Cancer and Metastasis Reviews

, Volume 25, Issue 3, pp 469–480 | Cite as

Advances in methods for assessing tumor hypoxia in vivo: Implications for treatment planning



Tumor hypoxia and its downstream effects have remained of considerable interest for decades due to its negative impact on response to various cancer therapies and promotion of metastasis. Diagnosing hypoxia non-invasively can provide a significant advancement in cancer treatment and is the dire necessity for implementing specific targeted therapies now emerging to treat different aspects of cancer. A variety of techniques are being proposed to do so. However, none of them has yet been established in the clinical arena. This review summarizes the methods currently available to assess tumor hypoxia in vivo and their respective advantages and shortcomings. It also points out the impedances that need to be overcome to establish any particular method in the clinic, along with a broad overview of requirements for further advancement in this sphere of cancer research.


Electron paramagnetic resonance Infrared spectroscopy Magnetic resonance imaging Magnetic resonance spectroscopy Positron emission tomography Tumor hypoxia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomlinson, R. H., & Gray, L. H. (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy. British Journal of Cancer, 9, 539–549.PubMedGoogle Scholar
  2. 2.
    Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S., & Scott, O. C. (1953). The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. British Journal of Radiology, 26, 638–648.PubMedCrossRefGoogle Scholar
  3. 3.
    Kimura, H., Braun, R. D., Ong, E. T., Hsu, R., Secomb, T. W., Papahadjopoulos, D. et al. (1996). Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Research, 56, 5522–5528.PubMedGoogle Scholar
  4. 4.
    Dewhirst, M. W., Ong, E. T., Braun, R. D., Smith, B., Klitzman, B., Evans, S. M. et al. (1999). Quantification of longitudinal tissue pO2 gradients in window chamber tumours: Impact on tumour hypoxia. British Journal of Cancer, 79, 1717–1722.PubMedCrossRefGoogle Scholar
  5. 5.
    Hockel, M., Knoop, C., Schlenger, K., Vorndran, B., Baussmann, E., Mitze, M. et al. (1993). Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiotherapy and Oncology, 26, 45–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Brizel, D. M., Scully, S. P., Harrelson, J. M., Layfield, L. J., Dodge, R. K., Charles, H. C. et al. (1996). Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Research, 56, 5347–5350.PubMedGoogle Scholar
  7. 7.
    Nordsmark, M., Overgaard, M., & Overgaard, J. (1996). Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiotherapy and Oncology, 41, 31–39.PubMedGoogle Scholar
  8. 8.
    Bhattacharya, A., Toth, K., Mazurchuk, R., Spernyak, J. A., Slocum, H. K., Pendyala, L. et al. (2004). Lack of microvessels in well-differentiated regions of human head and neck squamous cell carcinoma A253 associated with functional magnetic resonance imaging detectable hypoxia, limited drug delivery, and resistance to irinotecan therapy. Clinical Cancer Research, 10, 8005–8017.PubMedCrossRefGoogle Scholar
  9. 9.
    Shannon, A. M., Bouchier-Hayes, D. J., Condron, C. M., & Toomey, D. (2003). Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treatment Reviews, 29, 297–307.PubMedCrossRefGoogle Scholar
  10. 10.
    Cowen, R. L., Williams, K. J., Chinje, E. C., Jaffar, M., Sheppard, F. C., Telfer, B. A. et al. (2004). Hypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy: Reversing tumor radioresistance and effecting cure. Cancer Research, 64, 1396–1402.PubMedCrossRefGoogle Scholar
  11. 11.
    Rofstad, E. K., Sundfor, K., Lyng, H., & Trope, C. G. (2000). Hypoxia-induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hypoxia-induced radiation resistance rather than hypoxia-induced metastasis. British Journal of Cancer, 83, 354–359.PubMedCrossRefGoogle Scholar
  12. 12.
    Gatenby, R. A., Kessler, H. B., Rosenblum, J. S., Coia, L. R., Moldofsky, P. J., Hartz, W. H. et al. (1988). Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 14, 831–838.PubMedGoogle Scholar
  13. 13.
    Brizel, D. M., Scully, S. P., Harrelson, J. M., Layfield, L. J., Bean, J. M., Prosnitz, L. R. et al. (1996). Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Research, 56, 941–943.PubMedGoogle Scholar
  14. 14.
