Advertisement

The signaling mechanism of ROS in tumor progression

  • 3142 Accesses

  • 486 Citations

Abstract

Reactive oxygen species (ROS) are recently proposed to be involved in tumor metastasis which is a complicated processes including epithelial–mesenchymal transition (EMT), migration, invasion of the tumor cells and angiogenesis around the tumor lesion. ROS generation may be induced intracellularly, in either NADPH oxidase- or mitochondria-dependent manner, by growth factors and cytokines (such as TGFβ and HGF) and tumor promoters (such as TPA) capable of triggering cell adhesion, EMT and migration. As a signaling messenger, ROS are able to oxidize the critical target molecules such as PKC and protein tyrosine phosphates (PTPs), which are relevant to tumor cell invasion. PKC contain multiple cysteine residues that can be oxidized and activated by ROS. Inactivation of multiple PTPs by ROS may relieve the tyrosine phosphorylation-dependent signaling. Two of the down-stream molecules regulated by ROS are MAPK and PAK. MAPKs cascades were established to be a major signal pathway for driving tumor cell metastasis, which are mediated by PKC, TGF-beta/Smad and integrin-mediated signaling. PAK is an effector of Rac-mediated cytoskeletal remodeling that is responsible for cell migration and angiogenesis. There are several transcriptional factors such as AP1, Ets, Smad and Snail regulating a lot of genes relevant to metastasis. AP-1 and Smad can be activated by PKC activator and TGF-beta1, respectively, in a ROS dependent manner. On the other hand, Est-1 can be upregulated by H2O2 via an antioxidant response element in the promoter. The ROS-regulated genes relevant to EMT and metastasis include E-cahedrin, integrin and MMP. Comprehensive understanding of the ROS-triggered signaling transduction, transcriptional activation and regulation of gene expressions will help strengthen the critical role of ROS in tumor progression and devising strategy for chemo-therapeutic interventions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11, 1163–1182.

  2. 2.

    Aslan, M., & Ozben, T. (2003). Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxidants & Redox Signalling, 5, 781–788.

  3. 3.

    Chiarugi, P. (2005). PTPs versus PTKs: The redox side of the coin. Free Radical Research, 39, 353–364.

  4. 4.

    Chiarugi, P. (2001). The redox regulation of LMW–PTP during cell proliferation or growth inhibition. IUBMB Life, 52, 55–59.

  5. 5.

    Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 337, 1–13.

  6. 6.

    Gourlay, C. W., & Ayscough, K. R. (2005). The actin cytoskeleton: A key regulator of apoptosis and ageing? Nature Reviews. Molecular Cell Biology, 6, 583–589.

  7. 7.

    Johann, A. M., von Knethen, A., Lindemann, D., & Brune, B. (2005). Recognition of apoptotic cells by macrophages activates the peroxisome proliferator-activated receptor-gamma and attenuates the oxidative burst. Cell Death and Differentiation, 13, 1533–1540.

  8. 8.

    Otani, H. (2004). Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxidants & Redox Signalling, 6, 449–469.

  9. 9.

    Niedowicz, D. M., & Daleke, D. L. (2005). The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics, 43, 289–330.

  10. 10.

    Okamoto, A., Iwamoto, Y., & Maru, Y. (2006). Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Molecular and Cellular Biology, 26, 1087–1097.

  11. 11.

    Ambrosone, C. B. (2000). Oxidants and antioxidants in breast cancer. Antioxidants & Redox Signalling, 2, 903–917.

  12. 12.

    Klaunig, J. E., Xu, Y., Isenberg, J. S., Bachowski, S., Kolaja, K. L., Jiang, J., et al. (1998). The role of oxidative stress in chemical carcinogenesis. Environmental Health Perspectives, 106(Suppl. 1), 289–295.

  13. 13.

    Emerit, I. (1994). Reactive oxygen species, chromosome mutation, and cancer: Possible role of clastogenic factors in carcinogenesis. Free Radical Biology & Medicine, 16, 99–109.

  14. 14.

    Winter Toyokuni, S. (1999). Reactive oxygen species-induced molecular damage and its application in pathology. Pathology International, 49, 91–102, Review.

  15. 15.

    Storz, P. (2005). Reactive oxygen species in tumor progression. Frontiers in Bioscience, 10, 1881–1896.

  16. 16.

    Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.

  17. 17.

    Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.

  18. 18.

    Bogenrieder, T., & Herlyn, M. (2003). Axis of evil: Molecular mechanisms of cancer metastasis. Oncogene, 22, 6524–6536.

  19. 19.

    Harlozinska, A. (2005). Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Research, 25, 3327–3333.

  20. 20.

    Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour–host interface. Nature, 411, 375–379.

  21. 21.

    Kassis, J., Klominek, J., & Kohn, E. C. (2005). Tumor microenvironment: What can effusions teach us? Diagnostic Cytopathology, 33, 316–319.

  22. 22.

    Tanaka, T., Bai, Z., Srinoulprasert, Y., Yang, B. G., Hayasaka, H., & Miyasaka, M. (2005). Chemokines in tumor progression and metastasis. Cancer Science, 96, 317–322.

  23. 23.

    Brinckerhoff, C. E., & Matrisian, L. M. (2002). Matrix metalloproteinases: A tail of a frog that became a prince. Nature Reviews. Molecular Cell Biology, 3, 207–214.

  24. 24.

    Cully, M., You, H., Levine, A. J., & Mak, T. W. (2006). Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Reviews. Cancer, 6, 184–192.

  25. 25.

    Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.

  26. 26.

    Matsuzawa, A., & Ichijo, H. (2005). Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants & Redox Signalling, 7, 472–481.

  27. 27.

    Hordijk, P. L. (2006). Regulation of NADPH oxidases: The role of Rac proteins. Circulation Research, 98, 453–462.

  28. 28.

    Bokoch, G. M., & Diebold, B. A. (2002). Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood, 100, 2692–2696.

  29. 29.

    Maulik, N., & Das, D. K. (2002). Redox signaling in vascular angiogenesis. Free Radical Biology & Medicine, 33, 1047–1460.

  30. 30.

    Eyries, M., Collins, T., & Khachigian, L. M. (2004). Modulation of growth factor gene expression in vascular cells by oxidative stress. Endothelium, 11, 133–139.

  31. 31.

    Lo, I. C., Shih, J. M., & Jiang, M. J. (2005). Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science, 12, 377–388.

  32. 32.

    Wang, Z., Castresana, M. R., & Newman, W. H. (2001). Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 285, 669–674.

  33. 33.

    Tudor, K. S., Hess, K. L., & Cook-Mills, J. M. (2001). Cytokines modulate endothelial cell intracellular signal transduction required for VCAM-1-dependent lymphocyte transendothelial migration. Cytokine, 15, 196–211.

  34. 34.

    Datta, R., Yoshinaga, K., Kaneki, M., Pandey, P., & Kufe, D. (2000). Phorbol ester-induced generation of reactive oxygen species is protein kinase cbeta-dependent and required for SAPK activation. Journal of Biological Chemistry, 275, 41000–41003.

  35. 35.

    Mochizuki, T., Furuta, S., Mitsushita, J., Shang, W. H., Ito, M., Yokoo, Y., et al. (2006). Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene, 25(26), 3699–3707.

  36. 36.

    Landstrom, M., Heldin, N. E., Bu, S., Hermansson, A., Itoh, S., ten Dijke, P., et al. (2000). Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Current Biology, 10, 535–538.

  37. 37.

    Akhurst, R. J., & Derynck, R. (2001). TGF-beta signaling in cancer—a double-edged sword. Trends in Cell Biology, 11, S44–S51.

  38. 38.

    Yamamura, Y., Hua, X., Bergelson, S., & Lodish, H. F. (2000). Critical role of Smads and AP-1 complex in transforming growth factor-beta-dependent apoptosis. Journal of Biological Chemistry, 275, 36295–36302.

  39. 39.

    Chan, C. T., Li, S. H., & Verma, S. (2005). Nocturnal hemodialysis is associated with restoration of impaired endothelial progenitor cell biology in end-stage renal disease. American Journal of Physiology. Renal Physiology, 289, F679–F684.

  40. 40.

    Sithanandam, G., Fornwald, L. W., Fields, J., & Anderson, L. M. (2005). Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene, 24, 1847–1859.

  41. 41.

    Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.

  42. 42.

    Segarra, J., Balenci, L., Drenth, T., Maina, F., & Lamballe, F. (2006). Combined signaling through ERK, PI3K/AKT, and RAC1/p38 is required for met-triggered cortical neuron migration. Journal of Biological Chemistry, 281, 4771–4778.

