Cancer and Metastasis Reviews

, Volume 26, Issue 1, pp 39–57 | Cite as

ABCG2: determining its relevance in clinical drug resistance

  • Robert W. Robey
  • Orsolya Polgar
  • John Deeken
  • Kin Wah To
  • Susan E. Bates


Multidrug resistance is a major obstacle to successful cancer treatment. One mechanism by which cells can become resistant to chemotherapy is the expression of ABC transporters that use the energy of ATP hydrolysis to transport a wide variety of substrates across the cell membrane. There are three human ABC transporters primarily associated with the multidrug resistance phenomenon, namely Pgp, MRP1, and ABCG2. All three have broad and, to a certain extent, overlapping substrate specificities, transporting the major drugs currently used in cancer chemotherapy. ABCG2 is the most recently described of the three major multidrug-resistance pumps, and its substrates include mitoxantrone, topotecan, irinotecan, flavopiridol, and methotrexate. Despite several studies reporting ABCG2 expression in normal and malignant tissues, no trials have thus far addressed the role of ABCG2 in clinical drug resistance. This gives us an opportunity to critically review the disappointing results of past clinical trials targeting Pgp and to propose strategies for ABCG2. We need to know in which tumor types ABCG2 contributes to the resistance phenotype. We also need to develop standardized assays to detect ABCG2 expression in vivo and to carefully select the chemotherapeutic agents and clinical trial designs. This review focuses on our current knowledge about normal tissue distrubution, tumor expression profiles, and substrates and inhibitors of ABCG2, together with lessons learned from clinical trials with Pgp inhibitors. Implications of SNPs in the ABCG2 gene affecting the pharmacokinetics of substrate drugs, including many non-chemotherapy agents and ABCG2 expression in the SP population of stem cells are also discussed.


ABCG2 Multidrug resistance ABC transporters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nature Reviews Cancer, 2, 48–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Roninson, I. B., Chin, J. E., Choi, K., Gros, P., Housman, D. E., Fojo, A., et al. (1986). Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 83, 4538–4542.PubMedCrossRefGoogle Scholar
  3. 3.
    Shen, D. W., Fojo, A., Chin, J. E., Roninson, I. B., Richert, N., Pastan, I., et al. (1986). Human multidrug-resistant cell lines: Increased mdr-1 expression can precede gene amplification. Science, 232, 643–645.PubMedCrossRefGoogle Scholar
  4. 4.
    Leonard, G. D., Fojo, T., & Bates, S. E. (2003). The role of ABC transporters in clinical practice. Oncologist, 8, 411–424.PubMedCrossRefGoogle Scholar
  5. 5.
    Cole, S. P. C., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist, K. C., et al. (1993). Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 258, 1650–1654.CrossRefGoogle Scholar
  6. 6.
    Kruh, G. D., Zeng, H., Rea, P. A., Liu, G., Chen, Z. S., Lee, K., et al. (2001). MRP subfamily transporters and resistance to anticancer agents. Journal of Bioenergetics and Biomembranes, 33, 493–501.PubMedCrossRefGoogle Scholar
  7. 7.
    Hipfner, D. R., Deeley, R. G., & Cole, S. P. (1999). Structural, mechanistic and clinical aspects of MRP1. Biochimica et Biophysica Acta, 1461, 359–376.PubMedGoogle Scholar
  8. 8.
    Taylor, C. W., Dalton, W. S., Parrish, P. R., Gleason, M. C., Bellamy, W. T., Thompson, F. H., et al. (1991). Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. British Journal of Cancer, 63, 923–929.PubMedGoogle Scholar
  9. 9.
    Dietel, M., Arps, H., Lage, H., & Niendorf, A. (1990). Membrane vesicle formation due to acquired mitoxantrone resistance in human gastric carcinoma cell line EPG85-257. Cancer Research, 50, 6100–6106.PubMedGoogle Scholar
  10. 10.
    Nakagawa, M., Schneider, E., Dixon, K. H., Horton, J., Kelley, K., Morrow, C., et al. (1992). Reduced intracellular drug accumulation in the absence of P-glycoprotein (mdr1) overexpression in mitoxantrone-resistant human MCF-7 human breast cancer cells. Cancer Research, 52, 6175–6181.PubMedGoogle Scholar
  11. 11.
    Kellner, U., Hutchinson, L., Seidel, A., Lage, H., Danks, M. K., Dietel, M., et al. (1997). Decreased drug accumulation in a mitoxantrone-resistant gastric carcinoma cell line in the absence of P-glycoprotein. International Journal of Cancer, 71, 817–824.CrossRefGoogle Scholar
  12. 12.
    Futscher, B. W., Abbaszadegan, M. R., Doman, F., & Dalton, W. S. (1994). Analysis of MRP mRNA in mitoxantrone-selected, multidrug resistant human tumor cells. Biochemical Pharmacology, 47, 1601–1606.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang, C. J., Horton, J. K., Cowan, K. H., & Schneider, E. (1995). Cross-resistance to camptothecin analogues in a mitoxantrone-resistant human breast carcinoma cell line is not due to DNA topoisomerase I alterations. Cancer Research, 55, 4004–4009.PubMedGoogle Scholar
  14. 14.
    Chen, Y.-N., Mickley, L. A., Schwartz, A. M., Acton, E. M., Hwang, J., & Fojo, A. T. (1990). Characterization of Adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. Journal of Biological Chemistry, 265, 10073–10080.PubMedGoogle Scholar
  15. 15.
    Doyle, L. A., Yang, W., Abruzzo, L. V., Krogmann, T., Gao, Y., Rishi, A. K., et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 15665–15670.PubMedCrossRefGoogle Scholar
  16. 16.
    Allikmets, R., Schriml, L. M., Hutchinson, A., Romano-Spica, V., & Dean, M. (1998). A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Research, 58, 5337–5339.PubMedGoogle Scholar
  17. 17.
    Miyake, K., Mickley, L., Litman, T., Zhan, Z., Robey, R., Cristensen, B., et al. (1999). Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: Demonstration of homology to ABC transport genes. Cancer Research, 59, 8–13.PubMedGoogle Scholar
  18. 18.
    Dean, M., Rzhetsky, A., & Allikmets, R. (2001). The human ATP-binding cassette (ABC) transporter superfamily. Genome Research, 11, 1156–1166.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, N., Lan, D., Chen, W., Matsuura, F., & Tall, A. R. (2004). ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 101, 9774–9779.PubMedCrossRefGoogle Scholar
  20. 20.
    Mickley, L., Jain, P., Miyake, K., Schriml, L. M., Rao, K., Fojo, T., et al. (2001). An ATP-binding cassette gene (ABCG3) closely related to the multidrug transporter ABCG2 (MXR/ABCP) has an unusual ATP-binding domain. Mammalian Genome, 12, 86–88.PubMedCrossRefGoogle Scholar
  21. 21.
    Yu, L., Li-Hawkins, J., Hammer, R. E., Berge, K. E., Horton, J. D., Cohen, J. C., et al. (2002). Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. Journal of Clinical Investigation, 110, 671–680.PubMedCrossRefGoogle Scholar
  22. 22.
    Bailey-Dell, K. J., Hassel, B., Doyle, L. A., & Ross, D. D. (2001). Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochimica et Biophysica Acta, 1520, 234–241.PubMedGoogle Scholar
  23. 23.
