Cancer and Metastasis Reviews

, Volume 25, Issue 3, pp 481–491

Inflammation and disease progression

NON-THEMATIC REVIEW

Abstract

Inflammation is a physiological response to a foreign organism such as bacteria, dust particles, and viruses. Recent studies have enlightened the role of inflammation in the progression of a variety of diseases such as cancer, atherosclerosis, asthma, and psoriasis. This article is a brief overview of the inflammatory processes involved in the progression of these common diseases. Knowledge about these mechanisms can shed light into development of newer therapeutic agents that are aimed at the eradication of these diseases.

Keywords

Inflammation Cancer Atherosclerosis Asthma Psoriasis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. (2001). Immunobiology: The immune system in health and disease. London: Taylor & Francis.Google Scholar
  2. 2.
    Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.CrossRefPubMedGoogle Scholar
  3. 3.
    Lawrence, T., Willoughby, D. A., & Gilroy, D. W. (2002). Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nature Reviews. Immunology, 2, 787–795.CrossRefPubMedGoogle Scholar
  4. 4.
    Nathan, C. (2002) Points of control in inflammation. Nature, 420, 846–852.CrossRefPubMedGoogle Scholar
  5. 5.
    Rossi, D., & Zlotnik, A. (2000). The biology of chemokines and their receptors. Annual Review of Immunology, 18, 217–242.CrossRefPubMedGoogle Scholar
  6. 6.
    Funk, C. D. (2001). Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science, 294, 1871–1875.CrossRefPubMedGoogle Scholar
  7. 7.
    Serhan, C. N., & Savill, J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunology, 6, 1191–1197.CrossRefPubMedGoogle Scholar
  8. 8.
    Balkwill, F., Charles, K.A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.CrossRefPubMedGoogle Scholar
  9. 9.
    Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.CrossRefPubMedGoogle Scholar
  10. 10.
    Lu, H., Ouyang, W., & Huang, C. (2006). Inflammation, a key event in cancer development. Molecular Cancer Research, 4, 221–233.CrossRefPubMedGoogle Scholar
  11. 11.
    Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4, 71–78.CrossRefPubMedGoogle Scholar
  12. 12.
    Jung, Y. J., Isaacs, J. S., Lee, S., Trepel, J., & Neckers, L. (2003). IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB Journal, 17, 2115–2117.PubMedGoogle Scholar
  13. 13.
    Torisu, H., Ono, M., Kiryu, H., Furue, M., Ohmoto, Y., Nakayama, J., et al. (2000). Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: Possible involvement of TNFalpha and IL-1alpha. International Journal of Cancer, 85, 182–188.Google Scholar
  14. 14.
    Schoppmann, S. F., Birner, P., Stockl, J., Kalt, R., Ullrich, R., Caucig, C., et al. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. American Journal of Pathology, 161, 947–956.PubMedGoogle Scholar
  15. 15.
    Steele, R. J., Eremin, O., Brown, M., & Hawkins, R. A. (1984). A high macrophage content in human breast cancer is not associated with favourable prognostic factors. British Journal of Surgery, 71, 456–458.PubMedGoogle Scholar
  16. 16.
    Becker, C., Fantini, M. C., Wirtz, S., Nikolaev, A., Lehr, H. A., Galle, P. R., et al. (2005). IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle, 4, 217–220.PubMedGoogle Scholar
  17. 17.
    Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell, 104, 487–501.CrossRefPubMedGoogle Scholar
  18. 18.
    Jaiswal, M., LaRusso, N. F., Burgart, L. J., & Gores, G. J. (2000). Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Research, 60, 184–90.PubMedGoogle Scholar
  19. 19.
    Arnott, C. H., Scott, K. A., Moore, R. J., Robinson, S. C., Thompson, R. G., & Balkwill, F. R. (2004). Expression of both TNF-alpha receptor subtypes is essential for optimal skin tumour development. Oncogene, 23, 1902–1910.CrossRefPubMedGoogle Scholar
  20. 20.