  43. 43.

    Ren, Y., Cao, B., Law, S., Xie, Y., Lee, P. Y., Cheung, L., et al. (2005). Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: A prognostic marker of human esophageal squamous cell carcinomas. Clinical Cancer Research, 11, 6190–6197.

  44. 44.

    Daveau, M., Scotte, M., Francois, A., Coulouarn, C., Ros, G., Tallet, Y., et al. (2003). Hepatocyte growth factor, transforming growth factor alpha, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Molecular Carcinogenesis, 36, 130–141.

  45. 45.

    Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., et al. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 25(26), 3689–3698.

  46. 46.

    Dietrich, S., Uppalapati, R., Seiwert, T. Y., & Ma, P. C. (2005). Role of c-MET in upper aerodigestive malignancies—from biology to novel therapies. Journal of Environmental Pathology, Toxicology and Oncology, 24(3), 149–162.

  47. 47.

    Shimao, Y., Nabeshima, K., Inoue, T., & Koono, M. (1999). TPA-enhanced motility and invasion in a highly metastatic variant (L-10) of human rectal adenocarcinoma cell line RCM-1: Selective role of PKC-alpha and its inhibition by a combination of PDBu-induced PKC downregulation and antisense oligonucleotides treatment. Clinical & Experimental Metastasis, 17, 351–360.

  48. 48.

    Aprikian, A. G., Tremblay, L., Han, K., & Chevalier, S. (1997). Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. International Journal of Cancer, 72, 498–504.

  49. 49.

    Schlingemann, J., Hess, J., Wrobel, G., Breitenbach, U., Gebhardt, C., Steinlein, P., et al. (2003). Profile of gene expression induced by the tumour promotor TPA in murine epithelial cells. International Journal of Cancer, 104, 699–708.

  50. 50.

    Woo, J. H., Lim, J. H., Kim, Y. H., Suh, S. I., Min do, S., Chang, J. S., et al. (2004). Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene, 23, 1845–1853.

  51. 51.

    Debidda, M., Sanna, B., Cossu, A., Posadino, A. M., Tadolini, B., Ventura, C., et al. (2003). NAMI-A inhibits the PMA-induced ODC gene expression in ECV304 cells: Involvement of PKC/Raf/Mek/ERK signalling pathway. International Journal of Oncology, 23, 477–482.

  52. 52.

    Woo, J. H., Park, J. W., Lee, S. H., Kim, Y. H., Lee, I. K., Gabrielson, E., et al. (2003). Dykellic acid inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting nuclear factor kappa B transcriptional activity. Cancer Research, 63, 3430–3434.

  53. 53.

    Wu, W. S., Tsai, R. K., Chang, C. H., Wang, S., Wu, J. R., & Chang, Y. X. (2006). Reactive oxygen species mediated sustained activation of protein kinase C α and ERK for migration of human hepatoma cell HepG2. Molecular Cancer Research, 4(10), 747–758.

  54. 54.

    Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular Cell Biology, 5, 816–826.

  55. 55.

    Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Reviews, 24, 195–222.

  56. 56.

    Sheppard, D. (2005). Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Reviews, 24, 395–402.

  57. 57.

    Rucci, N., DiGiacinto, C., Orru, L., Millimaggi, D., Baron, R., & Teti, A. (2005). A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. Journal of Cell Science, 118(Pt. 15), 3263–3275.

  58. 58.

    Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochemical Society Transactions, 33(Pt. 5), 891–895.

  59. 59.

    Grande-Garcia, A., Echarri, A., & Del Pozo, M. A. (2005). Integrin regulation of membrane domain trafficking and Rac targeting. Biochemical Society Transactions, 33, 609–613.

  60. 60.

    Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt. 3), 443–446.

  61. 61.

    Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell, 116, 167–179.

  62. 62.

    Zhou, H., & Kramer, R. H. (2005). Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. Journal of Biological Chemistry, 280, 10624–10635.

  63. 63.

    Hamelers, I. H., Olivo, C., Mertens, A. E., Pegtel, D. M., van der Kammen, R. A., Sonnenberg, A., et al. (2005). The Rac activator Tiam1 is required for (alpha)3(beta)1-mediated laminin-5 deposition, cell spreading, and cell migration. Journal of Cell Biology, 171, 871–881.

  64. 64.

    Nimnual, A. S., Taylor, L. J., & Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nature Cell Biology, 5, 236–241.

  65. 65.

    Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Research, 64, 7464–7472.

  66. 66.

    Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Cell Biology, 158, 357–368.

  67. 67.

    Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.

  68. 68.

    Yoon, S. O., Park, S. J., Yoon, S. Y., Yun, C. H., & Chung, A. S. (2002). Sustained production of H(2)O(2) activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. Journal of Biological Chemistry, 277, 30271–30282.

  69. 69.

    Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Research, 64, 7464–7472.

  70. 70.

    Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature, 435, 347–353.

  71. 71.

    Arakaki, N., Kajihara, T., Arakaki, R., Ohnishi, T., Kazi, J. A., Nakashima, H., et al. (1999). Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. Journal of Biological Chemistry, 274, 13541–1356.

  72. 72.

    Colavitti, R., Pani, G., Bedogni, B., Anzevino, R., Borrello, S., Waltenberger, J., et al. (2002). Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. Journal of Biological Chemistry, 277, 3101–3108.

  73. 73.

    Honore, S., Kovacic, H., Pichard, V., Briand, C., & Rognoni, J. B. (2003). Alpha2beta1-integrin signaling by itself controls G1/S transition in a human adenocarcinoma cell line (Caco-2): Implication of NADPH oxidase-dependent production of ROS. Experimental Cell Research, 285, 59–71.

  74. 74.

    Groth, S., Schulze, M., Kalthoff, H., Fandrich, F., & Ungefroren, H. (2005). Adhesion and Rac1-dependent regulation of biglycan gene expression by transforming growth factor-beta. Evidence for oxidative signaling through NADPH oxidase. Journal of Biological Chemistry, 280, 33190–33199.

  75. 75.

    Hu, T., Ramachandrarao, S. P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., et al. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. American Journal of Physiology. Renal Physiology, 289, F816–F825.

  76. 76.

    Deem, T. L., & Cook-Mills, J. M. (2004). Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: Role of reactive oxygen species. Blood, 104, 2385–2393.

  77. 77.

    Yamazaki, D., Kurisu, S., & Takenawa, T. (2005). Regulation of cancer cell motility through actin reorganization. Cancer Science, 96, 379–386.

  78. 78.

    Bokoch, G. M., & Knaus, U. G. (2005). NADPH oxidases: Not just for leukocytes anymore! Trends in Biochemical Sciences, 28, 502–508.

  79. 79.

    Ushio-Fukai, M., & Alexander, R. W. (2004). Reactive oxygen species as mediators of angiogenesis signaling: Role of NAD(P)H oxidase. Molecular and Cellular Biochemistry, 264, 85–97.

  80. 80.

    Harfouche, R., Malak, N. A., Brandes, R. P., Karsan, A., Irani, K., & Hussain, S. N. (2005). Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB Journal, 19, 1728–1730.

  81. 81.

    Arnold, R. S., Shi, J., Murad, E., Whalen, A. M., Sun, C. Q., Polavarapu, R., et al. (2001). Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proceedings of the National Academy of Sciences of the United States of America, 98, 5550–5555.

  82. 82.

    Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Cell Biology, 158, 357–368.

  83. 83.

    Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.

  84. 84.

    van Waveren, C., Sun, Y., Cheung, H. S., & Moraes, C. T. (2006). Oxidative phosphorylation dysfunction modulates expression of extracellular matrix—remodeling genes and invasion. Carcinogenesis, 27, 409–418.

  85. 85.

    Czarnecka, A. M., Golik, P., & Bartnik, E. (2006). Mitochondrial DNA mutations in human neoplasia. Journal of Applied Genetics, 47, 67–78.

  86. 86.

    Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., et al. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radical Research, 39, 373–381.

  87. 87.

    Storz, G., & Polla, B. S. (1996). Transcriptional regulators of oxidative stress-inducible genes in prokaryotes and eukaryotes. EXS, 77, 239–254.

  88. 88.

    Rudolph, J. (2005). Redox regulation of the Cdc25 phosphatases. Antioxidants & Redox Signalling, 7, 761–767.

  89. 89.

    Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11, 1163–1182.

  90. 90.

    Carter, C. A., & Kane, C. J. (2004). Therapeutic potential of natural compounds that regulate the activity of protein kinase C. Current Medicinal Chemistry, 11, 2883–2902.

  91. 91.

    Gomez, D. E., Skilton, G., Alonso, D. F., & Kazanietz, M. G. (1999). The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (Review). Oncology Reports, 6, 1363–1370.

  92. 92.

    Petit, I., Goichberg, P., Spiegel, A., Peled, A., Brodie, C., Seger, R., et al. (2005). Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation, 115, 168–176.

  93. 93.

    Su, S., DiBattista, J. A., Sun, Y., Li, W. Q., & Zafarullah, M. (1998). Up-regulation of tissue inhibitor of metalloproteinases-3 gene expression by TGF-beta in articular chondrocytes is mediated by serine/threonine and tyrosine kinases. Journal of Cellular Biochemistry, 70, 517–527.

  94. 94.

    Disatnik, M. H., & Rando, T. A. (1999). Integrin-mediated muscle cell spreading. The role of protein kinase c in outside-in and inside-out signaling and evidence of integrin cross-talk. Journal of Biological Chemistry, 274, 32486–32492.

  95. 95.

    Parsons, M., Keppler, M. D., Kline, A., Messent, A., Humphries, M. J., Gilchrist, R., et al. (2002). Site-directed perturbation of protein kinase C–integrin interaction blocks carcinoma cell chemotaxis. Molecular and Cellular Biology, 22, 5897–5911.

  96. 96.

    Sliva, D. (2004). Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Current Cancer Drug Targets, 4, 327–336.

  97. 97.

    Shackelford, R. E., Kaufmann, W. K., & Paules, R. S. (2000). Oxidative stress and cell cycle checkpoint function. Free Radical Biology & Medicine, 28, 1387–1404.

  98. 98.

    Lin, D., & Takemoto, D. J. (2005). Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. Journal of Biological Chemistry, 280, 13682–13693.

  99. 99.

    Inoguchi, T., Sonta, T., Tsubouchi, H., Etoh, T., Kakimoto, M., Sonoda, N., et al. (2003). Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD(P)H oxidase. Journal of the American Society of Nephrology, 14, S227–232.

  100. 100.

    Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14, S241–S245.

  101. 101.

    Velarde, V., de la Cerda, P. M., Duarte, C., Arancibia, F., Abbott, E., Gonzalez, A., et al. (2004). Role of reactive oxygen species in bradykinin-induced proliferation of vascular smooth muscle cells. Biological Research, 37, 419–430.

  102. 102.

    Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37, 308–312.

  103. 103.

    Srivastava, A. K. (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). International Journal of Molecular Medicine, 9, 85–89.

  104. 104.

    Srivastava, A. K. (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). International Journal of Molecular Medicine, 9(1), 85–89.

  105. 105.

    Chiarugi, P. (2005). PTPs versus PTKs: The redox side of the coin. Free Radical Research, 39, 353–364.

  106. 106.

    Lee, K., & Esselman, W. J. (2002). Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radical Biology & Medicine, 33, 1121–1132.

  107. 107.

    Meng, T. C., Fukada, T., & Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular Cell, 9, 387–399.

  108. 108.

    Goldstein, B. J., Mahadev, K., & Wu, X. (2005). Redox paradox: Insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes, 54, 311–321.

  109. 109.

    Chiarugi, P. (2003). Reactive oxygen species as mediators of cell adhesion. Italian Journal of Biochemistry, 2, 28–32.

  110. 110.

    Wu, R. F., Xu, Y. C., Ma, Z., Nwariaku, F. E., Sarosi, G. A. Jr, & Terada, L. S. (2005). Subcellular targeting of oxidants during endothelial cell migration. Journal of Cell Biology, 171, 893–904.

  111. 111.

    Schonwasser, D. C., Marais, R. M., Marshall, C. J., & Parker, P. J. (1998). Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Molecular and Cellular Biology, 18(2), 790–798.

  112. 112.

    Berra, E., Diaz-Meco, M. T., Lozano, J., Frutos, S., Municio, M. M., Sanchez, P., et al. (1995). Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO Journal, 14, 6157–6163.

  113. 113.

    Chernyavsky, A. I., Arredondo, J., Karlsson, E., Wessler, I., & Grando, S. A. (2005). The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. Journal of Biological Chemistry, 280, 39220–39228.

  114. 114.

    Shin, I., Kim, S., Song, H., Kim, H. R., & Moon, A. (2005). H-Ras-specific activation of Rac-MKK3/6-p38 pathway: Its critical role in invasion and migration of breast epithelial cells. Journal of Biological Chemistry, 280, 14675–14683.

  115. 115.

    Huang, C., Jacobson, K., & Schaller, M. D. (2004). MAP kinases and cell migration. Journal of Cell Science, 117(Pt. 20), 4619–4628.

  116. 116.

    Javelaud, D., & Mauviel, A. (2005). Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: Implications for carcinogenesis. Oncogene, 24, 5742–5750.

  117. 117.

    Nawshad, A., Lagamba, D., Polad, A., & Hay, E. D. (2005). Transforming growth factor-beta signaling during epithelial–mesenchymal transformation: Implications for embryogenesis and tumor metastasis. Cells, Tissues, Organs, 179, 11–23.

  118. 118.

    Howe, A. K., Aplin, A. E., & Juliano, R. L. (2002). Anchorage-dependent ERK signaling—mechanisms and consequences. Current Opinion in Genetics & Development, 12, 30–35.

  119. 119.

    Gupta, A., Rosenberger, S. F., & Bowden, G. T. (1999). Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis, 20, 2063–2073.

  120. 120.

    Lin, S. J., Shyue, S. K., Liu, P. L., Chen, Y. H., Ku, H. H., Chen, J. W., et al. (2004). Adenovirus-mediated overexpression of catalase attenuates oxLDL-induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen-activated protein kinase pathways. Journal of Molecular and Cellular Cardiology, 36, 129–139.

  121. 121.

    Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37, 308–312.

  122. 122.

    Lo, I. C., Shih, J. M., & Jiang, M. J. (2005). Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science, 12, 377–388.

  123. 123.

    Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.

  124. 124.

    Kruger, J. S., & Reddy, K. B. (2003). Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Molecular Cancer Research, 1, 801–809.

  125. 125.

    Kermorgant, S., Zicha, D., & Parker, P. J. (2004). PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal, 23, 3721–3734.

  126. 126.

    Wang, J., Frost, J. A., Cobb, M. H., & Ross, E. M. (1999). Reciprocal signaling between heterotrimeric G proteins and the p21-stimulated protein kinase. Journal of Biological Chemistry, 274, 31641–31647.

  127. 127.

    Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt. 3), 443–446.

  128. 128.

    Fryer, B. H., & Field J. (2005). Rho, Rac, Pak and angiogenesis: Old roles and newly identified responsibilities in endothelial cells. Cancer Letters, 229, 13–23.

  129. 129.

    Schmitz, U., Thommes, K., Beier, I., & Vetter, H. (2002). Lysophosphatidic acid stimulates p21-activated kinase in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 291, 687–691.

  130. 130.

    Harfouche, R., Malak, N. A., Brandes, R. P., Karsan, A., Irani, K., & Hussain, S. N. (2005). Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB Journal, 19, 1728–1730.

  131. 131.

    Weber, D. S., Taniyama, Y., Rocic, P., Seshiah, P. N., Dechert, M. A., Gerthoffer, W. T., et al. (2004). Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circulation Research, 94, 1219–1226.

  132. 132.

    Liu, J. W., Chandra, D., Rudd, M. D., Butler, A. P., Pallotta, V., Brown, D., et al. (2005). Induction of prosurvival molecules by apoptotic stimuli: Involvement of FOXO3a and ROS. Oncogene, 24, 2020–2031.

  133. 133.

    Fujii, T., Onohara, N., Maruyama, Y., Tanabe, S., Kobayashi, H., Fukutomi, M., et al. (2005). Galpha12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts. Journal of Biological Chemistry, 280, 23041–23047.

  134. 134.

    Okamoto, A., Iwamoto, Y., & Maru, Y. (2006). Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Molecular and Cellular Biology, 26, 108710–108797.

  135. 135.

    Hsu, T. C., Young, M. R., Cmarik, J., & Colburn, N. H. (2000). Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radical Biology & Medicine, 28, 1338–1348.

  136. 136.

    Kim, M. H., Cho, H. S., Jung, M., Hong, M. H., Lee, S. K., Shin, B. A., et al. (2005). Extracellular signal-regulated kinase and AP-1 pathways are involved in reactive oxygen species-induced urokinase plasminogen activator receptor expression in human gastric cancer cells. International Journal of Oncology, 26, 1669–1674.

  137. 137.

    Seth, A., & Watson, D. K. (2005). ETS transcription factors and their emerging roles in human cancer. European Journal of Cancer, 41, 2462–2478.

  138. 138.

    Feldman, R. J., Sementchenko, V. I., Gayed, M., Fraig, M. M., & Watson, D. K. (2003). Pdef expression in human breast cancer is correlated with invasive potential and altered gene expression. Cancer Research, 63, 4626–4631.

  139. 139.

    Hahne, J. C., Okuducu, A. F., Kaminski, A., Florin, A., Soncin, F., & Wernert, N. (2005). Ets-1 expression promotes epithelial cell transformation by inducing migration, invasion and anchorage-independent growth. Oncogene, 24, 5384–5388.

  140. 140.

    Huang, H. C., Liu, S. Y., Liang, Y., Liu, Y., Li, J. Z., & Wang, H. Y. (2005). [Transforming growth factor-beta1 stimulates matrix metalloproteinase-9 production through ERK activation pathway and upregulation of Ets-1 protein]. Zhonghua Yi Xue Za Zhi, 85, 328–331.

  141. 141.

    Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: An overview. Molecular and Cellular Biochemistry, 253, 269–285.

  142. 142.

    White, L. A., Maute, C., & Brinckerhoff, C. E. (1997). ETS sites in the promoters of the matrix metalloproteinases collagenase (MMP-1) and stromelysin (MMP-3) are auxiliary elements that regulate basal and phorbol-induced transcription. Connective Tissue Research, 36, 321–335.

  143. 143.

    Wilson, L. A., Gemin, A., Espiritu, R., & Singh, G. (2005). Ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element. FASEB Journal, 19, 2085–2087.

  144. 144.

    Roberts, A. B., Russo, A., Felici, A., & Flanders, K. C. (2003). Smad3: A key player in pathogenetic mechanisms dependent on TGF-beta. Annals of the New York Academy of Sciences, 995, 1–10.

  145. 145.

    Leivonen, S. K., Ala-Aho, R., Koli, K., Grenman, R., Peltonen, J., & Kahari, V. M. (2006). Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene, 25, 2588–2600.

  146. 146.

    Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.

  147. 147.

    Huber, M. A., Kraut, N., & Beug, H. (2005). Molecular requirements for epithelial–mesenchymal transition during tumor progression. Current Opinion in Cell Biology, 17, 548–558.

  148. 148.

    Zavadil, J., & Bottinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764–5774.

  149. 149.

    Barrallo-Gimeno, A., & Nieto, M. A. (2005). The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development, 132, 3151–3161.

  150. 150.

    Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.

  151. 151.

    Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 337, 1–13.

  152. 152.

    Lai, W. L., & Wong, N. S. (2005). ROS mediates 4HPR-induced posttranscriptional expression of the Gadd153 gene. Free Radical Biology & Medicine, 38, 1585–1593.

  153. 153.

    Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.

  154. 154.

    Westermarck, J., Li, S. P., Kallunki, T., Han, J., & Kahari, V. M. (2001). p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Molecular and Cellular Biology, 21, 2373–2383.

  155. 155.

    Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., et al. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radical Research, 39, 373–381.

  156. 156.

    Lipscomb, E. A., & Mercurio, A. M. (2005). Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Reviews, 24, 413–423.

  157. 157.

    Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Reviews, 24, 195–222.

  158. 158.

    Danen, E. H. (2005). Integrins: Regulators of tissue function and cancer progression. Current Pharmaceutical Design, 11, 881–891.

  159. 159.

    Playford, M. P., & Schaller, M. D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23, 7928–7946.

  160. 160.

    Zhu, H. J., Ross, F. P., Cao, X., & Teitelbaum, S. L. (1996). Phorbol myristate acetate transactivates the avian beta 3 integrin gene and induces alpha v beta 3 integrin expression. Journal of Cellular Biochemistry, 61, 420–429.

  161. 161.

    Lai, C. F., Feng, X., Nishimura, R., Teitelbaum, S. L., Avioli, L. V., Ross, F. P., et al. (2000). Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Sp1 and Smad signaling. Journal of Biological Chemistry, 275, 36400–36406.

  162. 162.

    Katabami, K., Mizuno, H., Sano, R., Saito, Y., Ogura, M., Itoh, S., et al. (2005). Transforming growth factor-beta1 upregulates transcription of alpha3 integrin gene in hepatocellular carcinoma cells via Ets-transcription factor-binding motif in the promoter region. Clinical & Experimental Metastasis, 22, 539–548.

  163. 163.

    Reynolds, A. B., & Roczniak-Ferguson, A. (2004). Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene, 23, 7947–7956.

  164. 164.

    Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.

  165. 165.

    Turcotte, S., Desrosiers, R. R., & Beliveau, R. (2003). HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. Journal of Cell Science, 116(Pt. 11), 2247–2260.

  166. 166.

    Wells, A. (2000). Tumor invasion: Role of growth factor-induced cell motility. Advances in Cancer Research, 78, 31–101.

  167. 167.

    Kataoka, H., Tanaka, H., Nagaike, K., Uchiyama, S., & Itoh, H. (2003). Role of cancer cell–stroma interaction in invasive growth of cancer cells. Human Cell, 16, 1–14.

  168. 168.

    Miura, Y., Kozuki, Y., & Yagasaki, K. (2003). Potentiation of invasive activity of hepatoma cells by reactive oxygen species is mediated by autocrine/paracrine loop of hepatocyte growth factor. Biochemical and Biophysical Research Communications, 305, 160–165.

  169. 169.

    Hu, T., Ramachandrarao, S. P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., et al. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. American Journal of Physiology. Renal Physiology, 289, F816–F825.

  170. 170.

    Perez, L. M., Milkiewicz, P., Ahmed-Choudhury, J., Elias, E., Ochoa, J. E., Sanchez Pozzi, E. J., et al. (2006). Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+-dependent, PKC-mediated mechanism: Protective effect of PKA. Free Radical Biology & Medicine, 40, 2005–2017.

  171. 171.

    Fiaschi, T., Cozzi, G., Raugei, G., Formigli, L., Ramponi, G., & Chiarugi, P. (2006). Redox regulation of beta-actin during integrin-mediated cell adhesion. Journal of Biological Chemistry, 281(32), 22983–22991.

  172. 172.

    Pathak, S. K., Sharma, R. A., Steward, W. P., Mellon, J. K., Griffiths, T. R., & Gescher, A. J. (2005). Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: Targets for chemopreventive strategies. European Journal of Cancer, 41, 61–70.

  173. 173.

    Sikka, S. C. (2003). Role of oxidative stress response elements and antioxidants in prostate cancer pathobiology and chemoprevention—a mechanistic approach. Current Medicinal Chemistry, 10, 2679–2692.

  174. 174.

    Nishikawa, M., Hyoudou, K., Kobayashi, Y., Umeyama, Y., Takakura, Y., & Hashida, M. (2005). Inhibition of metastatic tumor growth by targeted delivery. Journal of Controlled Release, 109, 101–107.

  175. 175.

    Gupta, A., Butts, B., Kwei, K. A., Dvorakova, K., Stratton, S. P., Briehl M. M., et al. (2001). Attenuation of catalase activity in the malignant phenotype plays a functional role in an in vitro model for tumor progression. Cancer Letters, 173, 115–125.

  176. 176.

    Nishino, H., Tokuda, H., Satomi, Y., Masuda, M., Osaka, Y., Yogosawa, S., et al. (2004). Cancer prevention by antioxidants. Biofactors, 22, 57–61.

  177. 177.

    Lin, J. K., Liang, Y. C., & Lin-Shiau, S. Y. (1999). Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochemical Pharmacology, 58, 911–915.

  178. 178.

    Taki, M., Verschueren, K., Yokoyama, K., Nagayama, M., & Kamata N. (2006). Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial–mesenchymal transition in human squamous carcinoma cells. International Journal of Oncology, 28, 487–496.

  179. 179.

    Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: An overview. Molecular and Cellular Biochemistry, 253(1–2), 269–285.

Download references

Author information

Correspondence to Wen-Sheng Wu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, W. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25, 695–705 (2006) doi:10.1007/s10555-006-9037-8

Download citation

Keywords

  • Reactive oxygen species
  • Cell migration
  • Tumor progression
  • TGFβ
  • PKC
  • MAPK