Cancer and Metastasis Reviews

, Volume 25, Issue 4, pp 589–600 | Cite as

Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone

  • J. Pratap
  • J. B. Lian
  • A. Javed
  • G. L. Barnes
  • A. J. van Wijnen
  • J. L. Stein
  • G. S. Stein


The three mammalian Runt homology domain transcription factors (Runx1, Runx2, Runx3) support biological control by functioning as master regulatory genes for the differentiation of distinct tissues. Runx proteins also function as cell context-dependent tumor suppressors or oncogenes. Abnormalities in Runx mediated gene expression are linked to cell transformation and tumor progression. Runx2 is expressed in mesenchymal linage cells committed to the osteoblast phenotype and is essential for bone formation. This skeletal transcription factor is aberrantly expressed at high levels in breast and prostate tumors and cells that aggressively metastasize to the bone environment. In cancer cells, Runx2 activates expression of bone matrix and adhesion proteins, matrix metalloproteinases and angiogenic factors that have long been associated with metastasis. In addition, Runx2 mediates the responses of cells to signaling pathways hyperactive in tumors, including BMP/TGFβ and other growth factor signals. Runx2 forms co-regulatory complexes with Smads and other co-activator and co-repressor proteins that are organized in subnuclear domains to regulate gene transcription. These activities of Runx2 contribute to tumor growth in bone and the accompanying osteolytic disease, established by interfering with Runx2 functions in metastatic breast cancer cells. Inhibition of Runx2 in MDA-MB-231 cells transplanted to bone decreased tumorigenesis and prevented osteolysis. This review evaluates evidence that Runx2 regulates early metastatic events in breast and prostate cancers, tumor growth, and osteolytic bone disease. Consideration is given to the potential for inhibition of this transcription factor as a therapeutic strategy upstream of the regulatory events contributing to the complexity of metastasis to bone.


Bone metastasis Osteolytic disease Osteolysis Breast cancer Prostate cancer Smads 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mundy, G. R. (2002). Metastasis to bone: Causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584–593.PubMedGoogle Scholar
  2. 2.
    Roodman, G. D. (2004). Mechanisms of bone metastasis. New England Journal of Medicine, 350, 1655–1664.PubMedGoogle Scholar
  3. 3.
    Greenlee, R. T., Murray, T., Bolden, S., & Wingo, P. A. (2000). Cancer statistics, 2000. CA: A Cancer Journal for Clinicians, 50, 7–33.Google Scholar
  4. 4.
    Dairkee, S. H., Ji, Y., Ben, Y., Moore, D. H., Meng, Z., & Jeffrey, S. S. (2004). A molecular ‘signature’ of primary breast cancer cultures; patterns resembling tumor tissue. BMC Genomics, 5, 47.PubMedGoogle Scholar
  5. 5.
    Smid, M., Wang, Y., Klijn, J. G., Sieuwerts, A. M., Zhang, Y., Atkins, D., et al. (2006). Genes associated with breast cancer metastatic to bone. Journal of Clinical Oncology, 24, 2261–2267.PubMedGoogle Scholar
  6. 6.
    Hahn, W. C., & Weinberg, R. A. (2002). Rules for making human tumor cells. New England Journal of Medicine, 347, 1593–1603.PubMedGoogle Scholar
  7. 7.
    Blyth, K., Terry, A., Mackay, N., Vaillant, F., Bell, M., Cameron, E. R., et al. (2001). Runx2: A novel oncogenic effector revealed by in vivo complementation and retroviral tagging. Oncogene, 20, 295–302.PubMedGoogle Scholar
  8. 8.
    Morrison, S. J., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441, 1068–1074.PubMedGoogle Scholar
  9. 9.
    Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMedGoogle Scholar
  10. 10.
    Grier, D. G., Thompson, A., Kwasniewska, A., McGonigle, G. J., Halliday, H. L., & Lappin, T. R. (2005). The pathophysiology of HOX genes and their role in cancer. Journal of Pathology, 205, 154–171.PubMedGoogle Scholar
  11. 11.
    Blyth, K., Cameron, E. R., & Neil, J. C. (2005). The runx genes: Gain or loss of function in cancer. Nature Reviews. Cancer, 5, 376–387.PubMedGoogle Scholar
  12. 12.
    Yang, J., Mani, S. A., & Weinberg, R. A. (2006). Exploring a new twist on tumor metastasis. Cancer Research, 66, 4549–4552.PubMedGoogle Scholar
  13. 13.
    Lewis, M. T. (2000). Homeobox genes in mammary gland development and neoplasia. Breast Cancer Research, 2, 158–169.PubMedGoogle Scholar
  14. 14.
    Stein, G. S., Zaidi, S. K., Braastad, C. D., Montecino, M., van Wijnen, A. J., Choi, J.-Y., et al. (2003). Functional architecture of the nucleus: Organizing the regulatory machinery for gene expression, replication and repair. Trends in Cell Biology, 13, 584–592.PubMedGoogle Scholar
  15. 15.
    Zaidi, S. K., Young, D. W., Choi, J. Y., Pratap, J., Javed, A., Montecino, M., et al. (2005). The dynamic organization of gene-regulatory machinery in nuclear microenvironments. EMBO Reports, 6, 128–133.PubMedGoogle Scholar
  16. 16.
    Lian, J. B., Javed, A., Zaidi, S. K., Lengner, C., Montecino, M., van Wijnen, A. J., et al. (2004). Regulatory controls for osteoblast growth and differentiation: Role of Runx/Cbfa/AML factors. Critical Reviews in Eukaryotic Gene Expression, 14, 1–41.PubMedGoogle Scholar
  17. 17.
    Schroeder, T. M., Jensen, E. D., & Westendorf, J. J. (2005). Runx2: A master organizer of gene transcription in developing and maturing osteoblasts. Birth Defects Research Part C: Embryo Today, 75, 213–225.Google Scholar
  18. 18.
    Westendorf, J. J., Zaidi, S. K., Cascino, J. E., Kahler, R., van Wijnen, A. J., Lian, J. B., et al. (2002). Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Molecular and Cellular Biology, 22, 7982–7992.PubMedGoogle Scholar
  19. 19.
    Westendorf, J. J. (2006). Transcriptional co-repressors of Runx2. Journal of Cellular Biochemistry, 98, 54–64.PubMedGoogle Scholar
  20. 20.
    Lee, J. S., Thomas, D. M., Gutierrez, G., Carty, S. A., Yanagawa, S., & Hinds, P. W. (2006). HES1 cooperates with pRb to activate RUNX2-dependent transcription. Journal of Bone and Mineral Research, 21, 921–933.PubMedGoogle Scholar
  21. 21.
    Zaidi, S. K., Young, D. W., Choi, J. Y., Pratap, J., Javed, A., Montecino, M., et al. (2004). Intranuclear trafficking: Organization and assembly of regulatory machinery for combinatorial biological control. Journal of Biological Chemistry, 279, 43363–43366.PubMedGoogle Scholar
  22. 22.
    Pratap, J., Galindo, M., Zaidi, S. K., Vradii, D., Bhat, B. M., Robinson, J. A., et al. (2003). Cell growth regulatory role of Runx2 during proliferative expansion of pre-osteoblasts. Cancer Research, 63, 5357–5362.PubMedGoogle Scholar
  23. 23.
    Wotton, S. F., Blyth, K., Kilbey, A., Jenkins, A., Terry, A., Bernardin-Fried, F., et al. (2004). RUNX1 transformation of primary embryonic fibroblasts is revealed in the absence of p53. Oncogene, 23, 5476–5486.PubMedGoogle Scholar
  24. 24.
    Guo, W. H., Weng, L. Q., Ito, K., Chen, L. F., Nakanishi, H., Tatematsu, M., et al. (2002). Inhibition of growth of mouse gastric cancer cells by Runx3, a novel tumor suppressor. Oncogene, 21, 8351–8355.PubMedGoogle Scholar
  25. 25.
    Osato, M., & Ito, Y. (2005). Increased dosage of the RUNX1/AML1 gene: A third mode of RUNX leukemia? Critical Reviews in Eukaryotic Gene Expression, 15, 217–228.PubMedGoogle Scholar
  26. 26.
    Fowler, M., Borazanci, E., McGhee, L., Pylant, S. W., Williams, B. J., Glass, J., et al. (2006). RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to activate transcription from the PSA upstream regulatory region. Journal of Cellular Biochemistry, 97, 1–17.PubMedGoogle Scholar
  27. 27.
    Lau, Q. C., Raja, E., Salto-Tellez, M., Liu, Q., Ito, K., Inoue, M., et al. (2006). RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Research, 66, 6512–6520.PubMedGoogle Scholar
  28. 28.
    Otto, F., Kanegane, H., & Mundlos, S. (2002). Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Human Mutation, 19, 209–216.PubMedGoogle Scholar
  29. 29.
    Kim, H. J., Nam, S. H., Kim, H. J., Park, H. S., Ryoo, H. M., Kim, S. Y., et al. (2006). Four novel RUNX2 mutations including a splice donor site result in the cleidocranial dysplasia phenotype. Journal of Cellular Physiology, 207, 114–122.PubMedGoogle Scholar
  30. 30.
    Choi, J.-Y., Pratap, J., Javed, A., Zaidi, S. K., Xing, L., Balint, E., et al. (2001). Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 98, 8650–8655.PubMedGoogle Scholar
  31. 31.
    Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89, 755–764.PubMedGoogle Scholar
  32. 32.
    Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89, 765–771.PubMedGoogle Scholar
  33. 33.
    Ogawa, S., Harada, H., Fujiwara, M., Tagashira, S., Katsumata, T., & Takada, H. (2000). Cbfa1, an essential transcription factor for bone formation, is expressed in testis from the same promoter used in bone. DNA Research, 7, 181–185.PubMedGoogle Scholar
  34. 34.
    Lengner, C. J., Drissi, H., Choi, J.-Y., van Wijnen, A. J., Stein, J. L., Stein, G. S., et al. (2002). Activation of the bone related Runx2/Cbfa1 promoter in mesenchymal condensations and developing chondrocytes of the axial skeleton. Mechanisms of Development, 114, 167–170.PubMedGoogle Scholar
  35. 35.
    Inman, C. K., & Shore, P. (2003). The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. Journal of Biological Chemistry, 278, 48684–48689.PubMedGoogle Scholar
  36. 36.
    Satake, M., Nomura, S., Yamaguchi–Iwai, Y., Takahama, Y., Hashimoto, Y., Niki, M., et al. (1995). Expression of the Runt domain-encoding PEBP2 alpha genes in T cells during thymic development. Molecular and Cellular Biology, 15, 1662–1670.PubMedGoogle Scholar
  37. 37.
    Sun, L., Vitolo, M., & Passaniti, A. (2001). Runt-related gene 2 in endothelial cells: Inducible expression and specific regulation of cell migration and invasion. Cancer Research, 61, 4994–5001.PubMedGoogle Scholar
  38. 38.
    Javed, A., Barnes, G. L., Pratap, J., Antkowiak, T., Gerstenfeld, L. C., van Wijnen, A. J., et al. (2005). Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102, 1454–1459.PubMedGoogle Scholar
  39. 39.
    Pratap, J., Javed, A., Languino, L. R., van Wijnen, A. J., Stein, J. L., Stein, G. S., et al. (2005). The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Molecular and Cellular Biology, 25, 8581–8591.PubMedGoogle Scholar
  40. 40.
    Selvamurugan, N., Kwok, S., & Partridge, N. C. (2004). Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. Journal of Biological Chemistry, 279, 27764–27773.PubMedGoogle Scholar
  41. 41.
    Brubaker, K. D., Vessella, R. L., Brown, L. G., & Corey, E. (2003). Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function. Prostate, 56, 13–22.PubMedGoogle Scholar
  42. 42.
    Galindo, M., Pratap, J., Young, D. W., Hovhannisyan, H., Im, H. J., Choi, J. Y., et al. (2005). The bone-specific expression of RUNX2 oscillates during the cell cycle to support a G1 related anti-proliferative function in osteoblasts. Journal of Biological Chemistry, 280, 20274–20285.PubMedGoogle Scholar
  43. 43.
    Massague, J. (2004). G1 cell-cycle control and cancer. Nature, 432, 298–306.PubMedGoogle Scholar
  44. 44.
    Barnes, G. L., Hebert, K. E., Kamal, M., Javed, A., Einhorn, T. A., Lian, J. B., et al. (2004). Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases associated osteolytic disease. Cancer Research, 64, 4506–4513.PubMedGoogle Scholar
  45. 45.
    Spencer, V. A., & Davie, J. R. (2000). Signal transduction pathways and chromatin structure in cancer cells. Journal of Cellular Biochemistry. Supplement, 35, 27–35.PubMedCrossRefGoogle Scholar
  46. 46.
    Young, D. W., Pratap, J., Javed, A., Weiner, B., Ohkawa, Y., van Wijnen, A., et al. (2005). SWI/SNF chromatin remodeling complex is obligatory for BMP2-induced, Runx2-dependent skeletal gene expression that controls osteoblast differentiation. Journal of Cellular Biochemistry, 94, 720–730.PubMedGoogle Scholar
  47. 47.
    Jeon, E. J., Lee, K. Y., Choi, N. S., Lee, M. H., Kim, H. N., Jin, Y. H., et al. (2006). Bone morphogenetic protein-2 stimulates Runx2 acetylation. Journal of Biological Chemistry, 281, 16502–16511.PubMedGoogle Scholar
  48. 48.
    Bae, S. C., & Lee, Y. H. (2006). Phosphorylation, acetylation and ubiquitination: The molecular basis of RUNX regulation. Gene, 366, 58–66.PubMedGoogle Scholar
  49. 49.
    Stock, M., & Otto, F. (2005). Control of RUNX2 isoform expression: The role of promoters and enhancers. Journal of Cellular Biochemistry, 95, 506–517.PubMedGoogle Scholar
  50. 50.
    Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V. N., Komm, B. S., et al. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating RUNX2 gene expression. Journal of Biological Chemistry, 280, 33132–33140.PubMedGoogle Scholar
  51. 51.
    Drissi, H., Luc, Q., Shakoori, R., Chuva de Sousa Lopes, S., Choi, J.-Y., Terry, A., et al. (2000). Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. Journal of Cellular Physiology, 184, 341–350.PubMedGoogle Scholar
  52. 52.
    Hassan, M. Q., Tare, R. S., Lee, S., Mandeville, M., Morasso, M. I., Javed, A., et al (2006). BMP2 commitment to the osteogenic lineage involves activation of Runx2 by Dlx3 and a homeodomain transcriptional network. Journal of Biological Chemistry, [Epub ahead of print].Google Scholar
  53. 53.
    Zambotti, A., Makhluf, H., Shen, J., & Ducy, P. (2002). Characterization of an osteoblast-specific enhancer element in the CBFA1 gene. Journal of Biological Chemistry, 277, 41497–41506.PubMedGoogle Scholar
  54. 54.
    Ozanne, B. W., Spence, H. J., McGarry, L. C., & Hennigan, R. F. (2006). Transcription factors control invasion: AP-1 the first among equals. Oncogene [Epub ahead of print].Google Scholar
  55. 55.
    Barnes, G. L., Javed, A., Waller, S. M., Kamal, M. H., Hebert, K. E., Hassan, M. Q., et al. (2003). Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Research, 63, 2631–2637.PubMedGoogle Scholar
  56. 56.
    Rubin, J. S., Barshishat-Kupper, M., Feroze-Merzoug, F., & Xi, Z. F. (2006). Secreted WNT antagonists as tumor suppressors: Pro and con. Frontiers in Bioscience, 11, 2093–2105.PubMedGoogle Scholar
  57. 57.
    Banerjee, C., Javed, A., Choi, J.-Y., Green, J., Rosen, V., van Wijnen, A. J., et al. (2001). Differential regulation of the two principal Runx2/Cbfa1 N-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology, 142, 4026–4039.PubMedGoogle Scholar
  58. 58.
    Kim, B. G., Kim, H. J., Park, H. J., Kim, Y. J., Yoon, W. J., Lee, S. J., et al. (2006). Runx2 phosphorylation induced by fibroblast growth factor-2/protein kinase C pathways. Proteomics, 6, 1166–1174.PubMedGoogle Scholar
  59. 59.
    Qiao, M., Shapiro, P., Fosbrink, M., Rus, H., Kumar, R., & Passaniti, A. (2006). Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. Journal of Biological Chemistry, 281, 7118–7128.PubMedGoogle Scholar
  60. 60.
    Zaidi, S. K., Sullivan, A. J., Medina, R., Ito, Y., van Wijnen, A. J., Stein, J. L., et al. (2004). Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO Journal, 23, 790–799.PubMedGoogle Scholar
  61. 61.
    Zaidi, S. K., Sullivan, A. J., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2002). Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proceedings of the National Academy of Sciences of the United States of America, 99, 8048–8053.PubMedGoogle Scholar
  62. 62.
    Fujita, T., Fukuyama, R., Enomoto, H., & Komori, T. (2004). Dexamethasone inhibits insulin-induced chondrogenesis of ATDC5 cells by preventing PI3K-Akt signaling and DNA binding of Runx2. Journal of Cellular Biochemistry, 93, 374–383.PubMedGoogle Scholar
  63. 63.
    Myoui, A., Nishimura, R., Williams, P. J., Hiraga, T., Tamura, D., Michigami, T., et al. (2003). C-SRC tyrosine kinase activity is associated with tumor colonization in bone and lung in an animal model of human breast cancer metastasis. Cancer Research, 63, 5028–5033.PubMedGoogle Scholar
  64. 64.
    Qiao, M., Shapiro, P., Kumar, R., & Passaniti, A. (2004). Insulin-like growth factor-1 regulates endogenous RUNX2 activity in endothelial cells through a phosphatidylinositol 3-kinase/ERK-dependent and Akt-independent signaling pathway. Journal of Biological Chemistry, 279, 42709–42718.PubMedGoogle Scholar
  65. 65.
    Lee, K. S., Kim, H. J., Li, Q. L., Chi, X. Z., Ueta, C., Komori, T., et al. (2000). Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between runx2 and smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Molecular and Cellular Biology, 20, 8783–8792.PubMedGoogle Scholar
  66. 66.
    Ryoo, H. M., & Wang, X. P. (2006). Control of tooth morphogenesis by Runx2. Critical Reviews in Eukaryotic Gene Expression, 16, 143–154.PubMedGoogle Scholar
  67. 67.
    Zhao, M., Qiao, M., Oyajobi, B. O., Mundy, G. R., & Chen, D. (2003). E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. Journal of Biological Chemistry, 278, 27939–27944.PubMedGoogle Scholar
  68. 68.
    Shen, R., Chen, M., Wang, Y. J., Kaneki, H., Xing, L., O’Keefe, R. J., et al. (2006). Smad6 interacts with Runx2 and mediates Smad ubiquitin regulatory factor 1-induced Runx2 degradation. Journal of Biological Chemistry, 281, 3569–3576.PubMedGoogle Scholar
  69. 69.
    Jones, D. C., Wein, M. N., Oukka, M., Hofstaetter, J. G., Glimcher, M. J., & Glimcher, L. H. (2006). Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science, 312, 1223–1227.PubMedGoogle Scholar
  70. 70.
    Goel, H. L., Moro, L., King, M., Teider, N., Centrella, M., McCarthy, T. L., et al. (2006). Beta1 integrins modulate cell adhesion by regulating insulin-like growth factor-II levels in the microenvironment. Cancer Research, 66, 331–342.PubMedGoogle Scholar
  71. 71.
    Lipscomb, E. A., & Mercurio, A. M. (2005). Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Reviews, 24, 413–423.PubMedGoogle Scholar
  72. 72.
    Bhowmick, N. A., Zent, R., Ghiassi, M., McDonnell, M., & Moses, H. L. (2001). Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. Journal of Biological Chemistry, 276, 46707–46713.PubMedGoogle Scholar
  73. 73.
    Tantivejkul, K., Kalikin, L. M., & Pienta, K. J. (2004). Dynamic process of prostate cancer metastasis to bone. Journal of Cellular Biochemistry, 91, 706–717.PubMedGoogle Scholar
  74. 74.
    Pratap, J., Akech, J., Bedard, K., Breen, M., van Wijnen, A. J., Stein, J. L., et al. (2006). Runx2 in breast and prostate cancer cells: Roles in adhesion, invasion and tumor activity in bone. Proceedings of the American Association for Cancer Research, 47, article # 3971.Google Scholar
  75. 75.
    Zelzer, E., Glotzer, D. J., Hartmann, C., Thomas, D., Fukai, N., Soker, S., et al. (2001). Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mechanisms of Development, 106, 97–106.PubMedGoogle Scholar
  76. 76.
    Sharp, J. A., Waltham, M., Williams, E. D., Henderson, M. A., & Thompson, E. W. (2004). Transfection of MDA-MB-231 human breast carcinoma cells with bone sialoprotein (BSP) stimulates migration and invasion in vitro and growth of primary and secondary tumors in nude mice. Clinical & Experimental Metastasis, 21, 19–29.Google Scholar
  77. 77.
    Bellahcene, A., Menard, S., Bufalino, R., Moreau, L., & Castronovo, V. (1996). Expression of bone sialoprotein in primary human breast cancer is associated with poor survival. International Journal of Cancer, 69, 350–353.Google Scholar
  78. 78.
    Bramwell, V. H., Doig, G. S., Tuck, A. B., Wilson, S. M., Tonkin, K. S., Tomiak, A., et al. (2006). Serial plasma osteopontin levels have prognostic value in metastatic breast cancer. Clinical Cancer Research, 12, 3337–3343.PubMedGoogle Scholar
  79. 79.
    Ibrahim, T., Leong, I., Sanchez-Sweatman, O., Khokha, R., Sodek, J., Tenenbaum, H. C., et al. (2000). Expression of bone sialoprotein and osteopontin in breast cancer bone metastases. Clinical & Experimental Metastasis, 18, 253–260.Google Scholar
  80. 80.
    Natasha, T., Kuhn, M., Kelly, O., & Rittling, S. R. (2006). Override of the osteoclast defect in osteopontin-deficient mice by metastatic tumor growth in the bone. American Journal of Pathology, 168, 551–561.PubMedGoogle Scholar
  81. 81.
    Ohyama, Y., Nemoto, H., Rittling, S., Tsuji, K., Amagasa, T., Denhardt, D. T., et al. (2004). Osteopontin-deficiency suppresses growth of B16 melanoma cells implanted in bone and osteoclastogenesis in co-cultures. Journal of Bone and Mineral Research, 19, 1706–1711.PubMedGoogle Scholar
  82. 82.
    Riminucci, M., Corsi, A., Peris, K., Fisher, L. W., Chimenti, S., & Bianco, P. (2003). Coexpression of bone sialoprotein (BSP) and the pivotal transcriptional regulator of osteogenesis, Cbfa1/Runx2, in malignant melanoma. Calcified Tissue International, 73, 281–289.PubMedGoogle Scholar
  83. 83.
    Wai, P. Y., Mi, Z., Gao, C., Guo, H., Marroquin, C., & Kuo, P. C. (2006). Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. Journal of Biological Chemistry, 281, 18973–18982.PubMedGoogle Scholar
  84. 84.
    Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2, 161–174.PubMedGoogle Scholar
  85. 85.
    Guise, T. A., & Chirgwin, J. M. (2003). Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clinical Orthopaedics and Related Research, 415 (Suppl), S32–S38.PubMedGoogle Scholar
  86. 86.
    Grimm, S. L., & Rosen, J. M. (2006). Stop! In the name of transforming growth factor-beta: Keeping estrogen receptor-alpha-positive mammary epithelial cells from proliferating. Breast Cancer Research, 8, 106.PubMedGoogle Scholar
  87. 87.
    Yoneda, T., Williams, P. J., Hiraga, T., Niewolna, M., & Nishimura, R. (2001). A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. Journal of Bone and Mineral Research, 16, 1486–1495.PubMedGoogle Scholar
  88. 88.
    Kakonen, S. M., Selander, K. S., Chirgwin, J. M., Yin, J. J., Burns, S., Rankin, W. A., et al. (2002). Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. Journal of Biological Chemistry, 277, 24571–24578.PubMedGoogle Scholar
  89. 89.
    Kang, J. S., Alliston, T., Delston, R., & Derynck, R. (2005). Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO Journal, 24, 2543–2555.PubMedGoogle Scholar
  90. 90.
    Ji, C., Eickelberg, O., McCarthy, T. L., & Centrella, M. (2001). Control and counter-control of TGF-beta activity through FAST and Runx (CBFa) transcriptional elements in osteoblasts. Endocrinology, 142, 3873–3879.PubMedGoogle Scholar
  91. 91.
    Chang, W., Parra, M., Ji, C., Liu, Y., Eickelberg, O., McCarthy, T. L., et al. (2002). Transcriptional and post-transcriptional regulation of transforming growth factor beta type II receptor expression in osteoblasts. Gene, 299, 65–77.PubMedGoogle Scholar
  92. 92.
    Afzal, F., Pratap, J., Ito, K., Ito, Y., Stein, J. L., van Wijnen, A. J., et al. (2005). Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. Journal of Cellular Physiology, 204, 63–72.PubMedGoogle Scholar
  93. 93.
    Phimphilai, M., Zhao, Z., Boules, H., Roca, H., & Franceschi, R. T. (2006). BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. Journal of Bone and Mineral Research, 21, 637–646.PubMedGoogle Scholar
  94. 94.
    Bae, J.-S., Gutierrez, S., Narla, R., Pratap, J., Devados, R., Stein, J. L., et al. (2006). Reconstitution of Runx2/Cbfa1 null cells identifies Runx2 functional domains required for osteoblast differentiation and responsiveness to osteogenic regulators BMP2, TGFb and 1,25(OH)2D3. Journal of Cellular Biochemistry [Epub ahead of print].Google Scholar
  95. 95.
    Javed, A., Guo, B., Hiebert, S., Choi, J.-Y., Green, J., Zhao, S.-C., et al. (2000). Groucho/TLE/R-Esp proteins associate with the nuclear matrix and repress RUNX (CBFa/AML/PEBP2a) dependent activation of tissue-specific gene transcription. Journal of Cell Science, 113, 2221–2231.PubMedGoogle Scholar
  96. 96.
    Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3, 537–549.PubMedGoogle Scholar
  97. 97.
    Chirgwin, J. M., Mohammad, K. S., & Guise, T. A. (2004). Tumor-bone cellular interactions in skeletal metastases. Journal of Musculoskeletal Neuronal Interaction, 4, 308–318.Google Scholar
  98. 98.
    Fizazi, K., Yang, J., Peleg, S., Sikes, C. R., Kreimann, E. L., Daliani, D., et al. (2003). Prostate cancer cells–osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clinical Cancer Research, 9, 2587–2597.PubMedGoogle Scholar
  99. 99.
    Feeley, B. T., Gamradt, S. C., Hsu, W. K., Liu, N., Krenek, L., Robbins, P., et al. (2005). Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer. Journal of Bone and Mineral Research, 20, 2189–2199.PubMedGoogle Scholar
  100. 100.
    Kozlow, W., & Guise, T. A. (2005). Breast cancer metastasis to bone: Mechanisms of osteolysis and implications for therapy. Journal of Mammary Gland Biology and Neoplasia, 10, 169–180.PubMedGoogle Scholar
  101. 101.
    Enomoto, H., Shiojiri, S., Hoshi, K., Furuichi, T., Fukuyama, R., Yoshida, C. A., et al. (2003). Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2−/− mice by RANKL transgene. Journal of Biological Chemistry, 278, 23971–23977.PubMedGoogle Scholar
  102. 102.
    Sun, Y. X., Schneider, A., Jung, Y., Wang, J., Dai, J., Wang, J., et al. (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20, 318–329.PubMedGoogle Scholar
  103. 103.
    Yin, J. J., Mohammad, K. S., Kakonen, S. M., Harris, S., Wu-Wong, J. R., Wessale, J. L., et al. (2003). A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proceedings of the National Academy of Sciences of the United States of America, 100, 10954–10959.PubMedGoogle Scholar
  104. 104.
    Bendre, M. S., Margulies, A. G., Walser, B., Akel, N. S., Bhattacharrya, S., Skinner, R. A., et al. (2005). Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Research, 65, 11001–11009.PubMedGoogle Scholar
  105. 105.
    Kang, Y., He, W., Tulley, S., Gupta, G. P., Serganova, I., Chen, C. R., et al. (2005). Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proceedings of the National Academy of Sciences of the United States of America, 102, 13909–13914.PubMedGoogle Scholar
  106. 106.
    van der, P. G., Sijmons, B., Vloedgraven, H., Deckers, M., Papapoulos, S., & Lowik, C. (2001). Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: Elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. Journal of Bone and Mineral Research, 16, 1077–1091.Google Scholar
  107. 107.
    Pfeilschifter, J., Chenu, C., Bird, A., Mundy, G. R., & Roodman, G. D. (1989). Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. Journal of Bone and Mineral Research, 4, 113–118.PubMedGoogle Scholar
  108. 108.
    Grano, M., Mori, G., Minielli, V., Cantatore, F. P., Colucci, S., & Zallone, A. Z. (2000). Breast cancer cell line MDA-231 stimulates osteoclastogenesis and bone resorption in human osteoclasts. Biochemical and Biophysical Research Communications, 270, 1097–1100.PubMedGoogle Scholar
  109. 109.
    Han, J. H., Choi, S. J., Kurihara, N., Koide, M., Oba, Y., & Roodman, G. D. (2001). Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood, 97, 3349–3353.PubMedGoogle Scholar
  110. 110.
    Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.PubMedGoogle Scholar
  111. 111.
    Carlinfante, G., Vassiliou, D., Svensson, O., Wendel, M., Heinegard, D., & Andersson, G. (2003). Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clinical & Experimental Metastasis, 20, 437–444.Google Scholar
  112. 112.
    Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2, 737–744.PubMedGoogle Scholar
  113. 113.
    Nam, J. S., Suchar, A. M., Kang, M. J., Stuelten, C. H., Tang, B., Michalowska, A. M., et al. (2006). Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer. Cancer Research, 66, 6327–6335.PubMedGoogle Scholar
  114. 114.
    Itoh, T., Tanioka, M., Matsuda, H., Nishimoto, H., Yoshioka, T., Suzuki, R., et al. (1999). Experimental metastasis is suppressed in MMP-9-deficient mice. Clinical & Experimental Metastasis, 17, 177–181.Google Scholar
  115. 115.
    Ha, H. Y., Moon, H. B., Nam, M. S., Lee, J. W., Ryoo, Z. Y., Lee, T. H., et al. (2001). Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Research, 61, 984–990.PubMedGoogle Scholar
  116. 116.
    Yin, J. J., Selander, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., et al. (1999). TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. Journal of Clinical Investigation, 103, 197–206.PubMedGoogle Scholar
  117. 117.
    Suva, L. J., Winslow, G. A., Wettenhall, R. E., Hammonds, R. G., Moseley, J. M., efenbach-Jagger, H., et al. (1987). A parathyroid hormone-related protein implicated in malignant hypercalcemia: Cloning and expression. Science, 237, 893–896.PubMedGoogle Scholar
  118. 118.
    Thomas, R. J., Guise, T. A., Yin, J. J., Elliott, J., Horwood, N. J., Martin, T. J., et al. (1999). Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology, 140, 4451–4458.PubMedGoogle Scholar
  119. 119.
    Deckers, M., van, D. M., Buijs, J., Que, I., Lowik, C., van der, P. G., et al. (2006). The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Research, 66, 2202–2209.PubMedGoogle Scholar
  120. 120.
    Harris, S. E., Bonewald, L. F., Harris, M. A., Sabatini, M., Dallas, S., Feng, J. Q., et al. (1994). Effects of transforming growth factor beta on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. Journal of Bone and Mineral Research, 9, 855–863.PubMedGoogle Scholar
  121. 121.
    Bachelder, R. E., Wendt, M. A., & Mercurio, A. M. (2002). Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Research, 62, 7203–7206.PubMedGoogle Scholar
  122. 122.
    Ribatti, D., Nico, B., & Vacca, A. (2006). Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene, 25, 4257–4266.PubMedGoogle Scholar
  123. 123.
    Chan, J. M., Stampfer, M. J., Giovannucci, E., Gann, P. H., Ma, J., Wilkinson, P., et al. (1998). Plasma insulin-like growth factor-I and prostate cancer risk: A prospective study. Science, 279, 563–566.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • J. Pratap
    • 1
  • J. B. Lian
    • 1
  • A. Javed
    • 2
  • G. L. Barnes
    • 3
  • A. J. van Wijnen
    • 1
  • J. L. Stein
    • 1
  • G. S. Stein
    • 1
  1. 1.Department of Cell BiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Institute of Oral health research, School of DentistryUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of Orthopaedic SurgeryBoston University Medical CenterBostonUSA

Personalised recommendations