    Knutsen, T., Rao, V. K., Ried, T., Mickley, L., Schneider, E., Miyake, K., et al. (2000). Amplification of 4q21-q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. Genes Chromosomes & Cancer, 27, 110–116.CrossRefGoogle Scholar
  24. 24.
    Ee, P. L., Kamalakaran, S., Tonetti, D., He, X., Ross, D. D., & Beck, W. T. (2004). Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Research, 64, 1247–1251.PubMedCrossRefGoogle Scholar
  25. 25.
    Imai, Y., Ishikawa, E., Asada, S., & Sugimoto, Y. (2005). Estrogen-mediated post transcriptional down-regulation of breast cancer resistance protein/ABCG2. Cancer Research, 65, 596–604.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang, H., Zhou, L., Gupta, A., Vethanayagam, R. R., Zhang, Y., Unadkat, J. D., et al. (2006). Regulation of BCRP/ABCG2 expression by progesterone and 17{beta}-estradiol in human placental BeWo cells. American Journal of Physiology: Endocrinology and Metabolism, 290(5), 798–807.CrossRefGoogle Scholar
  27. 27.
    Yasuda, S., Itagaki, S., Hirano, T., & Iseki, K. (2005). Expression level of ABCG2 in the placenta decreases from the mid stage to the end of gestation. Bioscience, Biotechnology, and Biochemistry, 69, 1871–1876.PubMedCrossRefGoogle Scholar
  28. 28.
    Jonker, J. W., Merino, G., Musters, S., van Herwaarden, A. E., Bolscher, E., Wagenaar, E., et al. (2005). The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nature Medicine, 11, 127–129.PubMedCrossRefGoogle Scholar
  29. 29.
    Krishnamurthy, P., Ross, D. D., Nakanishi, T., Bailey-Dell, K., Zhou, S., Mercer, K. E., et al. (2004). The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. Journal of Biological Chemistry, 279, 24218–24225.PubMedCrossRefGoogle Scholar
  30. 30.
    To, K. K., Zhan, Z., & Bates, S. E. (2006). Aberrant promoter methylation of the ABCG2 gene in renal carcinoma. Molecular and Cellular Biology, 26, 8572–8585.PubMedCrossRefGoogle Scholar
  31. 31.
    Turner, J. G., Gump, J. L., Zhang, C., Cook, J. M., Marchion, D., Hazlehurst, L., et al. (2006). ABCG2 expression, function and promoter methylation in human multiple myeloma. Blood, 108(12), 3881–3889.PubMedCrossRefGoogle Scholar
  32. 32.
    Maliepaard, M., Scheffer, G. L., Faneyte, I. F., van Gastelen, M. A., Pijnenborg, A. C., Schinkel, A. H., et al. (2001). Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Research, 61, 3458–3464.PubMedGoogle Scholar
  33. 33.
    Litman, T., Jensen, U., Hansen, A., Covitz, K., Zhan, Z., Fetsch, P., et al. (2002). Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2. Biochimica et Biophysica Acta, 1565, 6–16.PubMedGoogle Scholar
  34. 34.
    Fetsch, P. A., Abati, A., Litman, T., Morisaki, K., Honjo, Y., Mittal, K., et al. (2005). Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Letter, 235(1), 84–92.CrossRefGoogle Scholar
  35. 35.
    Jonker, J. W., Smit, J. W., Brinkhuis, R. F., Maliepaard, M., Beijnen, J. H., Schellens, J. H., et al. (2000). Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. Journal of the National Cancer Institute, 92, 1651–1656.PubMedCrossRefGoogle Scholar
  36. 36.
    Staud, F., Vackova, Z., Pospechova, K., Pavek, P., Ceckova, M., Libra, A., et al. (2006). Expression and transport activity of breast cancer resistance protein (Bcrp/Abcg2) in dually perfused rat placenta and HRP-1 cell line. Journal of Pharmacology and Experimental Therapeutics, 319, 53–62.PubMedCrossRefGoogle Scholar
  37. 37.
    van Herwaarden, A. E., Wagenaar, E., Karnekamp, B., Merino, G., Jonker, J. W., & Schinkel, A. H. (2006). Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis, 27, 123–130.PubMedCrossRefGoogle Scholar
  38. 38.
    Merino, G., Jonker, J. W., Wagenaar, E., van Herwaarden, A. E., & Schinkel, A. H. (2005). The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Molecular Pharmacology, 67, 1758–1764.PubMedCrossRefGoogle Scholar
  39. 39.
    Bart, J., Hollema, H., Groen, H. J., de Vries, E. G., Hendrikse, N. H., Sleijfer, D. T., et al. (2004). The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. European Journal of Cancer, 40, 2064–2070.PubMedCrossRefGoogle Scholar
  40. 40.
    Lassalle, B., Bastos, H., Louis, J. P., Riou, L., Testart, J., Dutrillaux, B., et al. (2004). ‘Side Population’ cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development, 131, 479–487.PubMedCrossRefGoogle Scholar
  41. 41.
    Cooray, H. C., Blackmore, C. G., Maskell, L., & Barrand, M. A. (2002). Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport, 13, 2059–2063.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang, W., Mojsilovic-Petrovic, J., Andrade, M. F., Zhang, H., Ball, M., & Stanimirovic, D. B. (2003). The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. FASEB Journal, 17, 2085–2087.PubMedGoogle Scholar
  43. 43.
    Cisternino, S., Mercier, C., Bourasset, F., Roux, F., & Scherrmann, J. M. (2004). Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Research, 64, 3296–3301.PubMedCrossRefGoogle Scholar
  44. 44.
    Breedveld, P., Pluim, D., Cipriani, G., Wielinga, P., van Tellingen, O., Schinkel, A. H., et al. (2005). The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): Implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Research, 65, 2577–2582.PubMedCrossRefGoogle Scholar
  45. 45.
    Loscher, W., & Potschka, H. (2005). Drug resistance in brain diseases and the role of drug efflux transporters. Nature Reviews. Neuroscience, 6, 591–602.PubMedCrossRefGoogle Scholar
  46. 46.
    Kruijtzer, C. M., Beijnen, J. H., Rosing, H., Ten Bokkel Huinink, W. W., Schot, M., Jewell, R. C., et al. (2002). Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. Journal of Clinical Oncology, 20, 2943–2950.PubMedCrossRefGoogle Scholar
  47. 47.
    Stewart, C. F., Leggas, M., Schuetz, J. D., Panetta, J. C., Cheshire, P. J., Peterson, J., et al. (2004). Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Research, 64, 7491–7499.PubMedCrossRefGoogle Scholar
  48. 48.
    van Herwaarden, A. E., Jonker, J. W., Wagenaar, E., Brinkhuis, R. F., Schellens, J. H., Beijnen, J. H., et al. (2003). The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Research, 63, 6447–6452.PubMedGoogle Scholar
  49. 49.
    Kuppens, I. E., Breedveld, P., Beijnen, J. H., & Schellens, J. H. (2005). Modulation of oral drug bioavailability: From preclinical mechanism to therapeutic application. Cancer Investigation, 23, 443–464.PubMedCrossRefGoogle Scholar
  50. 50.
    Schellens, J. H., Malingre, M. M., Kruijtzer, C. M., Bardelmeijer, H. A., van Tellingen, O., Schinkel, A. H., et al. (2000). Modulation of oral bioavailability of anticancer drugs: From mouse to man. European Journal of Pharmaceutical Sciences, 12, 103–110.PubMedCrossRefGoogle Scholar
  51. 51.
