lee, J., Thiele, D. J., Patris, & M. J. (2004). Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. Journal of Biological Chemistry, 279, 17428–17483.PubMedGoogle Scholar
  75. 75.
    Eisses, J. F., & Kaplan, J. H. (2002). Molecular characterization of hCtr1, the human copper uptake protein. Journal of Biological Chemistry, 277, 29162–29171.PubMedGoogle Scholar
  76. 76.
    Eisses, J. F., Chi, Y., & Kaplan, J. H. (2005). Stable plasma membrane levels of hCTR1 mediate cellular copper uptake. Journal of Biological Chemistry, 280, 9635–9639.PubMedGoogle Scholar
  77. 77.
    Lee, J., Prohaska, J. R., Dagenais, S. L., Glover, T. W., & Thiele, D. J. (2000). Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene, 254, 87–96.PubMedGoogle Scholar
  78. 78.
    Finney, L. A., & O’Halloran, T. V. (2003). Transition metal speciation in the cell: insights from the chemistry of metal ion receptions. Science, 300, 931–936.PubMedGoogle Scholar
  79. 79.
    Harrison, M. D., Jones, C. E., Solioz, M., & Dameron, C. T. (2000). Intracellular copper routing: The role of copper chaperones. Trends in Biochemical Sciences, 25, 29–32.PubMedGoogle Scholar
  80. 80.
    Cobine, P. A., Pierrel, F., & Winge, D. R. (2006) Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochimica et Biophysica Acta, 1763, 759–772.Google Scholar
  81. 81.
    Mesecke, N., Terziyska, N., Kozany, C., Baumann, F., Neupert, W., Hell, K., et al. (2005). A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell, 121, 1059–1069.PubMedGoogle Scholar
  82. 82.
    Arnesano, F., Balatri, E., Banci, L., Bertini, I., & Winge, D. R. (2005). Folding studies of Cox 17 reveal an important interplay of cysteine oxidation and copper binding. Structure, 13, 13–722.Google Scholar
  83. 83.
    Schmidt, P. J., Kunst, C., & Culotta, V. C. (2000). Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1. Journal of Biological Chemistry, 275, 33771–33776.PubMedGoogle Scholar
  84. 84.
    Wong, P. C., Waggoner, D., Subramaniam, J. R., Tessarollo, L., Bartnikas, T. B., Culotta, V. C., et al. (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 97, 2886–2891.PubMedGoogle Scholar
  85. 85.
    Culotta, V. C., Klomp, L. W., Strain, J., Casareno, R. L., Krems, B., & Gitlin, J. D. (1997). The copper chaperone for superoxide dismutase. Journal of Biological Chemistry, 272, 23469–23472.PubMedGoogle Scholar
  86. 86.
    Lamb, A. L., Torres, A. S., O’Halloran, T. V., & Rosenzweig, A. C. (2001). Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nature Structural Biology, 8, 751–755.PubMedGoogle Scholar
  87. 87.
    Molenaar, C., Teuben, J.-M., Heetebrij, R. J., Tanke, H. J., & Reedijk, J. (2000). New insights in the cellular processing of platinum antitumor compounds, using fluorophore-labeled platinum complexes and digital fluorescence microscopy. Journal of Biological Inorganic Chemistry, 5, 655–665.PubMedGoogle Scholar
  88. 88.
    Safaei, R., Katano, K., Larson, B. J., Samimi, G., Holzer, A. K., Naerdemann, W., et al. (2005). Intracellular localization and trafficking of fluoroscein-labeled cisplatin in human ovarian carcinoma cells. Clinical Cancer Research, 11, 756–767.PubMedGoogle Scholar
  89. 89.
    Kasahara, K., Fujiwara, Y., Nishio, K., Ohmori, T., Sugimoto, Y., Komiya, K., et al. (1991). Metallothionein content correlates with the sensitivity of human small cell lung cancer lines to cisplatin. Cancer Research, 51, 3237–3242.PubMedGoogle Scholar
  90. 90.
    Kelley, S. L., Basu, A., Teicher, B. A., Hacker, M. P., Hamer, D. H., & Lazo, J. S. (1988). Overexpression of metallothionein confers resistance to anticancer agents. Science, 241, 1813–1815.PubMedGoogle Scholar
  91. 91.
    Smith, D. J., Jaggi, M., Zhang, W., Galich, A., Du, C., Sterrett, S. P., et al. (2006). Metallothioneins and resistance to cisplatin and radiation in prostate cancer. Urology, 67, 1341–1347.PubMedGoogle Scholar
  92. 92.
    Waalkes, M. P., Liu, J., Kasprzak, K. S., & Diwan, B. A. (2006). Hypersusceptibility to cisplatin carcinogenicity in metallothionein-III double knockout mice: Production of hepatocellular carcinoma at clinically relevant doses. International Journal of Cancer, 119, 28–32.Google Scholar
  93. 93.
    Freedman, J. H., Ciriolo, M. R., & Peisach, J. (1989). The role of glutathione in copper metabolism and toxicity. Journal of Biological Chemistry, 264, 5598–5605.PubMedGoogle Scholar
  94. 94.
    Steineback, O. M., & Wolterbeek, H. T. (1994). Role of cytosolic copper, metallothionein and glutathione in copper toxicity in rat hepatoma tissue culture cells. Toxicology, 92, 75–90.Google Scholar
  95. 95.
    Circiolo, M. R., Desideri, M., Paci, M., & Rotilo, G. (1990). Reconstitution of Cu, Zn-superoxidedismutase by the Cu(I) glutathione complex. Journal of Biological Chemistry, 265, 11030–11034.Google Scholar
  96. 96.
    Lamb, A. L., O’Halloran, T. V., & Rosenzweig, A. C. (2000). Structural basis for copper transfer by the metalloperone for the Menkes/Wilson disease proteins. Nature Structural Biology, 7, 766–771.PubMedGoogle Scholar
  97. 97.
    Siddik, Z. H. (2002). Biochemical and molecular mechanisms of cisplatin resistance. Cancer Treatment and Research, 112, 263–284.PubMedGoogle Scholar
  98. 98.
    Ishikawa, T., Bao, J. J., Yamane, Y., Akimaru, K., Frindrich, K., Wright, C. D., et al. (1996). Coordinated induction of MRP/GS-X pump and gamma-glutamylcysteine synthetase by heavy metals in human leukemia cells. Journal of Biological Chemistry, 271, 4981–4988.Google Scholar
  99. 99.
    Ishikawa, T., & Ali-Osman, F. (1993). Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. Journal of Biological Chemistry, 268, 20116–20125.PubMedGoogle Scholar
  100. 100.
    Taniguchi, K., Wada, M., Kohno, K., Nakamura, T., Kawabe, T., & Kawakami, M. (1996). A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Research, 56, 4124–4129.PubMedGoogle Scholar
  101. 101.
    Liedert, B., Materna, V., Schadendorf, G. L., Thomale, J., & Lage, H. (2003). Overexpression of cMOAT(MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin. Journal of Investigative Dermatology, 121, 172–176.PubMedGoogle Scholar
  102. 102.
    Cui, Y., Konig, J., Buchholz, J. K., Spring, H., Leier, I., & Keppler, D. (1999). Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Molecular Pharmacology, 55, 929–937.PubMedGoogle Scholar
  103. 103.
    Koike, K., Kawabe, T., Tanaka, T., Toh, S., Uchiumi, T., Wada, M., et al. (1997). A canalicular multispecific organic anion transporter (cMOAT) antisense cDNA enhance drug sensitivity in human hepatic cancer cells. Cancer Research, 57, 5475–5479.PubMedGoogle Scholar
  104. 104.
    Minamino, T., Tamai, M., Itoh, Y., Tatsumi, Y., Nomura, M., Yokogawa, K., et al. (1999). In vivo cisplatin resistance depending upon canalicular multispecific organic anion transporter (cMOAT). Japanese Journal of Cancer Research, 90, 1171–1178.PubMedGoogle Scholar
  105. 105.
    Ishikawa, T., Nakagawa, H., & Kuo, M. T. (2007). The GS-X pump/multidrug resistance protein (MRP): Role of glutathione in their function and gene regulation. Nova Scotia Review (in press).Google Scholar
  106. 106.
    Chauhan, S. S., Liang, X. J., Su, A. W., Pai-Panandiker, A., Shen, D. W., Hanover, J. A., et al. (2003). Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines. British Journal of Cancer, 88, 1327–1334.PubMedGoogle Scholar
  107. 107.
    Liang, X. J., Mukherjee, S., Shen, D. W., Maxfield, F. R., & Gottesman, M. M. (2006). Endocytic recycling compartments altered in cisplatin-resistant cancer cells. Cancer Research, 66, 2346–2353.PubMedGoogle Scholar
  108. 108.
    Lee, J., Prohaska, J. R., & Thiele, D. J. (2001). Essential role for mammalian copper transporter Ctr1 copper homeostasis and embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 98, 6842–6847.PubMedGoogle Scholar
  109. 109.
    Kuo, Y. M., Zhou, B., Cosco, D., & Gitschier, J. (2001). The copper transporter Ctr1 provides an essential function in mammalian embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 98, 6836–6841.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Macus Tien Kuo
    • 1
  • Helen H. W. Chen
    • 1
    • 2
  • Im-Sook Song
    • 3
  • Niramol Savaraj
    • 4
  • Toshihisa Ishikawa
    • 5
  1. 1.Department of Molecular Pathology, Unit 951, Room 2SCR4.3025The University of Texas M. D. Anderson Cancer CenterHoustonUSA
  2. 2.Department of Radiation Oncology and Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanRepublic of China
  3. 3.Department of Pharmacology and Pharmacogenomics Research CenterInje University, College of MedicineBusanSouth Korea
  4. 4.Hematology-Oncology SectionVA Medical CenterMiamiUSA
  5. 5.Department of Biochmolecular Engineering, Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations