Cancer and Metastasis Reviews

, Volume 25, Issue 4, pp 611–619 | Cite as

CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases



The paradigm of cancer development and metastasis is a comprehensive, complex series of events that ultimately reflects a coordinated interaction between the tumor cell and the microenvironment within which the tumor cell resides. Despite the realization that this relationship has changed the current paradigm of cancer research, the struggle continues to more completely understand the pathogenesis of the disease and the ability to appropriately identify and design novel targets for therapy. A particular area of research that has added a significant understanding to cancer metastasis is the role of chemokines and chemokine receptors. Here we review the current concepts of CCL2 (monoctye chemoattractant protein 1) and its role in tumor metastasis with particular interest to its role in the development of bone metastases.


Cancer Chemokine Bone metastasis Chemokine receptor Tumorigenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paget, S. (1989). The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Reviews, 8(2), 98–101.PubMedGoogle Scholar
  2. 2.
    Loberg, R. D., Gayed, B. A., Olson, K. B., & Pienta, K. J. (2005). A paradigm for the treatment of prostate cancer bone metastases based on an understanding of tumor cell–microenvironment interactions. Journal of Cellular Biochemistry, 96(3), 439–446.PubMedCrossRefGoogle Scholar
  3. 3.
    Shah, R. B., Mehra, R., Chinnaiyan, A. M., Shen, R., Ghosh, D., Zhou, M., et al. (2004). Androgen-independent prostate cancer is a heterogeneous group of diseases: Lessons from a rapid autopsy program. Cancer Research, 64(24), 9209–9216.PubMedCrossRefGoogle Scholar
  4. 4.
    Posner, L. J., Miligkos, T., Gilles, J. A., Carnes, D. L., Taddeo, D. R., & Graves, D. T. (1997). Monocyte chemoattractant protein-1 induces monocyte recruitment that is associated with an increase in numbers of osteoblasts. Bone, 21(4):321–327.PubMedCrossRefGoogle Scholar
  5. 5.
    Zheng, M. H., Fan, Y., Smith, A., Wysocki, S., Papadimitriou, J. M., & Wood, D. J. (1998). Gene expression of monocyte chemoattractant protein-1 in giant cell tumors of bone osteoclastoma: Possible involvement in CD68+ macrophage-like cell migration. Journal of Cellular Biochemistry, 70(1), 121–129.PubMedCrossRefGoogle Scholar
  6. 6.
    Uguccioni, M., Loetscher, P., Forssmann, U., Dewald, B., Li, H., Lima, S. H., et al. (1996). Monocyte chemotactic protein 4 (MCP-4), a novel structural and functional analogue of MCP-3 and eotaxin. Journal of Experimental Medicine, 183(5):2379–2384.PubMedCrossRefGoogle Scholar
  7. 7.
    Schall, T. J. (1991). Biology of the RANTES/SIS cytokine family. Cytokine, 3(3):165–183.PubMedCrossRefGoogle Scholar
  8. 8.
    Sarafi, M. N., Garcia-Zepeda, E. A., MacLean, J. A., Charo, I. F., & Luster, A. D. (1997). Murine monocyte chemoattractant protein (MCP)-5: A novel CC chemokine that is a structural and functional homologue of human MCP-1. Journal of Experimental Medicine, 185(1), 99–109.PubMedCrossRefGoogle Scholar
  9. 9.
    Van Damme, J., Proost, P., Lenaerts, J. P., & Opdenakker, G. (1992). Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. Journal of Experimental Medicine, 176(1), 59–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Vanderkerken, K., Vande Broek, I., Eizirik, D. L., Van Valckenborgh, E., Asosingh, K., Van Riet, I., et al. (2002). Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5T multiple myeloma cells. Clinical & Experimental Metastasis, 19(1), 87–90.CrossRefGoogle Scholar
  11. 11.
    Silvestris, F., Cafforio, P., Calvani, N., & Dammacco, F. (2004). Impaired osteoblastogenesis in myeloma bone disease: Role of upregulated apoptosis by cytokines and malignant plasma cells. British Journal of Haematology, 126(4), 475–486.PubMedCrossRefGoogle Scholar
  12. 12.
    Leonard, E. J. (1997). Biological aspects of macrophage-stimulating protein (MSP) and its receptor. Ciba Foundation Symposium, 212, 183–191 (discussion 92–97).Google Scholar
  13. 13.
    Charo, I. F., Myers, S. J., Herman, A., Franci, C., Connolly, A. J., & Coughlin, S. R. (1994). Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proceedings of the National Academy of Science U.S.A., 91(7), 2752–2756.CrossRefGoogle Scholar
  14. 14.
    Graves, D. T., Jiang, Y., &. Valente, A. J. (1999). The expression of monocyte chemoattractant protein-1 and other chemokines by osteoblasts. Frontier in Bioscience, 4, D571–D580.CrossRefGoogle Scholar
  15. 15.
    Graves, D. T., Jiang, Y., & Valente, A. J. (1999). Regulated expression of MCP-1 by osteoblastic cells in vitro and in vivo. Histology and Histopathology, 14(4), 1347–1354.PubMedGoogle Scholar
  16. 16.
    Wong, L. M., Myers, S. J., Tsou, C. L., Gosling, J., Arai, H., & Charo, I. F. (1997). Organization and differential expression of the human monocyte chemoattractant protein 1 receptor gene. Evidence for the role of the carboxyl-terminal tail in receptor trafficking. Journal of Biological Chemistry, 272(2), 1038–1045.CrossRefGoogle Scholar
  17. 17.
    Rollins, B. J. (1997). Chemokines. Blood, 90(3), 909–928.PubMedGoogle Scholar
  18. 18.
    Baggiolini, M., Dewald, B., & Moser, B. (1997). Human chemokines: An update. Annual Review of Immunology, 15, 675–705.PubMedCrossRefGoogle Scholar
  19. 19.
    Loberg, R. D., Day, L. L., Harwood, J., Ying, C., St John, L. N., Giles, R., et al. (2006). CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia, 8(7), 578–586.PubMedCrossRefGoogle Scholar
  20. 20.
    Silvestris, F., Cafforio, P., Tucci, M., Grinello, D., & Dammacco, F. (2003) Upregulation of osteoblast apoptosis by malignant plasma cells: A role in myeloma bone disease. Britist Journal of Haematology, 122(1), 39–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Arendt, B. K., Velazquez-Dones, A., Tschumper, R. C., Howell, K. G., Ansell, S. M., Witzig, T. E., & Jelinek, D. F. (2002). Interleukin 6 induces monocyte chemoattractant protein-1 expression in myeloma cells. Leukemia, 16(10), 2142–2147.PubMedCrossRefGoogle Scholar
  22. 22.
    Vande Broek, I., Asosingh, K., Vanderkerken, K., Straetmans, N., Van Camp, B., & Van Riet, I. (2003). Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. British Journal of Cancer, 88(6), 855–862.CrossRefGoogle Scholar
  23. 23.
    Johrer, K., Janke, K., Krugmann, J., Fiegl, M., & Greil, R. (2004). Transendothelial migration of myeloma cells is increased by tumor necrosis factor (TNF)-alpha via TNF receptor 2 and autocrine up-regulation of MCP-1. Clinical Cancer Research, 10(6), 1901–1910.PubMedCrossRefGoogle Scholar
  24. 24.
    Pellegrino, A., Ria, R., Di Pietro, G., Cirulli, T., Surico, G., Pennisi, A., Morabito, F., Ribatti, D., Vacca, A. (2005). Bone marrow endothelial cells in multiple myeloma secrete CXC-chemokines that mediate interactions with plasma cells. British Journal of Haematology, 129(2), 248–256.CrossRefGoogle Scholar
  25. 25.
    Soule, H. D., Vazguez, J., Long, A., Albert, S., & Brennan, M. (1973). A human cell line from a pleural effusion derived from a breast carcinoma. Journal of the National Cancer Institute, 51(5), 1409–1416.PubMedGoogle Scholar
  26. 26.
    Engel, L. W., Young, N. A., Tralka, T. S., Lippman, M. E., O’Brien, S. J., & Joyce, M. J. (1978). Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Research 38(10), 3352–3364.PubMedGoogle Scholar
  27. 27.
    Youngs, S. J., Ali, S. A., Taub, D. D., & Rees, R. C. (1997). Chemokines induce migrational responses in human breast carcinoma cell lines. International Journal of Cancer, 71(2):257–266.CrossRefGoogle Scholar
  28. 28.
    Keydar, I., Chen, L., Karby, S., Weiss, F. R., Delarea, J., Radu, M., et al. (1975). Establishment and characterization of a cell line of human breast carcinoma origin. European Journal of Cancer, 15(5), 659–670.Google Scholar
  29. 29.
    Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research, 6(8), 3282–3289.PubMedGoogle Scholar
  30. 30.
    Saji, H., Koike, M., Yamori, T., Saji, S., Seiki, M., Matsushima, K., et al. (2001). Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer, 92(5), 1085–1091.PubMedCrossRefGoogle Scholar
  31. 31.
    Lebrecht, A., Grimm, C., Lantzsch, T., Ludwig, E., Hefler, L., Ulbrich, E., et al. (2004). Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biology, 25(1–2), 14–17.PubMedCrossRefGoogle Scholar
  32. 32.
    Ferrero, E., Fabbri, M., Poggi, A., Galati, G., Bernasconi, S., & Zocchi, M. R. (1998). Tumor-driven matrix invasion by infiltrating lymphocytes: Involvement of the alpha1 integrin I-domain. European Journal of Immunology, 28(8), 2530–2536.PubMedCrossRefGoogle Scholar
  33. 33.
    Amann, B., Perabo, F. G., Wirger, A., Hugenschmidt, H., & Schultze-Seemann, W. (1998). Urinary levels of monocyte chemo-attractant protein-1 correlate with tumour stage and grade in patients with bladder cancer. British Journal of Urology, 82(1), 118–121.PubMedGoogle Scholar
  34. 34.
    Luciani, M. G., Stoppacciaro, A., Peri, G., Mantovani, A., & Ruco, L. P. (1998). The monocyte chemotactic protein a (MCP-1) and interleukin 8 (IL-8) in Hodgkin’s disease and in solid tumours. Molecular Pathology, 51(5):273–276.PubMedCrossRefGoogle Scholar
  35. 35.
    Baier, P. K., Eggstein, S., Wolff-Vorbeck, G., Baumgartner, U., & Hopt, U. T. (2005). Chemokines in human colorectal carcinoma. Anticancer Research, 25(5), 3581–3584.PubMedGoogle Scholar
  36. 36.
    Lu, Y., Cai, Z., Galson, D. L., Xiao, G., Liu, Y., George, D. E., et al. (2006). Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate, 66(12), 1311–1318.PubMedCrossRefGoogle Scholar
  37. 37.
    Kim, M. S., Day, C. J., & Morrison, N. A. (2005). MCP-1 is induced by receptor activator of nuclear factor-{kappa}B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. Journal of Biology Chemistry, 280(16), 16163–16169.CrossRefGoogle Scholar
  38. 38.
    Kim, M. S., Day, C. J., Selinger, C. I., Magno, C. L., Stephens, S. R., & Morrison, N. A. (2006). MCP-1-induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NFkappaB ligand for bone resorption. Journal of Biology Chemistry, 281(2), 1274–1285.CrossRefGoogle Scholar
  39. 39.
    Kim, M. S., Magno, C. L., Day, C. J., & Morrison, N. A. (2006). Induction of chemokines and chemokine receptors CCR2b and CCR4 in authentic human osteoclasts differentiated with RANKL and osteoclast like cells differentiated by MCP-1 and RANTES. Journal of Cellular Biochemistry, 97(3), 512–518.PubMedCrossRefGoogle Scholar
  40. 40.
    Muta, M., Matsumoto, G., Nakashima, E., & Toi, M. (2006). Mechanical analysis of tumor growth regression by the cyclooxygenase-2 inhibitor, DFU, in a Walker256 rat tumor model: importance of monocyte chemoattractant protein-1 modulation. Clinical Cancer Research, 12(1), 264–272.PubMedCrossRefGoogle Scholar
  41. 41.
    Broxmeyer, H. E., Pelus, L. M., Kim, C. H., Hangoc, G., Cooper, S., & Hromas, R. (2006). Synergistic inhibition in vivo of bone marrow myeloid progenitors by myelosuppressive chemokines and chemokine-accelerated recovery of progenitors after treatment of mice with ara-C. Experimental Hematology, 34(8), 1069–1077.PubMedCrossRefGoogle Scholar
  42. 42.
    Broxmeyer, H. E., Cooper, S., Hangoc, G., & Kim, C. H. (2005). Stromal cell-derived factor-1/CXCL12 selectively counteracts inhibitory effects of myelosuppressive chemokines on hematopoietic progenitor cell proliferation in vitro. Stem Cells and Development, 14(2), 199–203.PubMedCrossRefGoogle Scholar
  43. 43.
    Cashman, J. D., Eaves, C. J., Sarris, A. H., & Eaves, A. C. (1998). MCP-1, not MIP-1alpha, is the endogenous chemokine that cooperates with TGF-beta to inhibit the cycling of primitive normal but not leukemic (CML) progenitors in long-term human marrow cultures. Blood, 92(7), 2338–2344.PubMedGoogle Scholar
  44. 44.
    Xu, Y. X., Talati, B. R., Janakiraman, N., Chapman, R. A., & Gautam, S. C. (1999). Growth factors: Production of monocyte chemotactic protein-1 (MCP-1/JE) by bone marrow stromal cells: Effect on the migration and proliferation of hematopoietic progenitor cells. Hematology, 4(4), 345–356.PubMedGoogle Scholar
  45. 45.
    Kurihara, T., Warr, G., Loy, J., & Bravo, R. (1997). Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. Journal of Experimental Medicine, 186(10), 1757–1762.PubMedCrossRefGoogle Scholar
  46. 46.
    Dzenko, K. A., Song, L., Ge, S., Kuziel, W. A., & Pachter, J. S. (2005). CCR2 expression by brain microvascular endothelial cells is critical for macrophage transendothelial migration in response to CCL2. Microvascular Research, 70(1–2), 53–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Yang, X., Lu, P., Ishida, Y., Kuziel, W. A., Fujii, C., & Mukaida, N. (2006). Attenuated liver tumor formation in the absence of CCR2 with a concomitant reduction in the accumulation of hepatic stellate cells, macrophages and neovascularization. International Journal Cancer, 118(2), 335–345.CrossRefGoogle Scholar
  48. 48.
    Huang, S., Singh, R. K., Xie, K., Gutman, M., Berry, K. K., Bucana, C. D., et al. (1994). Expression of the JE/MCP-1 gene suppresses metastatic potential in murine colon carcinoma cells. Cancer Immunology Immunotherapy, 39(4), 231–238.CrossRefGoogle Scholar
  49. 49.
    Huang, S., Xie, K., Singh, R. K., Gutman, M., & Bar-Eli, M. (1995). Suppression of tumor growth and metastasis of murine renal adenocarcinoma by syngeneic fibroblasts genetically engineered to secrete the JE/MCP-1 cytokine. Journal of Interferon Cytokine Research, 15(7), 655–665.PubMedCrossRefGoogle Scholar
  50. 50.
    Monti, P., Leone, B. E., Marchesi, F., Balzano, G., Zerbi, A., Scaltrini, F., et al. (2003). The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: Regulation of expression and potential mechanisms of antimalignant activity. Cancer Research, 63(21), 7451–7461.PubMedGoogle Scholar
  51. 51.
    Kozlow, W., & Guise, T. A. (2005). Breast cancer metastasis to bone: Mechanisms of osteolysis and implications for therapy. Journal of Mammary Gland Biology Neoplasia, 10(2), 169–180.CrossRefGoogle Scholar
  52. 52.
    Ishikawa, M., Toki, H., Fujii, M., Yamamoto, H., Yumoto, Y., Awazu, R., et al. (1983). Clinical significance of the bone marrow examination in small cell carcinoma of the lung. Gan No Rinsho, 29(5), 399–402.PubMedGoogle Scholar
  53. 53.
    Iguchi, H., Yasuda, M., Matsuo, T., Sumii, T., & Funakoshi, A. (2004). Clinical features and management of pancreatic cancer with bone metastases. Nippon Shokakibyo Gakkai Zasshi, 101(8):872–878.PubMedGoogle Scholar
  54. 54.
    Rowland, G. N., Capen, C. C., Black, H. E., & Young, D. M. (1971). Microradiographic evaluation of bone and ultrastructure of C-cells and parathyroid glands of cows receiving parathyroid extract. Beitrage zur Pathologie, 144(4), 360–376.PubMedGoogle Scholar
  55. 55.
    Junker, K., Romics, I., Szendroi, A., Riesz, P., Moravek, P., Hindermann, W., et al. (2004). Genetic profile of bone metastases in renal cell carcinoma. European Urology, 45(3), 320–324.PubMedCrossRefGoogle Scholar
  56. 56.
    Natsuizaka, M., Omura, T., Akaike, T., Kuwata, Y., Yamazaki, K., Sato, T., et al. (2005). Clinical features of hepatocellular carcinoma with extrahepatic metastases. Journal of Gastroenterology and Hepatology, 20(11), 1781–1787.PubMedCrossRefGoogle Scholar
  57. 57.
    Mado, K., Ishii, Y., Mazaki, T., Ushio, M., Masuda, H., & Takayama, T. (2006). A case of bone metastasis of colon cancer that markedly responded to S-1/CPT-11 combination chemotherapy and became curable by resection. World Journal of Surgical Oncology, 4, 3.PubMedCrossRefGoogle Scholar
  58. 58.
    Berge, T., & Lundberg, S. (1977). Cancer in Malmo 1958–1969. An autopsy study. Acta Pathologica et Microbiologica Scandinavica, Supplementum, 260, 1–235.Google Scholar
  59. 59.
    Drury, A. B., Palmer, P. H., & Highman, W. J. (1964). Carcinomatous metastasis to the vertebral bodies. Journal of Clinical Pathology, 17, 448–457.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  2. 2.University of Michigan Urology CenterAnn ArborUSA

Personalised recommendations