    Choudhuri, S., & Klaassen, C. D. (2006). Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. International Journal of Toxicology, 25, 231–259.PubMedCrossRefGoogle Scholar
  52. 52.
    Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183, 1797–1806.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7, 1028–1034.PubMedCrossRefGoogle Scholar
  54. 54.
    Scharenberg, C. W., Harkey, M. A., & Torok-Storb, B. (2002). The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 99, 507–512.PubMedCrossRefGoogle Scholar
  55. 55.
    Lown, K. S., Kolars, J. C., Thummel, K. E., Barnett, J. L., Kunze, K. L., Wrighton, S. A., et al. (1994). Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. Drug Metabolism and Disposition, 22, 947–955.PubMedGoogle Scholar
  56. 56.
    Zhou, S., Morris, J. J., Barnes, Y., Lan, L., Schuetz, J. D., & Sorrentino, B. P. (2002). Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 99, 12339–12344.PubMedCrossRefGoogle Scholar
  57. 57.
    Lechner, A., Leech, C. A., Abraham, E. J., Nolan, A. L., & Habener, J. F. (2002). Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochemical and Biophysical Research Communications, 293, 670–674.PubMedCrossRefGoogle Scholar
  58. 58.
    Alvi, A. J., Clayton, H., Joshi, C., Enver, T., Ashworth, A., Vivanco, M. M., et al. (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Research, 5, R1–R8.PubMedCrossRefGoogle Scholar
  59. 59.
    Summer, R., Kotton, D. N., Sun, X., Ma, B., Fitzsimmons, K., & Fine, A. (2003). Side population cells and Bcrp1 expression in lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285, L97–L104.PubMedGoogle Scholar
  60. 60.
    Budak, M. T., Alpdogan, O. S., Zhou, M., Lavker, R. M., Akinci, M. A., & Wolosin, J. M. (2005). Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. Journal of Cell Science, 118, 1715–1724.PubMedCrossRefGoogle Scholar
  61. 61.
    Du, Y., Funderburgh, M. L., Mann, M. M., SundarRaj, N., & Funderburgh, J. L. (2005). Multipotent stem cells in human corneal stroma. Stem Cells, 23, 1266–1275.PubMedCrossRefGoogle Scholar
  62. 62.
    Kondo, T., Setoguchi, T., & Taga, T. (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 101, 781–786.PubMedCrossRefGoogle Scholar
  63. 63.
    Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., Nuchtern, J. G., Jax, T. W., Gobel, U., et al. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 14228–14233.PubMedCrossRefGoogle Scholar
  64. 64.
    Seigel, G. M., Campbell, L. M., Narayan, M., & Gonzalez-Fernandez, F. (2005). Cancer stem cell characteristics in retinoblastoma. Molecular Vision, 11, 729–737.PubMedGoogle Scholar
  65. 65.
    Haraguchi, N., Utsunomiya, T., Inoue, H., Tanaka, F., Mimori, K., Barnard, G. F., et al. (2005). Characterization of a Side population of cancer cells from human gastrointestinal system. Stem Cells, 24(3), 506–513.PubMedCrossRefGoogle Scholar
  66. 66.
    Doyle, L. A., & Ross, D. D. (2003). Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene, 22, 7340–7358.PubMedCrossRefGoogle Scholar
  67. 67.
    Bates, S. E., Robey, R., Miyake, K., Rao, K., Ross, D. D., & Litman, T. (2001). The role of half-transporters in multidrug resistance. Journal of Bioenergetics and Biomembranes, 33, 503–511.PubMedCrossRefGoogle Scholar
  68. 68.
    Ross, D. D., Yang, W., Abruzzo, L. V., Dalton, W. S., Schneider, E., Lage, H., et al. (1999). Atypical multidrug resistance: Breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. Journal of the National Cancer Institute, 91, 429–433.PubMedCrossRefGoogle Scholar
  69. 69.
    Ma, J., Maliepaard, M., Nooter, K., Loos, W. J., Kolker, H. J., Verweij, J., et al. (1998). Reduced cellular accumulation of topotecan: A novel mechanism of resistance in a human ovarian cancer cell line. British Journal of Cancer, 77, 1645–1652.PubMedGoogle Scholar
  70. 70.
    Maliepaard, M., van Gastelen, M. A., de Jong, L. A., Pluim, D., van Waardenburg, R. C., Ruevekamp-Helmers, M. C., et al. (1999). Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Research, 59, 4559–4563.PubMedGoogle Scholar
  71. 71.
    Kawabata, S., Oka, M., Shiozawa, K., Tsukamoto, K., Nakatomi, K., Soda, H., et al. (2001). Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochemical and Biophysical Research Communications, 280, 1216–1223.PubMedCrossRefGoogle Scholar
  72. 72.
    Robey, R. W., Medina-Perez, W. Y., Nishiyama, K., Lahusen, T., Miyake, K., Litman, T., et al. (2001). Overexpression of the ATP-binding cassette half-transporter, ABCG2 (MXR/BCRP/ABCP1), in flavopiridol-resistant human breast cancer cells. Clinical Cancer Research, 7, 145–152.PubMedGoogle Scholar
  73. 73.
    van Hattum, A. H., Hoogsteen, I. J., Schluper, H. M., Maliepaard, M., Scheffer, G. L., Scheper, R. J., et al. (2002). Induction of breast cancer resistance protein by the camptothecin derivative DX-8951f is associated with minor reduction of antitumour activity. British Journal of Cancer, 87, 665–672.PubMedCrossRefGoogle Scholar
  74. 74.
    Van Hattum, A. H., Schluper, H. M., Hausheer, F. H., Pinedo, H. M., & Boven, E. (2002). Novel camptothecin derivative BNP1350 in experimental human ovarian cancer: Determination of efficacy and possible mechanisms of resistance. International Journal of Cancer, 100, 22–29.CrossRefGoogle Scholar
  75. 75.
    Komatani, H., Kotani, H., Hara, Y., Nakagawa, R., Matsumoto, M., Arakawa, H., et al. (2001). Identification of breast cancer resistant protein/mitoxantrone resistance/placenta-specific, ATP-binding cassette transporter as a transporter of NB-506 and J-107088, topoisomerase I inhibitors with an indolocarbazole structure. Cancer Research, 61, 2827–2832.PubMedGoogle Scholar
  76. 76.
    Erlichman, C., Boerner, S. A., Hallgren, C. G., Spieker, R., Wang, X. Y., James, C. D., et al. (2001). The HER tyrosine kinase inhibitor CI1033 enhances cytotoxicity of 7-ethyl-10-hydroxycamptothecin and topotecan by inhibiting breast cancer resistance protein-mediated drug efflux. Cancer Research, 61, 739–748.PubMedGoogle Scholar
  77. 77.
    Elkind, N. B., Szentpetery, Z., Apati, A., Ozvegy-Laczka, C., Varady, G., Ujhelly, O., et al. (2005). Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Research, 65, 1770–1777.PubMedCrossRefGoogle Scholar
  78. 78.
    Burger, H., van Tol, H., Boersma, A. W., Brok, M., Wiemer, E. A., Stoter, G., et al. (2004). Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood, 104, 2940–2942.PubMedCrossRefGoogle Scholar
  79. 79.