    Brurberg, K. G., Graff, B. A., & Rofstad, E. K. (2003). Temporal heterogeneity in oxygen tension in human melanoma xenografts. British Journal of Cancer, 89, 350–356.PubMedCrossRefGoogle Scholar
  15. 15.
    Urano, M., Chen, Y., Humm, J., Koutcher, J. A., Zanzonico, P., & Ling, C. (2002). Measurements of tumor tissue oxygen tension using a time-resolved luminescence-based optical oxylite probe: Comparison with a paired survival assay. Radiation Research, 158, 167–173.PubMedCrossRefGoogle Scholar
  16. 16.
    Koch, C. J., & Evans, S. M. (2003). Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Advances in Experimental Medicine and Biology, 510, 285–292.PubMedGoogle Scholar
  17. 17.
    Rasey, J. S., Grunbaum, Z., Magee, S., Nelson, N. J., Olive, P. L., Durand, R. E. et al. (1987). Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiation Research, 111, 292–304.PubMedCrossRefGoogle Scholar
  18. 18.
    Bentzen, L., Keiding, S., Horsman, M. R., Falborg, L., Hansen, S. B., & Overgaard, J. (2000). Feasibility of detecting hypoxia in experimental mouse tumours with 18F-fluorinated tracers and positron emission tomography—a study evaluating [18F]Fluoro-2-deoxy-d-glucose. Acta Oncologica, 39, 629–637.PubMedCrossRefGoogle Scholar
  19. 19.
    Sorensen, M., Horsman, M. R., Cumming, P., Munk, O. L., & Keiding, S. (2005). Effect of intratumoral heterogeneity in oxygenation status on FMISO PET, autoradiography, and electrode Po2 measurements in murine tumors. International Journal of Radiation Oncology, Biology, Physics, 62, 854–861.PubMedCrossRefGoogle Scholar
  20. 20.
    Bruehlmeier, M., Roelcke, U., Schubiger, P. A., & Ametamey, S. M. (2004). Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. Journal of Nuclear Medicine, 45, 1851–1859.PubMedGoogle Scholar
  21. 21.
    Graham, M. M., Peterson, L. M., Link, J. M., Evans, M. L., Rasey, J. S., Koh, W. J. et al. (1997). Fluorine-18-fluoromisonidazole radiation dosimetry in imaging studies. Journal of Nuclear Medicine, 38, 1631–1636.PubMedGoogle Scholar
  22. 22.
    Yang, D. J., Wallace, S., Cherif, A., Li, C., Gretzer, M. B., Kim, E. E. et al. (1995). Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology, 194, 795–800.PubMedGoogle Scholar
  23. 23.
    Lehtio, K., Oikonen, V., Gronroos, T., Eskola, O., Kalliokoski, K., Bergman, J. et al. (2001). Imaging of blood flow and hypoxia in head and neck cancer: Initial evaluation with [(15)O]H(2)O and [(18)F]fluoroerythronitroimidazole PET. Journal of Nuclear Medicine, 42, 1643–1652.PubMedGoogle Scholar
  24. 24.
    Barthel, H., Wilson, H., Collingridge, D. R., Brown, G., Osman, S., Luthra, S. K. et al. (2004). In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. British Journal of Cancer, 90, 2232–2242.PubMedGoogle Scholar
  25. 25.
    Ziemer, L. S., Evans, S. M., Kachur, A. V., Shuman, A. L., Cardi, C. A., Jenkins, W. T. et al. (2003). Noninvasive imaging of tumor hypoxia in rats using the 2-nitroimidazole 18F-EF5. European Journal of Nuclear Medicine and Molecular Imaging, 30, 259–266.PubMedCrossRefGoogle Scholar
  26. 26.
    Evans, S. M., Kachur, A. V., Shiue, C. Y., Hustinx, R., Jenkins, W. T., Shive, G. G. et al. (2000). Noninvasive detection of tumor hypoxia using the 2-nitroimidazole [18F] EF1. Journal of Nuclear Medicine, 41, 327–336.PubMedGoogle Scholar
  27. 27.
    Piert, M., Machulla, H. J., Picchio, M., Reischl, G., Ziegler, S., Kumar, P. et al. (2005). Hypoxia-Specific Tumor Imaging with 18F-Fluoroazomycin Arabinoside. Journal of Nuclear Medicine, 46, 106–113.PubMedGoogle Scholar
  28. 28.
    Sorger, D., Patt, M., Kumar, P., Wiebe, L. I., Barthel, H., Seese A. et al. (2003). [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): A comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nuclear Medicine and Biology, 30, 317–326.PubMedCrossRefGoogle Scholar
  29. 29.
    Eschmann, S. M., Paulsen, F., Reimold, M., Dittmann, H., Welz, S., Reischl, G. et al. (2005). Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. Journal of Nuclear Medicine, 46, 253–260.PubMedGoogle Scholar
  30. 30.
    Fujibayashi, Y., Taniuchi, H., Yonekura, Y., Ohtani, H., Konishi, J., & Yokoyama, A. (1997). Copper-62-ATSM: A new hypoxia imaging agent with high membrane permeability and low redox potential. Journal of Nuclear Medicine, 38, 1155–1160.PubMedGoogle Scholar
  31. 31.
    Obata, A., Yoshimi, E., Waki, A., Lewis, J. S., Oyama, N., Welch, M. J. et al. (2001). Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent cu-diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM) in tumor cells. Annals of Nuclear Medicine, 15, 499–504.PubMedCrossRefGoogle Scholar
  32. 32.
    O’Donoghue, J. A., Zanzonico, P., Pugachev, A., Wen, B., Smith-Jones, P., Cai, S. et al. (2005). Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: Comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. International Journal of Radiation Oncology, Biology, Physics, 61, 1493–1502.PubMedCrossRefGoogle Scholar
  33. 33.
    Chao, K. S., Bosch, W. R., Mutic, S., Lewis, J. S., Dehdashti, F., Mintun, M. A. et al. (2001). A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 49, 1171–1182.PubMedCrossRefGoogle Scholar
  34. 34.
    Dehdashti, F., Mintun, M. A., Lewis, J. S., Bradley, J., Govindan, R., Laforest, R. et al. (2003). In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. European Journal of Nuclear Medicine and Molecular Imaging, 30, 844–850.PubMedCrossRefGoogle Scholar
  35. 35.
    Dehdashti, F., Grigsby, P. W., Mintun, M. A., Lewis, J. S., Siegel, B. A., & Welch, M. J. (2003). Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: Relationship to therapeutic response—a preliminary report. International Journal of Radiation Oncology, Biology, Physics, 55, 1233–1238.PubMedCrossRefGoogle Scholar
  36. 36.
    Lewis, J., Laforest, R., Buettner, T., Song, S., Fujibayashi, Y., Connett, J. et al. (2001). Copper-64-diacetyl-bis (N4-methylthiosemicarbazone): An agent for radiotherapy. Proceedings of the National Academy of Sciences of the United States of America, 98, 1206–1211.PubMedCrossRefGoogle Scholar
  37. 37.
    Obata, A., Kasamatsu, S., Lewis, J. S., Furukawa, T., Takamatsu, S., Toyohara, J. et al. (2005). Basic characterization of (64) Cu-ATSM as a radiotherapy agent. Nuclear Medicine and Biology, 32, 21–28.PubMedCrossRefGoogle Scholar
  38. 38.
    Mazure, N. M., Brahimi-Horn, M. C., Berta, M. A., Benizri, E., Bilton, R. L., Dayan, F. et al. (2004). HIF-1: Master and commander of the hypoxic world. A pharmacological approach to its regulation by siRNAs. Biochemical Pharmacology, 68, 971–980.PubMedCrossRefGoogle Scholar
  39. 39.
    Theodoropoulos, V. E., Lazaris, A. Ch., Sofras, F., Gerzelis, I., Tsoukala, V., Ghikonti, I. et al. (2004). Hypoxia-inducible factor 1 alpha expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. European Urology, 46, 200–208.PubMedCrossRefGoogle Scholar
  40. 40.
    Unruh, A., Ressel, A., Mohamed, H. G., Johnson, R. S., Nadrowitz, R., Richter, E. et al. (2003). The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene, 22, 3213–3220.PubMedCrossRefGoogle Scholar
  41. 41.
    Birner, P., Gatterbauer, B., Oberhuber, G., Schindl, M., Rossler, K., Prodinger, A. et al. (2001). Expression of hypoxia-inducible factor-1 alpha in oligodendrogliomas: Its impact on prognosis and on neoangiogenesis. Cancer, 92, 165–171.PubMedCrossRefGoogle Scholar
  42. 42.
    Sohda, M., Ishikawa, H., Masuda, N., Kato, H., Miyazaki, T., Nakajima, M. et al. (2004). Pretreatment evaluation of combined HIF-1alpha, p53 and p21 expression is a useful and sensitive indicator of response to radiation and chemotherapy in esophageal cancer. International Journal of Cancer, 110, 838–844.CrossRefGoogle Scholar
  43. 43.
    Pili, R., & Donehower, R. C. (2003). Is HIF-1 alpha a valid therapeutic target? Journal of the National Cancer Institute, 95, 498–499.PubMedCrossRefGoogle Scholar
  44. 44.
    Wen, B., Burgman, P., Zanzonico, P., O’donoghue, J., Cai, S., Finn, R. et al. (2004). A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia. European Journal of Nuclear Medicine and Molecular Imaging, 31, 1530–1538.PubMedCrossRefGoogle Scholar
  45. 45.
    Serganova, I., Doubrovin, M., Vider, J., Ponomarev, V., Soghomonyan, S., Beresten, T. et al. (2004). Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Research, 64, 6101–6108.PubMedCrossRefGoogle Scholar
  46. 46.
    Rajendran, J. G., & Krohn, K. A. (2005). Imaging hypoxia and angiogenesis in tumors. Radiologic Clinics of North America, 43, 169–187.PubMedCrossRefGoogle Scholar
  47. 47.
    Collingridge, D. R., Carroll, V. A., Glaser, M., Aboagye, E. O., Osman, S., Hutchinson, O. C. et al. (2002). The development of [(124)I] iodinated-VG76e: A novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Research, 62, 5912–5919.PubMedGoogle Scholar
  48. 48.
    Czernin, J., & Phelps, M. E. (2002). Positron emission tomography scanning: Current and future applications. Annual Review of Medicine, 53, 89–112.PubMedCrossRefGoogle Scholar
  49. 49.
    Parliament, M. B., Chapman, J. D., Urtasun, R. C., McEwan, A. J., Golberg, L., Mercer, J. R. et al. (1992). Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: Preliminary report of a clinical study. British Journal of Cancer, 65, 90–95.PubMedGoogle Scholar
  50. 50.
    Urtasun, R. C., Parliament, M. B., McEwan, A. J., Mercer, J. R., Mannan, R. H., Wiebe, L. I. et al. (1996). Measurement of hypoxia in human tumours by non-invasive SPECT imaging of iodoazomycin arabinoside. British Journal of Cancer. Supplement, 27, S209–S212.Google Scholar
  51. 51.
    Iyer, R. V., Kim, E., Schneider, R. F., Chapman, J. D. (1998). A dual hypoxic marker technique for measuring oxygenation change within individual tumors. British Journal of Cancer, 78, 163–169.Google Scholar
  52. 52.
    Ballinger, J. R., Kee, J. W., & Rauth, A. M. (1996). In vitro and in vivo evaluation of a technetium-99m-labeled 2-nitroimidazole (BMS181321) as a marker of tumor hypoxia. Journal of Nuclear Medicine, 37, 1023–1031.PubMedGoogle Scholar
  53. 53.
    Melo, T., Duncan, J., Ballinger, J. R., & Rauth, A. M. (2000). BRU59-21, a second-generation 99mTc-labeled 2-nitroimidazole for imaging hypoxia in tumors. Journal of Nuclear Medicine, 41, 169–176.PubMedGoogle Scholar
  54. 54.
    Hoebers, F. J., Janssen, H. L., Olmos, A. V., Sprong, D., Nunn, A. D., Balm, A. J. et al. (2002). Phase 1 study to identify tumour hypoxia in patients with head and neck cancer using technetium-99m BRU 59-21. European Journal of Nuclear Medicine and Molecular Imaging, 29, 1206–1211.PubMedCrossRefGoogle Scholar
  55. 55.
    Chu, T., Li, R., Hu, S., Liu, X., & Wang, X. (2004). Preparation and biodistribution of technetium-99m-labeled 1-(2-nitroimidazole-1-yl)-propanhydroxyiminoamide (N2IPA) as a tumor hypoxia marker. Nuclear Medicine and Biology, 31, 199–203.PubMedCrossRefGoogle Scholar
  56. 56.
    Cook, G. J., Houston, S., Barrington, S. F., & Fogelman, I. (1998). Technetium-99m-labeled HL91 to identify tumor hypoxia: Correlation with fluorine-18-FDG. Journal of Nuclear Medicine, 39, 99–103.PubMedGoogle Scholar
  57. 57.
    Honess, D. J., Hill, S. A., Collingridge, D. R., Edwards, B., Brauers, G., Powell, N. A. et al. (1998). Preclinical evaluation of the novel hypoxic marker 99mTc-HL91 (Prognox) in murine and xenograft systems in vivo. International Journal of Radiation Oncology, Biology, Physics, 42, 731–735.PubMedCrossRefGoogle Scholar
  58. 58.
    Liu, Z., Stevenson, G. D., Barrett, H. H., Kastis, G. A., Bettan, M., Furenlid L. R. et al. (2004). Imaging recognition of multidrug resistance in human breast tumors using 99mTc-labeled monocationic agents and a high-resolution stationary SPECT system. Nuclear Medicine and Biology, 31, 53–65.PubMedCrossRefGoogle Scholar
  59. 59.
    Bouziotis, P., Fani, M., Archimandritis, S. C., Loundos, G., Paravatou, M., Bicknell, R. et al. (2003). Samarium-153 and technetium-99m-labeled monoclonal antibodies in angiogenesis for tumor visualization and inhibition. Anticancer Research, 23, 2167–2171.PubMedGoogle Scholar
  60. 60.
    Yang, D. J., Kim, K. D., Schechter, N. R., Yu, D. F., Wu, P., Azhdarinia, A. et al. (2002). Assessment of antiangiogenic effect using 99mTc-EC-endostatin. Cancer Biotherapy & Radiopharmaceuticals, 17, 233–245.CrossRefGoogle Scholar
  61. 61.
    Kurhanewicz, J., Vigneron, D. B., Hricak, H., Narayan, P., Carroll, P., & Nelson, S. J. (1996). Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology, 198, 795–805.PubMedGoogle Scholar
  62. 62.
    Star-Lack, J. M., Adalsteinsson, E., Adam, M. F., Terris, D. J., Pinto, H. A., Brown, J. M. et al. (2000). In vivo 1H MR spectroscopy of human head and neck lymph node metastasis and comparison with oxygen tension measurements. American Journal of Neuroradiology, 21, 183–193.PubMedGoogle Scholar
  63. 63.
    Bhujwalla, Z. M., & Glickson, J. D. (1996). Detection of tumor response to radiation therapy by in vivo proton MR spectroscopy. International Journal of Radiation Oncology, Biology, Physics, 36, 635–639.PubMedCrossRefGoogle Scholar
  64. 64.
    Jordan, B. F., Black, K., Robey, I. F., Runquist, M., Powis, G., & Gillies, R. J. (2005). Metabolite changes in HT-29 xenograft tumors following HIF-1alpha inhibition with PX-478 as studied by MR spectroscopy in vivo and ex vivo. NMR in Biomedicine, 18, 430–439.PubMedCrossRefGoogle Scholar
  65. 65.
    Duong, T. Q., Iadecola, C., & Kim, S. G. (2001). Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow. Magnetic Resonance in Medicine, 45, 61–70.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhao, D., Ran, S., Constantinescu, A., Hahn, E. W., & Mason, R. P. (2003). Tumor oxygen dynamics: Correlation of in vivo MRI with histological findings. Neoplasia, 5, 308–318.PubMedGoogle Scholar
  67. 67.
    Van der Sanden, B. P., Heerschap, A., Simonetti, A. W., Rijken, P. F., Peters, H. P., Stuben, G. et al. (1999). Characterization and validation of noninvasive oxygen tension measurements in human glioma xenografts by 19F-MR relaxometry. International Journal of Radiation Oncology, Biology, Physics, 44, 649–658.PubMedCrossRefGoogle Scholar
  68. 68.
    McNab, J. A., Yung, A. C., & Kozlowski, P. (2004). Tissue oxygen tension measurements in the Shionogi model of prostate cancer using (19) F MRS and MRI. MAGMA, 17, 288–295.PubMedCrossRefGoogle Scholar
  69. 69.
    Mason, R. P., Rodbumrung, W., & Antich, P. P. (1996). Hexafluorobenzene: A sensitive 19F NMR indicator of tumor oxygenation. NMR in Biomedicine, 9, 125–134.PubMedCrossRefGoogle Scholar
  70. 70.
    Dardzinski, B. J., & Sotak, C. H. (1994). Rapid tissue oxygen tension mapping using 19F inversion-recovery echo-planar imaging of perfluoro-15-crown-5-ether. Magnetic Resonance in Medicine, 32, 88–97.PubMedCrossRefGoogle Scholar
  71. 71.
    McIntyre, D. J. O, McCoy, C. L., & Griffiths, J. R. (1999). Tumor oxygen measurements by 19F magnetic resonance imaging of perfluorocarbons. Current Science, 76, 753–762.Google Scholar
  72. 72.
    Hunjan, S., Zhao, D., Constantinescu, A., Hahn, E. W., Antich, P. P., & Mason, R. P. (2001). Tumor oximetry: Demonstration of an enhanced dynamic mapping procedure using fluorine-19 echo planar magnetic resonance imaging in the Dunning prostate R3327-AT1 rat tumor. International Journal of Radiation Oncology, Biology, Physics, 49, 1097–1108.PubMedCrossRefGoogle Scholar
  73. 73.
    Milosevic, M. F., Fyles, A. W., Wong, R., Pintilie, M., Kavanagh, M. C., Levin, W. et al. (1998). Interstitial fluid pressure in cervical carcinoma: Within tumor heterogeneity and relation to oxygen tension. Cancer, 82, 2418–2426.PubMedCrossRefGoogle Scholar
  74. 74.
    Noth, U., Rodrigues, L. M., Robinson, S. P., Jork, A., Zimmermann, U., Newell, B. et al. (2004). In vivo determination of tumor oxygenation during growth and in response to carbogen breathing using 15C5-loaded alginate capsules as fluorine-19 magnetic resonance imaging oxygen sensors. International Journal of Radiation Oncology, Biology, Physics, 60, 909–919.PubMedCrossRefGoogle Scholar
  75. 75.
    Noth, U., Grohn, P., Jork, A., Zimmermann, U., Haase, A., & Lutz, J. (1999). 19F-MRI in vivo determination of the partial oxygen pressure in perfluorocarbon-loaded alginate capsules implanted into the peritoneal cavity and different tissues. Magnetic Resonance in Medicine, 42, 1039–1047.PubMedCrossRefGoogle Scholar
  76. 76.
    Zimmermann, U., Thurmer, F., Jork, A., Weber, M., Mimietz, S., Hillgartner, M. et al. (2001). A novel class of amitogenic alginate microcapsules for long-term immunoisolated transplantation. Annals of the New York Academy of Sciences, 944, 199–215.PubMedCrossRefGoogle Scholar
  77. 77.
    Kwock, L., Gill, M., McMurry, H. L., Beckman, W., Raleigh, J. A., & Joseph, A. P. (1992). Evaluation of a fluorinated 2-nitroimidazole binding to hypoxic cells in tumor-bearing rats by 19F magnetic resonance spectroscopy and immunohistochemistry. Radiation Research, 129, 71–78.PubMedCrossRefGoogle Scholar
  78. 78.
    Salmon, H. W., & Siemann, D. W. (2004). Utility of 19F MRS detection of the hypoxic cell marker EF5 to assess cellular hypoxia in solid tumors. Radiotherapy and Oncology, 73, 359–366.PubMedCrossRefGoogle Scholar
  79. 79.
    Aboagye, E. O., Maxwell, R. J., Horsman, M. R., Lewis, A. D., Workman, P., Tracy, M. et al. (1998). The relationship between tumour oxygenation determined by oxygen electrode measurements and magnetic resonance spectroscopy of the fluorinated 2-nitroimidazole SR-4554. British Journal of Cancer, 77, 65–70.PubMedGoogle Scholar
  80. 80.
    Seddon, B. M., Maxwell, R. J., Honess, D. J., Grimshaw, R., Raynaud, F., Tozer, G. M. et al. (2002). Validation of the fluorinated 2-nitroimidazole SR-4554 as a noninvasive hypoxia marker detected by magnetic resonance spectroscopy. Clinical Cancer Research, 8, 2323–2335.PubMedGoogle Scholar
  81. 81.
    Seddon, B. M., Payne, G. S., Simmons, L., Ruddle, R., Grimshaw, R., Tan, S. et al. (2003). A phase I study of SR-4554 via intravenous administration for noninvasive investigation of tumor hypoxia by magnetic resonance spectroscopy in patients with malignancy. Clinical Cancer Research, 9, 5101–5112.PubMedGoogle Scholar
  82. 82.
    Vaupel, P., Schaefer, C., & Okunieff, P. (1994). Intracellular acidosis in murine fibrosarcomas coincides with ATP depletion, hypoxia, and high levels of lactate and total Pi. NMR in Biomedicine, 7, 128–136.PubMedCrossRefGoogle Scholar
  83. 83.
    Saitoh, J., Sakurai, H., Suzuki, Y., Muramatsu, H., Ishikawa, H., Kitamoto, Y. et al. (2002). Correlations between in vivo tumor weight, oxygen pressure, 31P NMR spectroscopy, hypoxic microenvironment marking by beta-d-iodinated azomycin galactopyranoside (beta-d-IAZGP), and radiation sensitivity. International Journal of Radiation Oncology, Biology, Physics, 54, 903–909.PubMedCrossRefGoogle Scholar
  84. 84.
    Robinson, S. P., Howe, F. A., Stubbs, M., Griffiths, J. R. (2000). Effects of nicotinamide and carbogen on tumour oxygenation, blood flow, energetics and blood glucose levels. British Journal of Cancer, 82, 2007–2014.PubMedCrossRefGoogle Scholar
  85. 85.
    Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14, 68–78.PubMedCrossRefGoogle Scholar
  86. 86.
    Baudelet, C., & Gallez, B. (2002). How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magnetic Resonance in Medicine, 48, 980–986.PubMedCrossRefGoogle Scholar
  87. 87.
    Diergarten, T., Martirosian, P., Kottke, R., Vogel, U., Stenzl, A., Claussen, C. D. et al. (2005). Functional characterization of prostate cancer by integrated magnetic resonance imaging and oxygenation changes during carbogen breathing. Investigative Radiology, 40, 102–109.PubMedCrossRefGoogle Scholar
  88. 88.
    Rijpkema, M., Schuuring, J., Bernsen, P. L., Bernsen, H. J., Kaanders, J. H., van der Kogel, A. J. et al. (2004). BOLD MRI response to hypercapnic hyperoxia in patients with meningiomas: Correlation with Gadolinium-DTPA uptake rate. Magnetic Resonance Imaging, 22, 761–767.PubMedCrossRefGoogle Scholar
  89. 89.
    Howe, F. A., Robinson, S. P., McIntyre, D. J., Stubbs, M., & Griffiths, J. R. (2001). Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR in Biomedicine, 14, 497–506.PubMedCrossRefGoogle Scholar
  90. 90.
    Rodrigues, L. M., Howe, F. A., Griffiths, J. R., & Robinson, S. P. (2004). Tumor R2* is a prognostic indicator of acute radiotherapeutic response in rodent tumors. Journal of Magnetic Resonance Imaging, 19, 482–488.PubMedCrossRefGoogle Scholar
  91. 91.
    Al-Hallaq, H. A., Zamora, M. A., Fish, B. L., Halpern, H. J., Moulder, J. E., & Karczmar, G. S. (2003). Using high spectral and spatial resolution bold MRI to choose the optimal oxygenating treatment for individual cancer patients. Advances in Experimental Medicine and Biology, 530, 433–440.PubMedGoogle Scholar
  92. 92.
    Swartz, H. M., & Clarkson, R. B. (1998). The measurement of oxygen in vivo using EPR techniques. Physics in Medicine & Biology, 43, 1957–1975.CrossRefGoogle Scholar
  93. 93.
    Liu, K. J., Grinstaff, M. W., Jiang, J., Suslick, K. S., Swartz, H. M., & Wang, W. (1994). In vivo measurement of oxygen concentration using sonochemically synthesized microspheres. Biophysical Journal, 67, 896–901.PubMedCrossRefGoogle Scholar
  94. 94.
    Ilangovan, G., Li, H., Zweier, J. L., Krishna, M. C., Mitchell, J. B., & Kuppusamy, P. (2002). In vivo measurement of regional oxygenation and imaging of redox status in RIF-1 murine tumor: Effect of carbogen-breathing. Magnetic Resonance in Medicine, 48, 723–730.PubMedCrossRefGoogle Scholar
  95. 95.
    Matsumoto, K., Chandrika, B., Lohman, J. A., Mitchell, J. B., Krishna, M. C., & Subramanian, S. (2003). Application of continuous-wave EPR spectral–spatial image reconstruction techniques for in vivo oxymetry: Comparison of projection reconstruction and constant-time modalities. Magnetic Resonance in Medicine, 50, 865–874.PubMedCrossRefGoogle Scholar
  96. 96.
    Elas, M., Williams, B. B., Parasca, A., Mailer, C., Pelizzari, C. A., Lewis, M. A. et al. (2003). Quantitative tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): Methodology and comparison with blood oxygen level-dependent (BOLD) MRI. Magnetic Resonance in Medicine, 49, 682–691.PubMedCrossRefGoogle Scholar
  97. 97.
    Matsumoto, K., English, S., Yoo, J., Yamada, K., Devasahayam, N., Cook, J. A. et al. (2004). Pharmacokinetics of a triarylmethyl-type paramagnetic spin probe used in EPR oximetry. Magnetic Resonance in Medicine, 52, 885–892.PubMedCrossRefGoogle Scholar
  98. 98.
    Li, H., Deng, Y., He, G., Kuppusamy, P., Lurie, D. J., & Zweier, J. L. (2002). Proton electron double resonance imaging of the in vivo distribution and clearance of a triaryl methyl radical in mice. Magnetic Resonance in Medicine, 48, 530–534.PubMedCrossRefGoogle Scholar
  99. 99.
    Krishna, M. C., English, S., Yamada, K., Yoo, J., Murugesan, R., Devasahayam, N. et al. (2002). Overhauser enhanced magnetic resonance imaging for tumor oximetry: Coregistration of tumor anatomy and tissue oxygen concentration. Proceedings of the National Academy of Sciences of the United States of America, 99, 2216–2221.PubMedCrossRefGoogle Scholar
  100. 100.
    Hull, E. L., Conover, D. L., & Foster, T. H. (1999). Carbogen-induced changes in rat mammary tumour oxygenation reported by near infrared spectroscopy. British Journal of Cancer, 79, 1709–1716.PubMedCrossRefGoogle Scholar
  101. 101.
    Madsen, P. L., & Secher, N. H. (1999). Near-infrared oximetry of the brain. Progress in Neurobiology, 58, 541–560.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim, J. G., Zhao, D., Song, Y., Constantinescu, A., Mason, R. P., & Liu, H. (2003). Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping. Journal of Biomedical Optics, 8, 53–62.PubMedCrossRefGoogle Scholar
  103. 103.
    Cheng, X., Mao, J. M., Bush, R., Kopans, D. B., Moore, R. H., & Chorlton, M. (2003). Breast cancer detection by mapping hemoglobin concentration and oxygen saturation. Applied Optics, 42, 6412–6421.PubMedCrossRefGoogle Scholar
  104. 104.
    Marten, K., Bremer, C., Khazaie, K., Sameni, M., Sloane, B., Tung, C. H. et al. (2002). Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology, 122, 406–414.PubMedCrossRefGoogle Scholar
  105. 105.
    Ziemer, L. S., Lee, W. M., Vinogradov, S. A., Sehgal, C. M., & Wilson, D. F. (2005). Oxygen distribution in murine tumors: Characterization using oxygen-dependent quenching of phosphorescence. Journal of Applied Physiology, 98, 1503–1510.PubMedCrossRefGoogle Scholar
  106. 106.
    Wilson, D. F., Vinogradov, S. A., Dugan, B. W., Biruski, D., Waldron, L., & Evans, S. A. (2002). Measurement of tumor oxygenation using new frequency domain phosphorometers. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 132, 153–159.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institute for BiodiagnosticsNational Research CouncilWinnipegCanada

Personalised recommendations