    Knight, B., Yeoh, G. C., Husk, K. L., Ly, T., Abraham, L. J., Yu, C., et al. (2000). Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. Journal of Experimental Medicine, 192, 1809–1818.CrossRefPubMedGoogle Scholar
  21. 21.
    Rollins, B. J. (2006). Inflammatory chemokines in cancer growth and progression. European Journal of Cancer, 42, 760–767.CrossRefPubMedGoogle Scholar
  22. 22.
    Norgauer, J., Metzner, B., & Schraufstatter, I. (1996). Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells. Journal of Immunology, 156, 1132–1137.Google Scholar
  23. 23.
    Owen, J. D., Strieter, R., Burdick, M., Haghnegahdar, H., Nanney, L., Shattuck-Brandt, R., et al. (1997). Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins. International Journal of Cancer, 73, 94–103.CrossRefGoogle Scholar
  24. 24.
    Balentien, E., Mufson, B. E., Shattuck, R. L., Derynck, R., & Richmond, A. (1991). Effects of MGSA/GRO alpha on melanocyte transformation. Oncogene, 6, 1115–1124.PubMedGoogle Scholar
  25. 25.
    Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105, 1135–1143.CrossRefPubMedGoogle Scholar
  26. 26.
    Stoll, G., & Bendszus, M. (2006). Inflammation and atherosclerosis: Novel insights into plaque formation and destabilization. Stroke, 37, 1923–1932.CrossRefPubMedGoogle Scholar
  27. 27.
    Ross, R. (1999). Atherosclerosis—An inflammatory disease. New England Journal of Medicine, 340, 115–126.CrossRefPubMedGoogle Scholar
  28. 28.
    Berliner, J., Leitinger, N., Watson, A., Huber, J., Fogelman, A.,& Navab, M. (1997). Oxidized lipids in atherogenesis: Formation, destruction and action. Thrombosis and Haemostasis, 78, 195–199.PubMedGoogle Scholar
  29. 29.
    Han, J., Hajjar, D. P., Febbraio, M., & Nicholson, A. C. (1997). Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. Journal of Biological Chemistry, 272, 21654–21659.CrossRefPubMedGoogle Scholar
  30. 30.
    Quinn, M. T., Parthasarathy, S., Fong, L. G., & Steinberg, D. (1987). Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proceedings of the National Academy of Sciences of the United States of America, 84, 2995–2998.CrossRefPubMedGoogle Scholar
  31. 31.
    Rajavashisth, T. B., Andalibi, A., Territo, M. C., Berliner, J. A., Navab, M., Fogelman, A. M., et al. (1990). Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature, 344, 254–257.CrossRefPubMedGoogle Scholar
  32. 32.
    Fidge, N. H. (1999). High density lipoprotein receptors, binding proteins, and ligands. Journal of Lipid Research, 40, 187–201.PubMedGoogle Scholar
  33. 33.
    Arai, T., Wang, N., Bezouevski, M., Welch, C., & Tall, A. R. (1999). Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. Journal of Biological Chemistry, 274, 2366–2371.CrossRefPubMedGoogle Scholar
  34. 34.
    Braun, A., Trigatti, B. L., Post, M. J., Sato, K., Simons, M., Edelberg, J. M., et al. (2002). Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circulation Research, 90, 270–276.CrossRefPubMedGoogle Scholar
  35. 35.
    Han, J., Parsons, M., Zhou, X., Nicholson, A. C., Gotto, A. M., Jr., & Hajjar, D. P. (2004). Functional interplay between the macrophage scavenger receptor class B type I and pitavastatin (NK-104). Circulation, 110, 3472–3479.CrossRefPubMedGoogle Scholar
  36. 36.
    Han, J., Zhou, X., Yokoyama, T., Hajjar, D. P., Gotto, A. M., Jr., & Nicholson, A. C., et al. (2004). Pitavastatin downregulates expression of the macrophage type B scavenger receptor, CD36. Circulation, 109, 790–796.CrossRefPubMedGoogle Scholar
  37. 37.
    Hernandez-Presa, M., Bustos, C., Ortego, M., Tunon, J., Renedo, G., Ruiz-Ortega, M., et al. (1997). Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation, 95, 1532–1541.PubMedGoogle Scholar
  38. 38.
    Tummala, P. E., Chen, X. L., Sundell, C. L., Laursen, J. B., Hammes, C. P., Alexander, R. W., et al. (1999). Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: A potential link between the renin–angiotensin system and atherosclerosis. Circulation, 100, 1223–1229.PubMedGoogle Scholar
  39. 39.
    Kranzhofer, R., Schmidt, J., Pfeiffer, C. A., Hagl, S., Libby, P., & Kubler, W. (1999). Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 1623–1629.PubMedGoogle Scholar
  40. 40.
    Yeh, C. H., Sturgis, L., Haidacher, J., Zhang, X. N., Sherwood, S. J., Bjercke, R. J., et al. (2001). Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes, 50, 1495–1504.PubMedGoogle Scholar
  41. 41.
    Blankenberg, S., Barbaux, S., & Tiret, L. (2003). Adhesion molecules and atherosclerosis. Atherosclerosis, 170, 191–203.CrossRefPubMedGoogle Scholar
  42. 42.
    Cybulsky, M. I., Iiyama, K., Li, H., Zhu, S., Chen, M., Iiyama, M., et al. (2001). A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. Journal of Clinical Investigation, 107, 1255–1262.PubMedGoogle Scholar
  43. 43.
    Li, H., Cybulsky, M. I., Gimbrone, M. A., Jr., & Libby, P. (1993). An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arteriosclerosis and Thrombosis, 13, 197–204.PubMedGoogle Scholar
  44. 44.
    Collins, R. G., Velji, R., Guevara, N. V., Hicks, M. J., Chan, L., & Beaudet, A. L. (2000). P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. Journal of Experimental Medicine, 191, 189–194.CrossRefPubMedGoogle Scholar
  45. 45.
    Gu, L., Okada, Y., Clinton, S. K., Gerard, C., Sukhova, G. K., Libby, P., et al. (1998). Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Molecular Cell, 2, 275–281.CrossRefPubMedGoogle Scholar
  46. 46.
    Smith, J. D., Trogan, E., Ginsberg, M., Grigaux, C., Tian, J., & Miyata, M. (1995). Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proceedings of the National Academy of Sciences of the United States of America, 84(92), 8264–8268.CrossRefGoogle Scholar
  47. 47.
    Qiao, J. H., Tripathi, J., Mishra, N. K., Cai, Y., Tripathi, S., Wang, X. P., et al. (1997). Role of macrophage colony-stimulating factor in atherosclerosis: Studies of osteopetrotic mice. American Journal of Pathology, 150, 1687–1699.PubMedGoogle Scholar
  48. 48.
    Mach, F., Sauty, A., Iarossi, A. S., Sukhova, G. K., Neote, K., Libby, P., et al. (1999). Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. Journal of Clinical Investigation, 104, 1041–1050.PubMedGoogle Scholar
  49. 49.
    Libby, P., Geng, Y. J., Aikawa, M., Schoenbeck, U., Mach, F., Clinton, S. K., et al. (1996). Macrophages and atherosclerotic plaque stability. Current Opinion in Lipidology, 7, 330–335.PubMedGoogle Scholar
  50. 50.
    Libby, P., Sukhova, G., Lee, R. T., & Galis, Z. S. (1995). Cytokines regulate vascular functions related to stability of the atherosclerotic plaque. Arteriosclerosis and Thrombosis, 25(Suppl 2), S9–S12.Google Scholar
  51. 51.
    Luster, A. D., & Tager, A. M. (2004). T-cell trafficking in asthma: Lipid mediators grease the way. Nature Reviews Immunology, 4, 711–724.CrossRefPubMedGoogle Scholar
  52. 52.
    Wenzel, S. E. (2003). The role of leukotrienes in asthma. Prostaglandins, Leukotrienes and Essential Fatty Acids, 69, 145–155.CrossRefGoogle Scholar
  53. 53.
    Hamid, Q., Tulic, M. K., Liu, M. C., & Moqbel, R. (2003). Inflammatory cells in asthma: mechanisms and implications for therapy. Journal of Allergy and Clinical Immunology, 111, S5–S12; discussion S12–S17.CrossRefPubMedGoogle Scholar
  54. 54.
    Bradding, P., Walls, A. F., & Holgate, S. T. (2006). The role of the mast cell in the pathophysiology of asthma. Journal of Allergy and Clinical Immunology, 117, 1277–1284.CrossRefPubMedGoogle Scholar
  55. 55.
    Bradding, P., Roberts, J. A., Britten, K. M., Montefort, S., Djukanovic, R., Mueller, R., et al. (1994). Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: Evidence for the human mast cell as a source of these cytokines. American Journal Respiratory Cell and Molecular Biology, 10, 471–480.Google Scholar
  56. 56.
    Gordon, J. R., Burd, P. R., & Galli, S. J. (1990). Mast cells as a source of multifunctional cytokines. Immunology Today, 11, 458–464.CrossRefPubMedGoogle Scholar
  57. 57.
    Li, H., Sim, T. C., & Alam, R. (1996). IL-13 released by and localized in human basophils. Journal of Immunology, 156, 4833–4838.Google Scholar
  58. 58.
    Liu, M. C., Proud, D., Schleimer, R. P., & Plaut, M. (1984). Human lung macrophages enhance and inhibit lymphocyte proliferation. Journal of Immunology, 132, 2895–2903.Google Scholar
  59. 59.
    Williams, J., Johnson, S., Mascali, J. J., Smith, H., Rosenwasser, L. J., & Borish, L. (1992). Regulation of low affinity IgE receptor (CD23) expression on mononuclear phagocytes in normal and asthmatic subjects. Journal of Immunology, 149, 2823–2829.Google Scholar
  60. 60.
    Fuller, R. W., Morris, P. K., Richmond, R., Sykes, D., Varndell, I. M., Kemeny, D. M., et al. (1986). Immunoglobulin E-dependent stimulation of human alveolar macrophages: Significance in type 1 hypersensitivity. Clinical and Experimental Immunology, 65, 416–426.PubMedGoogle Scholar
  61. 61.
    Fuller, R. W. (1989). The role of the alveolar macrophage in asthma. Respiratory Medicine, 83, 177–178.PubMedGoogle Scholar
  62. 62.
    Joseph, M., Tonnel, A. B., Capron, A., & Voisin, C. (1980). Enzyme release and superoxide anion production by human alveolar macrophages stimulated with immunoglobulin E. Clinical and Experimental Immunology, 40, 416–22.PubMedGoogle Scholar
  63. 63.
    Gosset, P., Tsicopoulos, A., Wallaert, B., Joseph, M., Capron, A., & Tonnel, A. B. (1992). Tumor necrosis factor alpha and interleukin-6 production by human mononuclear phagocytes from allergic asthmatics after IgE-dependent stimulation. American Review of Respiratory Disease, 146, 768–774.PubMedGoogle Scholar
  64. 64.
    Barrios, R. J., Kheradmand, F., Batts, L., & Corry, D. B. (2006). Asthma: Pathology and pathophysiology. Archives of Pathology and Laboratory Medicine, 130, 447–451.PubMedGoogle Scholar
  65. 65.
    Wills-Karp, M. (1999). Immunologic basis of antigen-induced airway hyperresponsiveness. Annual Review of Immunology, 18, 17, 255–281.CrossRefPubMedGoogle Scholar
  66. 66.
    Rothenberg, M. E., Owen, W. F., Jr., Silberstein, D. S., Woods, J., Soberman, R. J., Austen, K. F., et al. (1988). Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. Journal of Clinical Investigation, 81, 1986–1992.PubMedCrossRefGoogle Scholar
  67. 67.
    Schon, M. P., & Boehncke, W. H. (2005). Psoriasis. New England Journal of Medicine, 352, 1899–1912.CrossRefPubMedGoogle Scholar
  68. 68.
    Trembath, R. C., Clough, R. L., Rosbotham, J. L., Jones, A. B., Camp, R. D., Frodsham, A., et al. (1997). Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Human Molecular Genetics, 6, 813–820.CrossRefPubMedGoogle Scholar
  69. 69.
    Griffiths, C. E., Voorhees, J. J., & Nickoloff, B. J. (1989). Characterization of intercellular adhesion molecule-1 and HLA-DR expression in normal and inflamed skin: Modulation by recombinant gamma interferon and tumor necrosis factor. Journal of the American Academy of Dermatology, 20, 617–629.PubMedCrossRefGoogle Scholar
  70. 70.
    Griffiths, C. E., Voorhees, J. J., & Nickoloff, B. J. (1989). Gamma interferon induces different keratinocyte cellular patterns of expression of HLA-DR and DQ and intercellular adhesion molecule-I (ICAM-I) antigens. British Journal of Dermatology, 120, 1–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Terui, T., Ozawa, M., & Tagami, H. (2000). Role of neutrophils in induction of acute inflammation in T-cell-mediated immune dermatosis, psoriasis: A neutrophil-associated inflammation-boosting loop. Experimental Dermatology, 9, 1–10.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Wayne State University School of MedicineDetroitUSA
  2. 2.Departments of Radiation Oncology, Pathology, and ChemistryWayne State University School of MedicineDetroitUSA

Personalised recommendations