    Chen, Z. S., Robey, R. W., Belinsky, M. G., Shchaveleva, I., Ren, X. Q., Sugimoto, Y., et al. (2003). Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: Effects of acquired mutations at R482 on methotrexate transport. Cancer Research, 63, 4048–4054.PubMedGoogle Scholar
  80. 80.
    Volk, E. L., & Schneider, E. (2003). Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Research, 63, 5538–5543.PubMedGoogle Scholar
  81. 81.
    Shafran, A., Ifergan, I., Bram, E., Jansen, G., Kathmann, I., Peters, G. J., et al. (2005). ABCG2 harboring the Gly482 mutation confers high-level resistance to various hydrophilic antifolates. Cancer Research, 65, 8414–8422.PubMedCrossRefGoogle Scholar
  82. 82.
    Lee, J. S., Scala, S., Matsumoto, Y., Dickstein, B., Robey, R., Zhan, Z., et al. (1997). Reduced drug accumulation and multidrug resistance in human breast cancer cells without associated P-glycoprotein or MRP overexpression. Journal of Cellular Biochemistry, 65, 513–526.PubMedCrossRefGoogle Scholar
  83. 83.
    Rabindran, S. K., He, H., Singh, M., Brown, E., Collins, K. I., Annable, T., et al. (1998). Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Research, 58, 5850–5858.PubMedGoogle Scholar
  84. 84.
    Robey, R. W., Honjo, Y., van de Laar, A., Miyake, K., Regis, J. T., Litman, T., et al. (2001). A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2). Biochimica et Biophysica Acta, 1512, 171–182.PubMedGoogle Scholar
  85. 85.
    Honjo, Y., Hrycyna, C. A., Yan, Q. W., Medina-Perez, W. Y., Robey, R. W., van de Laar, A., et al. (2001). Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Research, 61, 6635–6639.PubMedGoogle Scholar
  86. 86.
    Allen, J. D., Jackson, S. C., & Schinkel, A. H. (2002). A mutation hot spot in the Bcrp1 (Abcg2) multidrug transporter in mouse cell lines selected for Doxorubicin resistance. Cancer Research, 62, 2294–2299.PubMedGoogle Scholar
  87. 87.
    Ozvegy-Laczka, C., Koblos, G., Sarkadi, B., & Varadi, A. (2005). Single amino acid (482) variants of the ABCG2 multidrug transporter: Major differences in transport capacity and substrate recognition. Biochimica et Biophysica Acta, 1668, 53–63.PubMedGoogle Scholar
  88. 88.
    Ejendal, K. F., Diop, N. K., Schweiger, L. C., & Hrycyna, C. A. (2006). The nature of amino acid 482 of human ABCG2 affects substrate transport and ATP hydrolysis but not substrate binding. Protein Science, 15, 1597–1607.PubMedCrossRefGoogle Scholar
  89. 89.
    Miwa, M., Tsukahara, S., Ishikawa, E., Asada, S., Imai, Y., & Sugimoto, Y. (2003). Single amino acid substitutions in the transmembrane domains of breast cancer resistance protein (BCRP) alter cross resistance patterns in transfectants. International Journal of Cancer, 107, 757–763.CrossRefGoogle Scholar
  90. 90.
    Robey, R. W., Honjo, Y., Morisaki, K., Nadjem, T. A., Runge, S., Risbood, M., et al. (2003). Mutations at amino acid 482 in the ABCG2 gene affect substrate and antagonist specificity. British Journal of Cancer, 89, 1971–1978.PubMedCrossRefGoogle Scholar
  91. 91.
    Minderman, H., O’Loughlin, K. L., Pendyala, L., & Baer, M. R. (2004). VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clinical Cancer Research, 10, 1826–1834.PubMedCrossRefGoogle Scholar
  92. 92.
    Huang, L., Wang, Y., & Grimm, S. W. (2006). ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistant protein. Drug Metabolism and Disposition, 34(5), 738–742.PubMedCrossRefGoogle Scholar
  93. 93.
    Fujino, H., Saito, T., Ogawa, S., & Kojima, J. (2005). Transporter-mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of HMG-CoA reductase. Journal of Pharmacy and Pharmacology, 57, 1305–1311.PubMedCrossRefGoogle Scholar
  94. 94.
    Hirano, M., Maeda, K., Matsushima, S., Nozaki, Y., Kusuhara, H., & Sugiyama, Y. (2005). Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Molecular Pharmacology, 68, 800–807.PubMedGoogle Scholar
  95. 95.
    Matsushima, S., Maeda, K., Kondo, C., Hirano, M., Sasaki, M., Suzuki, H., et al. (2005). Identification of the hepatic efflux transporters of organic anions using double-transfected Madin–Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. Journal of Pharmacology and Experimental Therapeutics, 314, 1059–1067.PubMedCrossRefGoogle Scholar
  96. 96.
    Imai, Y., Tsukahara, S., Asada, S., & Sugimoto, Y. (2004). Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Research, 64, 4346–4352.PubMedCrossRefGoogle Scholar
  97. 97.
    Sesink, A. L., Arts, I. C., de Boer, V. C., Breedveld, P., Schellens, J. H., Hollman, P. C., et al. (2005). Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Molecular Pharmacology, 67, 1999–2006.PubMedCrossRefGoogle Scholar
  98. 98.
    Youdim, K. A., Qaiser, M. Z., Begley, D. J., Rice-Evans, C. A., & Abbott, N. J. (2004). Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radical Biology & Medicine, 36, 592–604.CrossRefGoogle Scholar
  99. 99.
    Merino, G., Alvarez, A. I., Pulido, M. M., Molina, A. J., Schinkel, A. H., & Prieto, J. G. (2006). Breast Cancer Resistance Protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics and milk secretion. Drug Metabolism and Disposition, 34(4), 690–695.PubMedCrossRefGoogle Scholar
  100. 100.
    Janvilisri, T., Shahi, S., Venter, H., Balakrishnan, L., & van Veen, H. W. (2005). Arginine-482 is not essential for transport of antibiotics, primary bile acids and unconjugated sterols by the human breast cancer resistance protein (ABCG2). Biochemical Journal, 385, 419–426.PubMedCrossRefGoogle Scholar
  101. 101.
    Merino, G., Jonker, J. W., Wagenaar, E., Pulido, M. M., Molina, A. J., Alvarez, A. I., et al. (2005). Transport of anthelmintic benzimidazole drugs by breast cancer resistance protein (BCRP/ABCG2). Drug Metabolism and Disposition, 33, 614–618.PubMedCrossRefGoogle Scholar
  102. 102.
    Rabindran, S. K., Ross, D. D., Doyle, L. A., Yang, W., & Greenberger, L. M. (2000). Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Research, 60, 47–50.PubMedGoogle Scholar
  103. 103.
    Allen, J. D., van Loevezijn, A., Lakhai, J. M., van der Valk, M., van Tellingen, O., Reid, G., et al. (2002). Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Molecular Cancer Therapeutics, 1, 417–425.PubMedGoogle Scholar
  104. 104.
    van Loevezijn, A., Allen, J. D., Schinkel, A. H., & Koomen, G. J. (2001). Inhibition of BCRP-mediated drug efflux by fumitremorgin-type indolyl diketopiperazines. Bioorganic & Medicinal Chemistry Letters, 11, 29–32.CrossRefGoogle Scholar
  105. 105.
    Woehlecke, H., Osada, H., Herrmann, A., & Lage, H. (2003). Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. International Journal of Cancer, 107, 721–728.CrossRefGoogle Scholar
  106. 106.
    de Bruin, M., Miyake, K., Litman, T., Robey, R., & Bates, S. E. (1999). Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Letter, 146, 117–126.CrossRefGoogle Scholar
  107. 107.
    Robey, R. W., Steadman, K., Polgar, O., Morisaki, K., Blayney, M., Mistry, P., et al. (2004). Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Research, 64, 1242–1246.PubMedCrossRefGoogle Scholar
  108. 108.
    Yang, C. H., Chen, Y. C., & Kuo, M. L. (2003). Novobiocin sensitizes BCRP/MXR/ABCP overexpressing topotecan-resistant human breast carcinoma cells to topotecan and mitoxantrone. Anticancer Research, 23, 2519–2523.PubMedGoogle Scholar
  109. 109.
    Shiozawa, K., Oka, M., Soda, H., Yoshikawa, M., Ikegami, Y., Tsurutani, J., et al. (2004). Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. International Journal of Cancer, 108, 146–151.CrossRefGoogle Scholar
  110. 110.
    Yanase, K., Tsukahara, S., Asada, S., Ishikawa, E., Imai, Y., & Sugimoto, Y. (2004). Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Molecular Cancer Therapeutics, 3, 1119–1125.PubMedGoogle Scholar
  111. 111.
    Cooray, H. C., Janvilisri, T., van Veen, H. W., Hladky, S. B., & Barrand, M. A. (2004). Interaction of the breast cancer resistance protein with plant polyphenols. Biochemical and Biophysical Research Communications, 317, 269–275.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang, S., Wang, X., Sagawa, K., & Morris, M. E. (2005). Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (−/−) mice. Drug Metabolism and Disposition, 33, 341–348.PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang, S., Yang, X., & Morris, M. E. (2004). Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Molecular Pharmacology, 65, 1208–1216.PubMedCrossRefGoogle Scholar
  114. 114.
    Zhang, S., Yang, X., Coburn, R. A., & Morris, M. E. (2005). Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochemical Pharmacology, 70, 627–639.PubMedCrossRefGoogle Scholar
  115. 115.
    Ahmed-Belkacem, A., Pozza, A., Munoz-Martinez, F., Bates, S. E., Castanys, S., Gamarro, F., et al. (2005). Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Research, 65, 4852–4860.PubMedCrossRefGoogle Scholar
  116. 116.
    Zhou, X. F., Yang, X., Wang, Q., Coburn, R. A., & Morris, M. E. (2005). Effects of dihydropyridines and pyridines on multidrug resistance mediated by breast cancer resistance protein: In vitro and in vivo studies. Drug Metabolism and Disposition, 33, 1220–1228.PubMedCrossRefGoogle Scholar
  117. 117.
    Shukla, S., Robey, R. W., Bates, S. E., & Ambudkar, S. V. (2006). The calcium channel blockers, 1,4-dihydropyridines, are substrates of the multidrug resistance-linked ABC drug transporter, ABCG2. Biochemistry, 45, 8940–8951.PubMedCrossRefGoogle Scholar
  118. 118.
    Cascorbi, I. (2006). Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacology & Therapeutics, 112(2), 457–473.CrossRefGoogle Scholar
  119. 119.
    Imai, Y., Nakane, M., Kage, K., Tsukahara, S., Ishikawa, E., Tsuruo, T., et al. (2002). C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Molecular Cancer Therapeutics, 1, 611–616.PubMedGoogle Scholar
  120. 120.
    Kondo, C., Suzuki, H., Itoda, M., Ozawa, S., Sawada, J., Kobayashi, D., et al. (2004). Functional analysis of SNPs variants of BCRP/ABCG2. Pharmaceutical Research, 21, 1895–1903.PubMedCrossRefGoogle Scholar
  121. 121.
    Kobayashi, D., Ieiri, I., Hirota, T., Takane, H., Maegawa, S., Kigawa, J., et al. (2005). Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metabolism and Disposition, 33, 94–101.PubMedCrossRefGoogle Scholar
  122. 122.
    Morisaki, K., Robey, R. W., Ozvegy-Laczka, C., Honjo, Y., Polgar, O., Steadman, K., et al. (2005). Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemotherapy and Pharmacology, 56, 161–172.PubMedCrossRefGoogle Scholar
  123. 123.
    Mizuarai, S., Aozasa, N., & Kotani, H. (2004). Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. International Journal of Cancer, 109, 238–246.CrossRefGoogle Scholar
  124. 124.
    de Jong, F. A., Marsh, S., Mathijssen, R. H., King, C., Verweij, J., Sparreboom, A., et al. (2004). ABCG2 pharmacogenetics: Ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clinical Cancer Research, 10, 5889–5894.PubMedCrossRefGoogle Scholar
  125. 125.
    Sparreboom, A., Loos, W. J., Burger, H., Sissung, T. M., Verweij, J., Figg, W. D., et al. (2005). Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biology & Therapy 4, 650–658.CrossRefGoogle Scholar
  126. 126.
    Sparreboom, A., Gelderblom, H., Marsh, S., Ahluwalia, R., Obach, R., Principe, P., et al. (2004). Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clinical Pharmacology and Therapeutics, 76, 38–44.PubMedCrossRefGoogle Scholar
  127. 127.
    Zamboni, W. C., Ramanathan, R. K., McLeod, H. L., Mani, S., Potter, D. M., Strychor, S., et al. (2006). Disposition of 9-nitrocamptothecin and its 9-aminocamptothecin metabolite in relation to ABC transporter genotypes. Investigational New Drugs, 24, 393–401.PubMedCrossRefGoogle Scholar
  128. 128.
    Ross, D. D., Karp, J. E., Chen, T. T., & Doyle, L. A. (2000). Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood, 96, 365–368.PubMedGoogle Scholar
  129. 129.
    Galimberti, S., Guerrini, F., Palumbo, G. A., Consoli, U., Fazzi, R., Morabito, F., et al. (2004). Evaluation of BCRP and MDR-1 co-expression by quantitative molecular assessment in AML patients. Leukemia Research, 28, 367–372.PubMedCrossRefGoogle Scholar
  130. 130.
    van Der Kolk, D. M., Vellenga, E., Scheffer, G. L., Muller, M., Bates, S. E., Scheper, R. J., et al. (2002). Expression and activity of breast cancer resistance protein (BCRP) in de novo and relapsed acute myeloid leukemia. Blood, 99, 3763–3770.PubMedCrossRefGoogle Scholar
  131. 131.
    Abbott, B. L., Colapietro, A. M., Barnes, Y., Marini, F., Andreeff, M., & Sorrentino, B. P. (2002). Low levels of ABCG2 expression in adult AML blast samples. Blood, 100, 4594–4601.PubMedCrossRefGoogle Scholar
  132. 132.
    van der Pol, M. A., Broxterman, H. J., Pater, J. M., Feller, N., van der Maas, M., Weijers, G. W., et al. (2003). Function of the ABC transporters, P-glycoprotein, multidrug resistance protein and breast cancer resistance protein, in minimal residual disease in acute myeloid leukemia. Haematologica, 88, 134–147.PubMedGoogle Scholar
  133. 133.
    Benderra, Z., Faussat, A. M., Sayada, L., Perrot, J. Y., Chaoui, D., Marie, J. P., et al. (2004). Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clinical Cancer Research, 10, 7896–7902.PubMedCrossRefGoogle Scholar
  134. 134.
    Uggla, B., Stahl, E., Wagsater, D., Paul, C., Karlsson, M. G., Sirsjo, A., et al. (2005). BCRP mRNA expression v. clinical outcome in 40 adult AML patients. Leukemia Research, 29, 141–146.PubMedCrossRefGoogle Scholar
  135. 135.
    Suvannasankha, A., Minderman, H., O’Loughlin, K. L., Nakanishi, T., Ford, L. A., Greco, W. R., et al. (2004). Breast cancer resistance protein (BCRP/MXR/ABCG2) in adult acute lymphoblastic leukaemia: Frequent expression and possible correlation with shorter disease-free survival. British Journal of Haematology, 127, 392–398.PubMedCrossRefGoogle Scholar
  136. 136.
    Steinbach, D., Sell, W., Voigt, A., Hermann, J., Zintl, F., & Sauerbrey, A. (2002). BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia, 16, 1443–1447.PubMedCrossRefGoogle Scholar
  137. 137.
    Stam, R. W., van den Heuvel-Eibrink, M. M., den Boer, M. L., Ebus, M. E., Janka-Schaub, G. E., Allen, J. D., et al. (2004). Multidrug resistance genes in infant acute lymphoblastic leukemia: Ara-C is not a substrate for the breast cancer resistance protein. Leukemia, 18, 78–83.PubMedCrossRefGoogle Scholar
  138. 138.
    Sauerbrey, A., Sell, W., Steinbach, D., Voigt, A., & Zintl, F. (2002). Expression of the BCRP gene (ABCG2/MXR/ABCP) in childhood acute lymphoblastic leukaemia. British Journal of Haematology, 118, 147–150.PubMedCrossRefGoogle Scholar
  139. 139.
    Wilson, C. S., Davidson, G. S., Martin, S. B., Andries, E., Potter, J., Harvey, R., et al. (2006). Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood, 108, 685–696.PubMedCrossRefGoogle Scholar
  140. 140.
    Diestra, J. E., Scheffer, G. L., Catala, I., Maliepaard, M., Schellens, J. H., Scheper, R. J., et al. (2002). Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. Journal of Pathology, 198, 213–219.PubMedCrossRefGoogle Scholar
  141. 141.
    Kanzaki, A., Toi, M., Nakayama, K., Bando, H., Mutoh, M., Uchida, T., et al. (2001). Expression of multidrug resistance-related transporters in human breast carcinoma. Japanese Journal of Cancer Research, 92, 452–458.PubMedGoogle Scholar
  142. 142.
    Faneyte, I. F., Kristel, P. M., Maliepaard, M., Scheffer, G. L., Scheper, R. J., Schellens, J. H., et al. (2002). Expression of the breast cancer resistance protein in breast cancer. Clinical Cancer Research, 8, 1068–1074.PubMedGoogle Scholar
  143. 143.
    Burger, H., Foekens, J. A., Look, M. P., Meijer-van Gelder, M. E., Klijn, J. G., Wiemer, E. A., et al. (2003). RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: Correlation with chemotherapeutic response. Clinical Cancer Research, 9, 827–836.PubMedGoogle Scholar
  144. 144.
    Yoh, K., Ishii, G., Yokose, T., Minegishi, Y., Tsuta, K., Goto, K., et al. (2004). Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clinical Cancer Research, 10, 1691–1697.PubMedCrossRefGoogle Scholar
  145. 145.
    Friedrich, R. E., Punke, C., & Reymann, A. (2004). Expression of multi-drug resistance genes (mdr1, mrp1, bcrp) in primary oral squamous cell carcinoma. In Vivo, 18, 133–147.PubMedGoogle Scholar
  146. 146.
    Zurita, A. J., Diestra, J. E., Condom, E., Garcia Del Muro, X., Scheffer, G. L., Scheper, R. J., et al. (2003). Lung resistance-related protein as a predictor of clinical outcome in advanced testicular germ-cell tumours. British Journal of Cancer, 88, 879–886.PubMedCrossRefGoogle Scholar
  147. 147.
    Diestra, J. E., Condom, E., Del Muro, X. G., Scheffer, G. L., Perez, J., Zurita, A. J., et al. (2003). Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: Biological and clinical implications. Journal of Urology, 170, 1383–1387.PubMedCrossRefGoogle Scholar
  148. 148.
    Bunting, K. D. (2002). ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells, 20, 11–20.PubMedCrossRefGoogle Scholar
  149. 149.
    Jonker, J. W., Freeman, J., Bolscher, E., Musters, S., Alvi, A. J., Titley, I., et al. (2005). Contribution of the ABC transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice. Stem Cells, 23, 1059–1065.PubMedCrossRefGoogle Scholar
  150. 150.
    Hussain, S. Z., Strom, S. C., Kirby, M. R., Burns, S., Langemeijer, S., Ueda, T., et al. (2005). Side population cells derived from adult human liver generate hepatocyte-like cells in vitro. Digestive Diseases and Sciences, 50, 1755–1763.PubMedCrossRefGoogle Scholar
  151. 151.
    Minor, D. R., Monroe, D., Damico, L. A., Meng, G., Suryadevara, U., & Elias, L. (2002). A phase II study of thalidomide in advanced metastatic renal cell carcinoma. Investigational New Drugs, 20, 389–393.PubMedCrossRefGoogle Scholar
  152. 152.
    Montanaro, F., Liadaki, K., Schienda, J., Flint, A., Gussoni, E., & Kunkel, L. M. (2004). Demystifying SP cell purification: Viability, yield, and phenotype are defined by isolation parameters. Experimental Cell Research, 298, 144–154.PubMedCrossRefGoogle Scholar
  153. 153.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J., Claypool, K., & Tang, D. G. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Research, 65, 6207–6219.PubMedCrossRefGoogle Scholar
  154. 154.
    Beck, W. T., Grogan, T. M., Willman, C. L., Cordon-Cardo, C., Parham, D. M., Kuttesch, J. F., et al. (1996). Methods to detect P-glycoprotein-associated multidrug resistance in patients’ tumors: Consensus recommendations. Cancer Research, 56, 3010–3020.PubMedGoogle Scholar
  155. 155.
    Glasgow, S. C., Yu, J., Carvalho, L. P., Shannon, W. D., Fleshman, J. W., & McLeod, H. L. (2005). Unfavourable expression of pharmacologic markers in mucinous colorectal cancer. British Journal of Cancer, 92, 259–264.PubMedGoogle Scholar
  156. 156.
    Konig, J., Hartel, M., Nies, A. T., Martignoni, M. E., Guo, J., Buchler, M. W., et al. (2005). Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. International Journal of Cancer, 115, 359–367.CrossRefGoogle Scholar
  157. 157.
    van Den Heuvel-Eibrink, M. M., Wiemer, E. A., Prins, A., Meijerink, J. P., Vossebeld, P. J., Van Der Holt, B., et al. (2002). Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML). Leukemia, 16, 833–839.PubMedCrossRefGoogle Scholar
  158. 158.
    Nishiyama, K., Shirahama, T., Yoshimura, A., Sumizawa, T., Furukawa, T., Ichikawa-Haraguchi, M., et al. (1993). Expression of the multidrug transporter, p-glycoprotein, in renal and transitional cell carcinomas. Cancer, 71, 3611–3619.PubMedCrossRefGoogle Scholar
  159. 159.
    Clarke, R., Leonessa, F., & Trock, B. (2005). Multidrug resistance/P-glycoprotein and breast cancer: Review and meta-analysis. Seminars in Oncology, 32, S9–S15.PubMedCrossRefGoogle Scholar
  160. 160.
    Robey, R. W., Fetsch, P. A., Polgar, O., Dean, M., & Bates, S. E. (2006). The livestock photosensitizer, phytoporphyrin (phylloerythrin), is a substrate of the ATP-binding cassette transporter ABCG2. Research in Veterinary Science, 81, 345–349.PubMedCrossRefGoogle Scholar
  161. 161.
    Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., et al. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 265, 262–275.PubMedCrossRefGoogle Scholar
  162. 162.
    Theou, N., Gil, S., Devocelle, A., Julie, C., Lavergne-Slove, A., Beauchet, A., et al. (2005). Multidrug resistance proteins in gastrointestinal stromal tumors: Site-dependent expression and initial response to imatinib. Clinical Cancer Research, 11, 7593–7598.PubMedCrossRefGoogle Scholar
  163. 163.
    Minderman, H., Suvannasankha, A., O’Loughlin, K. L., Scheffer, G. L., Scheper, R. J., Robey, R. W., et al. (2002). Flow cytometric analysis of breast cancer resistance protein expression and function. Cytometry, 48, 59–65.PubMedCrossRefGoogle Scholar
  164. 164.
    Kawabata, S., Oka, M., Soda, H., Shiozawa, K., Nakatomi, K., Tsurutani, J., et al. (2003). Expression and functional analyses of breast cancer resistance protein in lung cancer. Clinical Cancer Research, 9, 3052–3057.PubMedGoogle Scholar
  165. 165.
    Minderman, H., Brooks, T. A., O’Loughlin, K. L., Ojima, I., Bernacki, R. J., & Baer, M. R. (2004). Broad-spectrum modulation of ATP-binding cassette transport proteins by the taxane derivatives ortataxel (IDN-5109, BAY 59-8862) and tRA96023. Cancer Chemotherapy and Pharmacology, 53, 363–369.PubMedCrossRefGoogle Scholar
  166. 166.
    Ozvegy-Laczka, C., Varady, G., Koblos, G., Ujhelly, O., Cervenak, J., Schuetz, J. D., et al. (2005). Function-dependent conformational changes of the ABCG2 multidrug transporter modify its interaction with a monoclonal antibody on the cell surface. Journal of Biological Chemistry, 280, 4219–4227.PubMedCrossRefGoogle Scholar
  167. 167.
    Goda, K., Nagy, H., Mechetner, E., Cianfriglia, M., & Szabo, G. Jr (2002). Effects of ATP depletion and phosphate analogues on P-glycoprotein conformation in live cells. European Journal of Biochemistry, 269, 2672–2677.PubMedCrossRefGoogle Scholar
  168. 168.
    Nobili, S., Landini, I., Giglioni, B., & Mini, E. (2006). Pharmacological strategies for overcoming multidrug resistance. Current Drug Targets, 7, 861–879.PubMedCrossRefGoogle Scholar
  169. 169.
    Ozvegy, C., Varadi, A., & Sarkadi, B. (2002). Characterization of drug transport, ATP hydrolysis and nucleotide trapping by the human ABCG2 multidrug transporter: Modulation of substrate specificity by a point mutation. Journal of Biological Chemistry, 277, 47980–47990.PubMedCrossRefGoogle Scholar
  170. 170.
    Nakanishi, T., Doyle, L. A., Hassel, B., Wei, Y., Bauer, K. S., Wu, S., et al. (2003). Functional characterization of human breast cancer resistance protein (BCRP, ABCG2) expressed in the oocytes of Xenopus laevis. Molecular Pharmacology, 64, 1452–1462.PubMedCrossRefGoogle Scholar
  171. 171.
    Allen, J. D., Van Dort, S. C., Buitelaar, M., van Tellingen, O., & Schinkel, A. H. (2003). Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Research, 63, 1339–1344.PubMedGoogle Scholar
  172. 172.
    Brangi, M., Litman, T., Ciotti, M., Nishiyama, K., Kohlhagen, G., Takimoto, C., et al. (1999). Camptothecin resistance: Role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Research, 59, 5938–5946.PubMedGoogle Scholar
  173. 173.
    Allen, J. D., Brinkhuis, R. F., Wijnholds, J., & Schinkel, A. H. (1999). The mouse Bcrp1/Mxr/Abcp gene: Amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Research, 59, 4237–4241.PubMedGoogle Scholar
  174. 174.
    Rajendra, R., Gounder, M. K., Saleem, A., Schellens, J. H., Ross, D. D., Bates, S. E., et al. (2003). Differential effects of the breast cancer resistance protein on the cellular accumulation and cytotoxicity of 9-aminocamptothecin and 9-nitrocamptothecin. Cancer Research, 63, 3228–3233.PubMedGoogle Scholar
  175. 175.
    Maliepaard, M., van Gastelen, M. A., Tohgo, A., Hausheer, F. H., van Waardenburg, R. C., de Jong, L. A., et al. (2001). Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clinical Cancer Research, 7, 935–941.PubMedGoogle Scholar
  176. 176.
    Yang, C. H., Schneider, E., Kuo, M. L., Volk, E. L., Rocchi, E., & Chen, Y. C. (2000). BCRP/MXR/ABCP expression in topotecan-resistant human breast carcinoma cells. Biochemical Pharmacology, 60, 831–837.PubMedCrossRefGoogle Scholar
  177. 177.
    Litman, T., Brangi, M., Hudson, E., Fetsch, P., Abati, A., Ross, D. D., et al. (2000). The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). Journal of Cell Science, 113, 2011–2021.PubMedGoogle Scholar
  178. 178.
    Ishii, M., Iwahana, M., Mitsui, I., Minami, M., Imagawa, S., Tohgo, A., et al. (2000). Growth inhibitory effect of a new camptothecin analog, DX-8951f, on various drug-resistant sublines including BCRP-mediated camptothecin derivative-resistant variants derived from the human lung cancer cell line PC-6. Anticancer Drugs, 11, 353–362.PubMedCrossRefGoogle Scholar
  179. 179.
    Schellens, J. H., Maliepaard, M., Scheper, R. J., Scheffer, G. L., Jonker, J. W., Smit, J. W., et al. (2000). Transport of topoisomerase I inhibitors by the breast cancer resistance protein. Potential clinical implications. Annals of the New York Academy of Sciences, 922, 188–194.PubMedCrossRefGoogle Scholar
  180. 180.
    Nakatomi, K., Yoshikawa, M., Oka, M., Ikegami, Y., Hayasaka, S., Sano, K., et al. (2001). Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochemical and Biophysical Research Communications, 288, 827–832.PubMedCrossRefGoogle Scholar
  181. 181.
    Yoshikawa, M., Ikegami, Y., Sano, K., Yoshida, H., Mitomo, H., Sawada, S., et al. (2004). Transport of SN-38 by the wild type of human ABC transporter ABCG2 and its inhibition by quercetin, a natural flavonoid. Journal of Experimental Therapeutics & Oncology, 4, 25–35.Google Scholar
  182. 182.
    Bates, S. E., Medina-Perez, W. Y., Kohlhagen, G., Antony, S., Nadjem, T., Robey, R. W., et al. (2004). ABCG2 mediates differential resistance to SN-38 and homocamptothecins. Journal of Pharmacology and Experimental Therapeutics, 310, 836–842.PubMedCrossRefGoogle Scholar
  183. 183.
    Volk, E. L., Farley, K. M., Wu, Y., Li, F., Robey, R. W., & Schneider, E. (2002). Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Research, 62, 5035–5040.PubMedGoogle Scholar
  184. 184.
    Mitomo, H., Kato, R., Ito, A., Kasamatsu, S., Ikegami, Y., Kii, I., et al. (2003). A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: Critical role of arginine-482 in methotrexate transport. Biochemical Journal, 373, 767–774.PubMedCrossRefGoogle Scholar
  185. 185.
    Jonker, J. W., Buitelaar, M., Wagenaar, E., Van Der Valk, M. A., Scheffer, G. L., Scheper, R. J., et al. (2002). The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proceedings of the National Academy of Sciences of the United States of America, 99, 15649–15654.PubMedCrossRefGoogle Scholar
  186. 186.
    Robey, R. W., Steadman, K., Polgar, O., & Bates, S. E. (2005). ABCG2-mediated transport of photosensitizers: Potential impact on photodynamic therapy. Cancer Biology & Theraphy, 4, 187–194.CrossRefGoogle Scholar
  187. 187.
    Gupta, A., Dai, Y., Vethanayagam, R. R., Hebert, M. F., Thummel, K. E., Unadkat, J. D., et al. (2006). Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan. Cancer Chemotherapy and Pharmacology, 58(3), 374–383.PubMedCrossRefGoogle Scholar
  188. 188.
    Qadir, M., O’Loughlin, K. L., Fricke, S. M., Williamson, N. A., Greco, W. R., Minderman, H., et al. (2005). Cyclosporin A is a broad-spectrum multidrug resistance modulator. Clinical Cancer Research, 11, 2320–2326.PubMedCrossRefGoogle Scholar
  189. 189.
    Nakamura, Y., Oka, M., Soda, H., Shiozawa, K., Yoshikawa, M., Itoh, A., et al. (2005). Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Research, 65, 1541–1546.PubMedCrossRefGoogle Scholar
  190. 190.
    Braun, A. H., Stark, K., Dirsch, O., Hilger, R. A., Seeber, S., & Vanhoefer, U. (2005). The epidermal growth factor receptor tyrosine kinase inhibitor gefitinib sensitizes colon cancer cells to irinotecan. Anticancer Drugs, 16, 1099–1108.PubMedCrossRefGoogle Scholar
  191. 191.
    Ozvegy-Laczka, C., Hegedus, T., Varady, G., Ujhelly, O., Schuetz, J. D., Varadi, A., et al. (2004). High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Molecular Pharmacology, 65, 1485–1495.PubMedCrossRefGoogle Scholar
  192. 192.
    Houghton, P. J., Germain, G. S., Harwood, F. C., Schuetz, J. D., Stewart, C. F., Buchdunger, E., et al. (2004). Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Research, 64, 2333–2337.PubMedCrossRefGoogle Scholar
  193. 193.
    Imai, Y., Tsukahara, S., Ishikawa, E., Tsuruo, T., & Sugimoto, Y. (2002). Estrone and 17beta-estradiol reverse breast cancer resistance protein-mediated multidrug resistance. Japanese Journal of Cancer Research, 93, 231–235.PubMedGoogle Scholar
  194. 194.
    Sugimoto, Y., Tsukahara, S., Imai, Y., Sugimoto, Y., Ueda, K., & Tsuruo, T. (2003). Reversal of breast cancer resistance protein-mediated drug resistance by estrogen antagonists and agonists. Molecular Cancer Therapeutics, 2, 105–112.PubMedGoogle Scholar
  195. 195.
    Jekerle, V., Klinkhammer, W., Scollard, D. A., Breitbach, K., Reilly, R. M., Piquette-Miller, M., et al. (2006). In vitro and in vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques. International Journal of Cancer, 119, 414–422.CrossRefGoogle Scholar
  196. 196.
    Limtrakul, P., Chearwae, W., Shukla, S., Phisalphong, C., & Ambudkar, S. V. (2006). Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Molecular and Cellular Biochemistry.Google Scholar
  197. 197.
    Chearwae, W., Shukla, S., Limtrakul, P., & Ambudkar, S. V. (2006). Modulation of the function of the multidrug resistance-linked ATP-binding cassette transporter ABCG2 by the cancer chemopreventive agent curcumin. Molecular Cancer Therapeutics, 5, 1995–2006.PubMedCrossRefGoogle Scholar
  198. 198.
    Zhang, Y., Gupta, A., Wang, H., Zhou, L., Vethanayagam, R. R., Unadkat, J. D., et al. (2005). BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharmaceutical Research, 22, 2023–2034.PubMedCrossRefGoogle Scholar
  199. 199.
    Sargent, J. M., Williamson, C. J., Maliepaard, M., Elgie, A. W., Scheper, R. J., & Taylor, C. G. (2001). Breast cancer resistance protein expression and resistance to daunorubicin in blast cells from patients with acute myeloid leukaemia. British Journal of Haematology, 115, 257–262.PubMedCrossRefGoogle Scholar
  200. 200.
    Suvannasankha, A., Minderman, H., O’Loughlin, K. L., Nakanishi, T., Greco, W. R., Ross, D. D., et al. (2004). Breast cancer resistance protein (BCRP/MXR/ABCG2) in acute myeloid leukemia: Discordance between expression and function. Leukemia, 18, 1252–1257.PubMedCrossRefGoogle Scholar
  201. 201.
    Plasschaert, S. L., Van Der Kolk, D. M., De Bont, E. S., Vellenga, E., Kamps, W. A., & De Vries, E. G. (2004). Breast cancer resistance protein (BCRP) in acute leukemia. Leukemia and Lymphoma, 45, 649–654.PubMedCrossRefGoogle Scholar
  202. 202.
    Scheffer, G. L., Maliepaard, M., Pijnenborg, A. C., van Gastelen, M. A., de Jong, M. C., Schroeijers, A. B., et al. (2000). Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Research, 60, 2589–2593.PubMedGoogle Scholar
  203. 203.
    Aust, S., Obrist, P., Jaeger, W., Klimpfinger, M., Tucek, G., Wrba, F., et al. (2004). Subcellular localization of the ABCG2 transporter in normal and malignant human gallbladder epithelium. Laboratory Investigation, 84, 1024–1036.PubMedCrossRefGoogle Scholar
  204. 204.
    Deichmann, M., Thome, M., Egner, U., Hartschuh, W., & Kurzen, H. (2005). The chemoresistance gene ABCG2 (MXR/BCRP1/ABCP1) is not expressed in melanomas but in single neuroendocrine carcinomas of the skin. Journal of Cutaneous Pathology, 32, 467–473.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Robert W. Robey
    • 1
  • Orsolya Polgar
    • 1
  • John Deeken
    • 1
  • Kin Wah To
    • 1
  • Susan E. Bates
    • 1
  1. 1.Medical Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations